Behavior and Mechanism of High-Temperature Stability between Tial-Based Alloy and Y2O3-Al2O3 Composite Crucibles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Composite Crucibles
2.2. Melting Procedure
3. Results
3.1. Microstructure
3.2. Melt-Crucible Interface
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Barbosa, J.; Ribeiro, C.S.; Monteiro, A.C. Influence of superheating on casting of γ-TiAl. Intermetallics 2007, 15, 945–955. [Google Scholar] [CrossRef]
- Imayev, R.M.; Imayev, V.M.; Oehring, M.; Appel, F. Alloy design concepts for refined gamma titanium aluminide based alloys. Intermetallics 2007, 15, 451–460. [Google Scholar] [CrossRef]
- Renjie, C.; Ming, G.; Hu, Z.; Shengkai, G. Interactions between tial alloys and yttria refractory material in casting process. J. Mater. Process. Tech. 2010, 210, 1190–1196. [Google Scholar] [CrossRef]
- Chen, R.; Dong, S.; Guo, J.; Ding, H.; Su, Y.; Fu, H. Investigation of macro/microstructure evolution and mechanical properties of directionally solidified high-Nb Tial-based alloy. Mater. Des. 2016, 89, 492–506. [Google Scholar] [CrossRef]
- Voisin, T.; Monchoux, J.-P.; Hantcherli, M.; Mayer, S.; Clemens, H.; Couret, A. Microstructures and mechanical properties of a multi-phase β-solidifying TiAl alloy densified by spark plasma sintering. Acta Mater. 2014, 73, 107–115. [Google Scholar] [CrossRef]
- Xin, J.; Zhang, L.; Ge, G.; Lin, J. Characterization of microstructure evolution in β-γ TiAl alloy containing high content of niobium using constitutive equation and power dissipation map. Mater. Des. 2016, 107, 406–415. [Google Scholar] [CrossRef]
- Huang, Z.W. Inhomogeneous microstructure in highly alloyed cast TiAl-based alloys, caused by microsegregation. Scr. Mater. 2005, 52, 1021–1025. [Google Scholar] [CrossRef]
- Li, J.; Zhang, H.; Gao, M.; Li, Q.; Bian, W.; Tao, T.; Zhang, H. High-temperature wettability and interactions between y-containing Ni-based alloys and various oxide ceramics. Materials 2018, 11, 749–763. [Google Scholar] [CrossRef] [PubMed]
- Kima, M.; Ohb, M.; Leec, J.; Inuid, H.; Yamaguchid, M.; Weea, D. Composition and growth rate effects in directionally solidified TiAl alloys. Mater. Sci. Eng. A 1997, 239, 570–576. [Google Scholar] [CrossRef]
- Lapin, J.; Gabalcová, Z. Solidification behaviour of TiAl-based alloys studied by directional solidification technique. Intermetallics 2011, 19, 797–804. [Google Scholar] [CrossRef]
- Ding, X.F.; Lin, J.P.; Zhang, L.Q.; Su, Y.Q.; Chen, G.L. Microstructural control of TiAl–Nb alloys by directional solidification. Acta Mater. 2012, 60, 498–506. [Google Scholar] [CrossRef]
- Tetsui, T.; Kobayashi, T.; Harada, H. Achieving high strength and low cost for hot-forged TiAl based alloy containing β phase. Mater. Sci. Eng. A 2012, 552, 345–352. [Google Scholar] [CrossRef]
- Cui, R.J.; Tang, X.X.; Gao, M.; Zhang, H.; Gong, S.K. Microstructure and composition of cast Ti–47Al–2Cr–2Nb alloys produced by yttria crucibles. Mater. Sci. Eng. A 2012, 541, 14–21. [Google Scholar] [CrossRef]
- Zhang, H.; Tang, X.; Zhou, C.; Zhang, H.; Zhang, S. Comparison of directional solidification of γ-TiAl alloys in conventional Al2O3 and novel Y2O3-coated Al2O3 crucibles. J. Eur. Ceram. Soc. 2013, 33, 925–934. [Google Scholar] [CrossRef]
- Gomes, F.; Barbosa, J.; Ribeiro, C.S. Induction melting of γ-TiAl in CaO crucibles. Intermetallics 2008, 16, 1292–1297. [Google Scholar] [CrossRef]
- Tetsui, T. Development of a TiAl turbocharger for passenger vehicles. Mater. Sci. Eng. A. 2002, 329, 582–588. [Google Scholar] [CrossRef]
- Larsen, D.E.; Christodoulou, L.; Kampe, S.L.; Sadler, R. Investment-cast processing of xdtm near-γ titanium aluminides. Mater. Sci. Eng. A 1991, 144, 45–49. [Google Scholar] [CrossRef]
- Sung, S.-Y.; Kim, Y.-J. Modeling of titanium aluminides turbo-charger casting. Intermetallics 2007, 15, 468–474. [Google Scholar] [CrossRef]
- Myounggyun, K.; Kim, S.; Youngjig, K. Effect of mold material and binder on metal-mold interfacial reaction for investment castings of titanium alloys. Mater. Trans. 2005, 43, 745–750. [Google Scholar]
- Kostov, A.; Friedrich, B. Predicting thermodynamic stability of crucible oxides in molten titanium and titanium alloys. Comput. Mater. Sci. 2006, 38, 374–385. [Google Scholar] [CrossRef]
- Kuang, J.P.; Harding, R.A.; Campbell, J. Investigation into refractories as crucible and mould materials for melting and casting γ-TiAl alloys. Mater. Sci. Technol. 2013, 16, 1007–1016. [Google Scholar] [CrossRef]
- Shen, P.; Fujii, H.; Nogi, K. Wetting, Wetting, adhesion and diffusion in Cu-Al/SiO system at 1473k. Scr. Mater. 2005, 52, 1259–1263. [Google Scholar] [CrossRef]
- Zhang, H.R.; Tang, X.X.; Zhou, L.; Gao, M.; Zhou, C.G.; Zhang, H. Interactions between Ni-44Ti-5Al-2Nb-Mo alloy and oxide ceramics during directional solidification process. J. Mater. Sci. 2012, 47, 6451–6458. [Google Scholar] [CrossRef]
- Mah, T.I.; Petry, M.D. Eutectic composition in the pseudobinary of Y4Al2O9 and Y2O3. J. Am. Ceram. Soc. 2010, 75, 2006–2009. [Google Scholar] [CrossRef]
- Kolitsch, U.; Seifert, H.J.; Ludwig, T.; Aldinger, F. Phase equilibria and crystal chemistry in the Y2O3-Al2O3-SiO2 system. J. Mater. Res. 1999, 14, 447–455. [Google Scholar] [CrossRef]
- Yamane, H.; Omori, M.; Hiral, T. Thermogravimetry and Rietveld analysis for the high-temperature X-ray powder diffraction pattern of Y4Al2O9. J. Mater. Sci. Lett. 1995, 14, 470–473. [Google Scholar] [CrossRef]
Crucible | 5 μm Al2O3 Powder/(g) | 325 mesh Y2O3 Powder/(g) | 200 mesh Y2O3 Sand/(g) | 60–80 mesh Y2O3 Sand/(g) |
---|---|---|---|---|
Pure Y2O3 | 0 | 32.50 | 27.85 | 32.50 |
Al2O3-A | 3.17 | 28.53 | 27.85 | 32.50 |
Al2O3-B | 6.19 | 24.76 | 27.85 | 32.50 |
Al2O3-C | 9.07 | 21.16 | 27.85 | 32.50 |
Crucible | Pure Y2O3 | Al2O3-A | Al2O3-B | Al2O3-C |
---|---|---|---|---|
Porosity | 5.88% | 9.93% | 11.52% | 11.34% |
Phases | Compositions | |||||
---|---|---|---|---|---|---|
Al | Ti | Cr | Nb | Y | O | |
Dark gray grain boundary | 50.37 | 43.84 | 4.5 | 1.29 | - | - |
Light gray dendrite | 43.30 | 52.73 | 1.33 | 2.64 | - | - |
Light gray inclusions | 34.92 | 40.55 | 23.40 | 1.13 | - | - |
32.54 | 41.67 | 24.91 | 0.89 | - | - | |
Bright white inclusions | 1.59 | 2.77 | - | - | 49.09 | 46.55 |
1.28 | 2.41 | - | - | 49.51 | 46.8 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Zhang, H.; Cui, Y.; Yang, C.; Gao, M.; Li, J.; Zhang, H. Behavior and Mechanism of High-Temperature Stability between Tial-Based Alloy and Y2O3-Al2O3 Composite Crucibles. Materials 2018, 11, 1107. https://doi.org/10.3390/ma11071107
Li Q, Zhang H, Cui Y, Yang C, Gao M, Li J, Zhang H. Behavior and Mechanism of High-Temperature Stability between Tial-Based Alloy and Y2O3-Al2O3 Composite Crucibles. Materials. 2018; 11(7):1107. https://doi.org/10.3390/ma11071107
Chicago/Turabian StyleLi, Qingling, Huarui Zhang, Yongshuang Cui, Chunlei Yang, Ming Gao, Jinpeng Li, and Hu Zhang. 2018. "Behavior and Mechanism of High-Temperature Stability between Tial-Based Alloy and Y2O3-Al2O3 Composite Crucibles" Materials 11, no. 7: 1107. https://doi.org/10.3390/ma11071107