Synthesis of Honeycomb-Like Carbon Foam from Larch Sawdust as Efficient Absorbents for Oil Spills Cleanup and Recovery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of LLB-PF and LLB-CF
2.3. Characterization of LLB-PF and LLB-CF
2.4. Absorption Tests
2.5. Recyclability Tests
2.6. Separation Tests
3. Results and Discussion
3.1. Morphology
3.2. Surface Wettability and Functional Groups
3.3. Thermostability
3.4. Absorption Analysis
3.5. Recyclability Tests
3.6. Separation Tests
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, X.Y.; Li, Z.; Liu, K.S.; Jiang, L. Bioinspired Multifunctional Foam with Self-Cleaning and Oil/Water Separation. Adv. Funct. Mater. 2013, 23, 2881–2886. [Google Scholar] [CrossRef]
- Yang, Y.; Deng, Y.H.; Tong, Z.; Wang, C.Y. Multifunctional foams derived from poly (melamine formaldehyde) as recyclable oil absorbents. J. Mater. Chem. A 2014, 2, 9994–9999. [Google Scholar] [CrossRef]
- Elanchezhiyan, S.S.; Sivasurian, N.; Meenakshi, S. Enhancement of oil recovery using zirconium-chitosan hybrid composite by adsorptive method. Carbohydr. Polym. 2016, 145, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Cao, N.; Yang, B.; Barras, A.; Szunerits, S.; Boukherroub, R. Polyurethane sponge functionalized with superhydrophobic nanodiamond particles for efficient oil/water separation. Chem. Eng. J. 2017, 307, 319–325. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, C.; Wang, S.; Li, J. Fabrication of superhydrophobic cotton textiles for water-oil separation based on drop-coating route. Carbohydr. Polym. 2013, 97, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Ma, M.; Zang, D.; Gao, Z.; Wang, C. Fabrication of superhydrophobic/superoleophilic cotton for application in the field of water/oil separation. Carbohydr. Polym. 2014, 103, 480–487. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.H.; Xin, X.L.; Xiao, Z.Y.; Wang, R.M.; Zhanga, L.L.; Sun, D.F. A multi-aromatic hydrocarbon unit induced hydrophobic metal-organic framework for efficient C-2/C-1 hydrocarbon and oil/water separation. J. Mater. Chem. A 2017, 5, 1168–1175. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Yang, X.B.; Wang, Z.X.; Long, J.; Shao, L. Designing multifunctional 3D magnetic foam for effective insoluble oil separation and rapid selective dye removal for use in wastewater remediation. J. Mater. Chem. A 2017, 5, 7316–7325. [Google Scholar] [CrossRef]
- Wang, F.J.; Lei, S.; Li, C.Q.; Ou, J.F.; Xue, M.S.; Li, W. Superhydrophobic Cu mesh combined with a superoleophilic polyurethane sponge for oil spill adsorption and collection. Ind. Eng. Chem. Res. 2014, 53, 7141–7148. [Google Scholar] [CrossRef]
- McCloskey, B.D.; Ju, H.; Freeman, B.D. Composite membranes based on a selective chitosan−poly (ethylene glycol) hybrid layer: Synthesis, characterization, and performance in oil−water purification. Ind. Eng. Chem. Res. 2010, 49, 366–373. [Google Scholar] [CrossRef]
- Kayvani Fard, A.; Rhadfi, T.; McKay, G.; Al-marri, M.; Abdala, A.; Hilal, N.; Hussien, M.A. Enhancing oil removal from water using ferric oxide nanoparticles doped carbon nanotubes adsorbents. Chem. Eng. J. 2016, 293, 90–101. [Google Scholar] [CrossRef]
- Lan, G.H.; Fan, Q.; Liu, Y.Q.; Liu, Y.; Liu, Y.C.; Yin, X.B.; Luo, M. Effects of the addition of waste cooking oil on heavy crude oil biodegradation and microbial enhanced oil recovery using Pseudomonas sp SWP-4. Biochem. Eng. J. 2015, 103, 219–226. [Google Scholar] [CrossRef]
- Keshavarz, A.; Zilouei, H.; Abdolmaleki, A.; Asadinezhad, A. Enhancing oil removal from water by immobilizing multi-wall carbon nanotubes on the surface of polyurethane foam. J. Environ. Manag. 2015, 157, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Kong, L.Y.; Zhang, M.Y.; Qiu, F.X.; Rong, J.; Pan, J.M. Synthesis and characterization of porous fibers/polyurethane foam composites for selective removal of oils and organic solvents from water. RSC Adv. 2016, 6, 86510–86519. [Google Scholar] [CrossRef]
- Li, J.; Xu, C.C.; Zhang, Y.; Wang, R.F.; Zha, F.; She, H.D. Robust superhydrophobic attapulgite coated polyurethane sponge for efficient immiscible oil/water mixture and emulsion separation. J. Mater. Chem. A 2016, 4, 15546–15553. [Google Scholar] [CrossRef]
- Bacon, S.L.; Daugulis, A.J.; Parent, J.S. Effect of polymer molecular weight distribution on solute sequestration in two-phase partitioning bioreactors. Chem. Eng. J. 2016, 299, 56–62. [Google Scholar] [CrossRef]
- Zhou, C.L.; Cheng, J.; Hou, K.; Zhao, A.; Pi, P.H.; Wen, X.F.; Xu, S.P. Superhydrophilic and underwater superoleophobic titania nanowires surface for oil repellency and oil/water separation. Chem. Eng. J. 2016, 301, 249–256. [Google Scholar] [CrossRef]
- Zhu, H.G.; Chen, D.Y.; Li, N.J.; Xu, Q.F.; Li, H.; He, J.H.; Lu, J.M. Graphene foam with switchable oil wettability for oil and organic solvents recovery. Adv. Funct. Mater. 2015, 25, 597–605. [Google Scholar] [CrossRef]
- He, Y.; Liu, Y.; Wu, T.; Ma, J.; Wang, X.; Gong, Q.; Kong, W.; Xing, F.; Liu, Y.; Gao, J. An environmentally friendly method for the fabrication of reduced graphene oxide foam with a super oil absorption capacity. J. Hazard. Mater. 2013, 260, 796–805. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Muench, F.; Schaefer, S.; Brotz, J.; Duerrschnabel, M.; Molina-Luna, L.; Kleebe, H.J.; Liu, S.X.; Tan, J.; Ensinger, W. Electroless decoration of macroscale foam with nickel nano-spikes: A scalable route toward efficient catalyst electrodes. Electrochem. Commun. 2016, 65, 39–43. [Google Scholar] [CrossRef]
- Guo, M.S.; Cheng, Y.; Yu, Y.A.; Hu, J.B. Ni-Co nanoparticles immobilized on a 3D Ni foam template as a highly efficient catalyst for borohydride electrooxidation in alkaline medium. Appl. Surf. Sci. 2017, 416, 439–445. [Google Scholar] [CrossRef]
- Tang, Q.Q.; Chen, M.M.; Wang, L.; Wang, G.C. A novel asymmetric supercapacitors based on binder-free carbon fiber paper@ nickel cobaltite nanowires and graphene foam electrodes. J. Power Sources 2015, 273, 654–662. [Google Scholar] [CrossRef]
- Chen, Q.D.; Cai, D.P.; Zhan, H.B. Interconnected Ni-Co sulfide nanosheet arrays grown on nickel foam as binder-free electrodes for supercapacitors with high areal capacitance. J. Alloys Compd. 2017, 721, 205–212. [Google Scholar] [CrossRef]
- Chen, Y.N.; Xu, S.M.; Li, Y.C.; Jacob, R.J.; Kuang, Y.D.; Liu, B.Y.; Wang, Y.L.; Pastel, G.; Salamanca-Riba, L.G.; Zachariah, M.R.; et al. FeS2 nanoparticles embedded in reduced graphene oxide toward robust, high-performance electrocatalysts. Adv. Energy Mater. 2017, 7, 1700482. [Google Scholar] [CrossRef]
- Karthik, M.; Faik, A.; Blanco-Rodríguez, P.; Rodríguez-Aseguinolaza, J.; D’Aguanno, B. Preparation of erythritol–graphite foam phase change composite with enhanced thermal conductivity for thermal energy storage applications. Carbon 2015, 94, 266–276. [Google Scholar] [CrossRef]
- Wang, C.L.; Feng, Y.J.; Sun, X.C.; Sun, H.B.; Peng, T.; Lu, Y.; Xu, J.Q.; Luo, Y.S.; Yu, B.H. Fabrication and activation of carbon nanotube foam and its application in energy storage. Electrochim. Acta 2017, 236, 333–340. [Google Scholar] [CrossRef]
- Narasimman, R.; Vijayan, S.; Prabhakaran, K. Carbon particle induced foaming of molten sucrose for the preparation of carbon foams. Mater. Sci. Eng. B Adv. Funct. Solid-State Mater. 2014, 189, 82–89. [Google Scholar] [CrossRef]
- Yu, L.H.; Zhou, X.; Jiang, W. Low-cost and superhydrophobic magnetic foam as an absorbent for oil and organic solvent removal. Ind. Eng. Chem. Res. 2016, 55, 9498–9506. [Google Scholar] [CrossRef]
- Ge, B.; Men, X.H.; Li, Y.; Zhang, Z.Z. One-step foaming method to functional polyurethane absorbents foam. Sep. Sci. Technol. 2016, 51, 1299–1306. [Google Scholar] [CrossRef]
- Chen, C.J.; Zhang, Y.; Li, Y.J.; Dai, J.Q.; Song, J.W.; Yao, Y.G.; Gong, Y.H.; Kierzewski, I.; Xie, J.; Hu, L.B. All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy Environ. Sci. 2017, 10, 538–545. [Google Scholar] [CrossRef]
- Chen, C.; Li, Y.; Song, J.; Yang, Z.; Kuang, Y.; Hitz, E.; Jia, C.; Gong, A.; Jiang, F.; Zhu, J.Y.; et al. Highly flexible and efficient solar steam generation device. Adv. Mater. 2017, 29. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.J.; Zhang, Y.; Li, Y.J.; Kuang, Y.D.; Song, J.W.; Luo, W.; Wang, Y.B.; Yao, Y.G.; Pastel, G.; Xie, J.; et al. Highly conductive, lightweight, low-tortuosity carbon frameworks as ultrathick 3D current collectors. Adv. Energy Mater. 2017, 7. [Google Scholar] [CrossRef]
- Jin, Y.; Jiang, P.; Ke, Q.; Cheng, F.; Zhu, Y.; Zhang, Y. Superhydrophobic and superoleophilic polydimethylsiloxane-coated cotton for oil-water separation process: An evidence of the relationship between its loading capacity and oil absorption ability. J. Hazard. Mater. 2015, 300, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, M.A.; Rahmah, A.U.; Man, Z. Physicochemical and sorption characteristics of Malaysian Ceiba pentandra (L.) Gaertn. as a natural oil sorbent. J. Hazard. Mater. 2010, 177, 683–691. [Google Scholar] [CrossRef] [PubMed]
- Oribayo, O.; Feng, X.S.; Rempel, G.L.; Pan, Q.M. Synthesis of lignin-based polyurethane/graphene oxide foam and its application as an absorbent for oil spill clean-ups and recovery. Chem. Eng. J. 2017, 323, 191–202. [Google Scholar] [CrossRef]
- Zhao, X.; Li, W.; Liu, S.X. Coupled soft-template/hydrothermal process synthesis of mesoporous carbon spheres from liquefied larch sawdust. Mater. Lett. 2013, 107, 5–8. [Google Scholar] [CrossRef]
- Zhao, X.; Li, W.; Zhang, S.S.; Liu, L.H.; Liu, S.X. Hierarchically tunable porous carbon spheres derived from larch sawdust and application for efficiently removing Cr (III) and Pb (II). Mater. Chem. Phys. 2015, 155, 52–58. [Google Scholar] [CrossRef]
- Li, W.; Huang, Z.H.; Wu, Y.; Zhao, X.; Liu, S.X. Honeycomb carbon foams with tunable pore structures prepared from liquefied larch sawdust by self-foaming. Ind. Crop. Prod. 2015, 64, 215–223. [Google Scholar] [CrossRef]
- ASTM D 1622-2003, Standard Test Method for Apparent Density of Rigid Cellular Plastics; ASTM: West Conshohocken, PA, USA, 2003.
- Chaouch, M.; Diouf, P.N.; Laghdir, A.; Yin, S.Z. Bio-oil from whole-tree feedstock in resol-type phenolic resins. J. Appl. Polym. Sci. 2014, 131, 40014. [Google Scholar] [CrossRef]
- Zhao, Y.; Yan, N.; Feng, M.W. Biobased phenol formaldehyde resins derived from beetle-infested Pine barks-structure and composition. ACS Sustain. Chem. Eng. 2013, 1, 91–101. [Google Scholar] [CrossRef]
- Meng, Y.; Gu, D.; Zhang, F.; Shi, Y.; Yang, H.; Li, Z.; Yu, C.; Tu, B.; Zhao, D. Ordered mesoporous polymers and homologous carbon frameworks: Amphiphilic surfactant templating and direct transformation. Angew. Chem. Int. Ed. Engl. 2005, 44, 7053–7059. [Google Scholar] [CrossRef] [PubMed]
- Xiao, N.; Zhou, Y.; Ling, Z.; Qiu, J.S. Synthesis of a carbon nanofiber/carbon foam composite from coal liquefaction residue for the separation of oil and water. Carbon 2013, 59, 530–536. [Google Scholar] [CrossRef]
- Yang, S.; Chen, L.; Mu, L.; Ma, P.C. Magnetic graphene foam for efficient adsorption of oil and organic solvents. J. Colloid Interface Sci. 2014, 430, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.; Jiang, B.; Zheng, X.; Zheng, J.; Zhu, C.; Wu, M. Hydrophobic and fire-resistant carbon monolith from melamine sponge: A recyclable sorbent for oil–water separation. Carbon 2015, 84, 551–559. [Google Scholar] [CrossRef]
- Yang, Y.; Tong, Z.; Ngai, T.; Wang, C. Nitrogen-rich and fire-resistant carbon aerogels for the removal of oil contaminants from water. ACS Appl. Mater. Interfaces 2014, 6, 6351–6360. [Google Scholar] [CrossRef] [PubMed]
- Bi, H.C.; Xie, X.; Yin, K.B.; Zhou, Y.L.; Wan, S.; He, L.B.; Xu, F.; Banhart, F.; Sun, L.T.; Ruoff, R.S. Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents. Adv. Funct. Mater. 2012, 22, 4421–4425. [Google Scholar] [CrossRef]
- Tao, G.J.; Zhang, L.X.; Hua, Z.L.; Chen, Y.; Guo, L.M.; Zhang, J.M.; Shu, Z.; Gao, J.H.; Chen, H.R.; Wu, W.; et al. Highly efficient adsorbents based on hierarchically macro/mesoporous carbon monoliths with strong hydrophobicity. Carbon 2014, 66, 547–559. [Google Scholar] [CrossRef]
- Pan, Y.; Zhan, J.; Pan, H.; Yuan, B.; Wang, W.; Song, L.; Hu, Y. A facile method to fabricate superoleophilic and hydrophobic polyurethane foam for oil–water separation. Mater. Lett. 2015, 159, 345–348. [Google Scholar] [CrossRef]
- Niu, Z.; Chen, J.; Hng, H.H.; Ma, J.; Chen, X. A leavening strategy to prepare reduced graphene oxide foams. Adv. Mater. 2012, 24, 4144–4150. [Google Scholar] [CrossRef] [PubMed]
Precursors | Absorbents | Absorption (g/g) | Cost | Ref. |
---|---|---|---|---|
graphene oxide suspension | reduced graphene oxide foam | 10–37 | high | [49] |
graphene oxide film | magnetic graphene foam | 12–27 | medium | [43] |
oxidizing expandable graphite | spongy graphene foam | 20–86 | high | [46] |
coal liquefaction residue | CN/CF composite | 18–28 | high | [42] |
polyurethane foam | modified polyurethane foam | 20–32 | medium | [48] |
graphite flakes | graphene foam | 40–196 | high | [18] |
sponge and resol | CF | 61–203 | low | [44] |
alkaline lignin and melamine | carbon aerogels | 5–12 | medium | [45] |
synthesized SiO2 monolith | CF | 23–48 | high | [47] |
lignin | lignin-based polyurethane/graphene oxide foam | 26–68 | high | [35] |
larch sawdust | LLB-PF | 11–88 | quite low | This work |
larch sawdust | LLB-CF | 55–153 | quite low | This work |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, J.; Li, W.; Ma, C.; Wu, Q.; Xu, Z.; Liu, S. Synthesis of Honeycomb-Like Carbon Foam from Larch Sawdust as Efficient Absorbents for Oil Spills Cleanup and Recovery. Materials 2018, 11, 1106. https://doi.org/10.3390/ma11071106
Tan J, Li W, Ma C, Wu Q, Xu Z, Liu S. Synthesis of Honeycomb-Like Carbon Foam from Larch Sawdust as Efficient Absorbents for Oil Spills Cleanup and Recovery. Materials. 2018; 11(7):1106. https://doi.org/10.3390/ma11071106
Chicago/Turabian StyleTan, Jia, Wei Li, Chunhui Ma, Qiong Wu, Zhou Xu, and Shouxin Liu. 2018. "Synthesis of Honeycomb-Like Carbon Foam from Larch Sawdust as Efficient Absorbents for Oil Spills Cleanup and Recovery" Materials 11, no. 7: 1106. https://doi.org/10.3390/ma11071106
APA StyleTan, J., Li, W., Ma, C., Wu, Q., Xu, Z., & Liu, S. (2018). Synthesis of Honeycomb-Like Carbon Foam from Larch Sawdust as Efficient Absorbents for Oil Spills Cleanup and Recovery. Materials, 11(7), 1106. https://doi.org/10.3390/ma11071106