Effects of Three Calcium Silicate Cements on Inflammatory Response and Mineralization-Inducing Potentials in a Dog Pulpotomy Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Model
2.2. Surgical Procedure
2.3. Pulpotomy Procedure
2.4. Histological Analysis
2.5. Immunohistochemistry
2.6. Statistical Analysis
3. Results
3.1. Calcific Barrier Formation
3.2. Pulpal Reaction
3.3. Odontoblastic Cell Layer
3.4. Immunohistochemistry
4. Discussion
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Dahlkemper, P.; Dan, B.; Ang, D.; Goldberg, R.; Rubin, R.; Schultz, G.; Sheridan, B.; Slingbaum, J.; Stevens, M.; Powell, W. Guide to Clinical Endodontics; American Association of Endodontics: Chicago, IL, USA, 2013. [Google Scholar]
- Zhang, W.; Yelick, P.C. Vital pulp therapy—Current progress of dental pulp regeneration and revascularization. Inter. J. Dent. 2010, 2010, 856087. [Google Scholar] [CrossRef] [PubMed]
- Asgary, S.; Hassanizadeh, R.; Torabzadeh, H.; Eghbal, M.J. Treatment Outcomes of 4 Vital Pulp Therapies in Mature Molars. J. Endod. 2018, 44, 529–535. [Google Scholar] [CrossRef] [PubMed]
- Parirokh, M.; Torabinejad, M.; Dummer, P. Mineral trioxide aggregate and other bioactive endodontic cements: An updated overview—Part I: Vital pulp therapy. Inter. Endod. J. 2018, 51, 177–205. [Google Scholar] [CrossRef] [PubMed]
- Endodontology, E.S.O. Quality guidelines for endodontic treatment: Consensus report of the European Society of Endodontology. Inter. Endod. J. 2006, 39, 921–930. [Google Scholar] [CrossRef]
- Torabinejad, M.; Parirokh, M. Mineral trioxide aggregate: A comprehensive literature review—Part II: Leakage and biocompatibility investigations. J. Endod. 2010, 36, 190–202. [Google Scholar] [CrossRef] [PubMed]
- Barrieshi-Nusair, K.M.; Hammad, H.M. Intracoronal sealing comparison of mineral trioxide aggregate and glass ionomer. Quintessence Int. 2005, 36, 539–545. [Google Scholar] [PubMed]
- Iwamoto, C.E.; Adachi, E.; Pameijer, C.H.; Barnes, D.; Romberg, E.E.; Jefferies, S. Clinical and histological evaluation of white ProRoot MTA in direct pulp capping. Am. J. Dent. 2006, 19, 85–90. [Google Scholar] [PubMed]
- Parirokh, M.; Torabinejad, M. Mineral trioxide aggregate: A comprehensive literature review—Part I: Chemical, physical, and antibacterial properties. J. Endod. 2010, 36, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Schmalz, G.; Widbiller, M.; Galler, K. Material tissue interaction—From toxicity to tissue regeneration. Oper. Dent. 2016, 41, 117–131. [Google Scholar] [CrossRef] [PubMed]
- Parirokh, M.; Torabinejad, M. Mineral trioxide aggregate: A comprehensive literature review—Part III: Clinical applications, drawbacks, and mechanism of action. J. Endod. 2010, 36, 400–413. [Google Scholar] [CrossRef] [PubMed]
- Kum, K.Y.; Zhu, Q.; Safavi, K.; Gu, Y.; Bae, K.S.; Chang, S.W. Analysis of six heavy metals in Ortho mineral trioxide aggregate and ProRoot mineral trioxide aggregate by inductively coupled plasma-optical emission spectrometry. Aust. Endod J. 2013, 39, 126–130. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.-W.; Baek, S.-H.; Yang, H.-C.; Seo, D.-G.; Hong, S.-T.; Han, S.-H.; Lee, Y.; Gu, Y.; Kwon, H.-B.; Lee, W.; et al. Heavy Metal Analysis of Ortho MTA and ProRoot MTA. J. Endod. 2011, 37, 1673–1676. [Google Scholar] [CrossRef] [PubMed]
- Physicochemical Analysis. Available online: www.biomta.com (accessed on 26 May 2018).
- Yoo, J.S.; Chang, S.W.; Oh, S.R.; Perinpanayagam, H.; Lim, S.M.; Yoo, Y.J.; Oh, Y.R.; Woo, S.B.; Han, S.H.; Zhu, Q.; et al. Bacterial entombment by intratubular mineralization following orthograde mineral trioxide aggregate obturation: A scanning electron microscopy study. Int. J. Oral Sci. 2014, 6, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.M.; Kim, S.H.; Shin, Y.; Lee, H.S.; Lee, J.H.; Kim, G.T.; Song, J.S. A randomized controlled trial of ProRoot MTA, OrthoMTA and RetroMTA for pulpotomy in primary molars. Oral Dis. 2015, 21, 785–791. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.M.; Sun, Y.; Song, J.S.; Pang, N.S.; Roh, B.D.; Lee, C.Y.; Shin, Y. A randomized controlled trial of various MTA materials for partial pulpotomy in permanent teeth. J. Dent. 2017, 60, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.N.; Son, H.J.; Noh, H.J.; Koh, J.T.; Chang, H.S.; Hwang, I.N.; Hwang, Y.C.; Oh, W.M. Cytotoxicity of newly developed ortho MTA root-end filling materials. J. Endod. 2012, 38, 1627–1630. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Heo, S.M.; Hong, S.O.; Hwang, Y.C.; Lee, K.W.; Min, K.S. Odontogenic effect of a fast-setting pozzolan-based pulp capping material. J. Endod. 2014, 40, 1124–1131. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Park, S.-J.; Lee, S.-H.; Hwang, Y.-C.; Yu, M.-K.; Min, K.-S. Biological effects and washout resistance of a newly developed fast-setting pozzolan cement. J. Endod. 2013, 39, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Nowicka, A.; Lipski, M.; Parafiniuk, M.; Sporniak-Tutak, K.; Lichota, D.; Kosierkiewicz, A.; Kaczmarek, W.; Buczkowska-Radlinska, J. Response of human dental pulp capped with biodentine and mineral trioxide aggregate. J. Endod. 2013, 39, 743–747. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Shin, Y.; Kim, S.O.; Lee, H.S.; Choi, H.J.; Song, J.S. Comparative Study of Pulpal Responses to Pulpotomy with ProRoot MTA, RetroMTA, and TheraCal in Dogs’ Teeth. J. Endod. 2015, 41, 1317–1324. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Kang, C.M.; Song, J.S.; Shin, Y.; Kim, S.; Kim, S.O.; Choi, H.J. Biological efficacy of two mineral trioxide aggregate (MTA)-based materials in a canine model of pulpotomy. Dent. Mater. J. 2017, 36, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Kogan, P.; He, J.; Glickman, G.N.; Watanabe, I. The effects of various additives on setting properties of MTA. J. Endod. 2006, 32, 569–572. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Yoon, T.S.; Kim, S.Y.; Kim, E. Cytotoxicity of newly developed pozzolan cement and other root-end filling materials on human periodontal ligament cell. Restor. Dent. Endod. 2014, 39, 39–44. [Google Scholar] [CrossRef] [PubMed]
- De Deus, G.; Ximenes, R.; Gurgel-Filho, E.D.; Plotkowski, M.C.; Coutinho-Filho, T. Cytotoxicity of MTA and Portland cement on human ECV 304 endothelial cells. Int. Endod. J. 2005, 38, 604–609. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Yang, W.; Kim, H.; Ko, H. Comparison of the biological properties of ProRoot MTA, OrthoMTA, and Endocem MTA cements. J. Endod. 2014, 40, 1649–1653. [Google Scholar] [CrossRef] [PubMed]
- Koseoglu, S.; Pekbagr Yan, K.T.; Kucukyilmaz, E.; Saglam, M.; Enhos, S.; Akgun, A. Biological response of commercially available different tricalcium silicate-based cements and pozzolan cement. Microsc. Res. Tech. 2017, 80, 994–999. [Google Scholar] [CrossRef] [PubMed]
- Che, J.-L.; Kim, J.-H.; Kim, S.-M.; Choi, N.-k.; Moon, H.-J.; Hwang, M.-J.; Song, H.-J.; Park, Y.-J. Comparison of setting time, compressive strength, solubility, and pH of four kinds of MTA. Korean J. Dent. Mater. 2016, 43, 61–71. [Google Scholar] [CrossRef]
- Lee, Y.-L.; Lee, B.-S.; Lin, F.-H.; Lin, A.Y.; Lan, W.-H.; Lin, C.-P. Effects of physiological environments on the hydration behavior of mineral trioxide aggregate. Biomaterials 2004, 25, 787–793. [Google Scholar] [CrossRef]
- De Rossi, A.; Silva, L.A.; Gaton-Hernandez, P.; Sousa-Neto, M.D.; Nelson-Filho, P.; Silva, R.A.; de Queiroz, A.M. Comparison of pulpal responses to pulpotomy and pulp capping with biodentine and mineral trioxide aggregate in dogs. J. Endod. 2014, 40, 1362–1369. [Google Scholar] [CrossRef] [PubMed]
- Nair, P.N.; Duncan, H.F.; Pitt Ford, T.R.; Luder, H.U. Histological, ultrastructural and quantitative investigations on the response of healthy human pulps to experimental capping with mineral trioxide aggregate: A randomized controlled trial. Int. Endod. J. 2008, 41, 128–150. [Google Scholar] [PubMed]
- Parirokh, M.; Asgary, S.; Eghbal, M.J.; Stowe, S.; Eslami, B.; Eskandarizade, A.; Shabahang, S. A comparative study of white and grey mineral trioxide aggregate as pulp capping agents in dog's teeth. Dent. Traumatol. 2005, 21, 150–154. [Google Scholar] [CrossRef] [PubMed]
- Bronckers, A.L.; Farach-Carson, M.C.; Van Waveren, E.; Butler, W.T. Immunolocalization of osteopontin, osteocalcin, and dentin sialoprotein during dental root formation and early cementogenesis in the rat. J. Bone Miner. Res. 1994, 9, 833–841. [Google Scholar] [CrossRef] [PubMed]
- Widbiller, M.; Lindner, S.; Buchalla, W.; Eidt, A.; Hiller, K.-A.; Schmalz, G.; Galler, K. Three-dimensional culture of dental pulp stem cells in direct contact to tricalcium silicate cements. Clin. Oral Investig. 2016, 20, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Zanini, M.; Sautier, J.M.; Berdal, A.; Simon, S. Biodentine induces immortalized murine pulp cell differentiation into odontoblast-like cells and stimulates biomineralization. J. Endod. 2012, 38, 1220–1226. [Google Scholar] [CrossRef] [PubMed]
- Zarrabi, M.H.; Javidi, M.; Jafarian, A.H.; Joushan, B. Histologic Assessment of Human Pulp Response to Capping with Mineral Trioxide Aggregate and a Novel Endodontic Cement. J. Endod. 2010, 36, 1778–1781. [Google Scholar] [CrossRef] [PubMed]
- Asgary, S.; Parirokh, M.; Eghbal, M.J.; Ghoddusi, J. SEM evaluation of pulp reaction to different pulp capping materials in dog’s teeth. Iran. Endod. J. 2006, 1, 117–123. [Google Scholar] [PubMed]
- Simon, S.; Cooper, P.; Smith, A.; Picard, B.; Naulin Ifi, C.; Berdal, A. Evaluation of a new laboratory model for pulp healing: Preliminary study. Inter. Endod. J. 2008, 41, 781–790. [Google Scholar] [CrossRef] [PubMed]
- AlShwaimi, E.; Majeed, A.; Ali, A.A. Pulpal Responses to Direct Capping with Betamethasone/Gentamicin Cream and Mineral Trioxide Aggregate: Histologic and Micro-Computed Tomography Assessments. J. Endod. 2016, 42, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Eskandarizadeh, A.; Shahpasandzadeh, M.H.; Shahpasandzadeh, M.; Torabi, M.; Parirokh, M. A comparative study on dental pulp response to calcium hydroxide, white and grey mineral trioxide aggregate as pulp capping agents. J. Conserv. Dent. 2011, 14, 351–355. [Google Scholar] [PubMed]
- Shahravan, A.; Jalali, S.P.; Torabi, M.; Haghdoost, A.A.; Gorjestani, H. A histological study of pulp reaction to various water/powder ratios of white mineral trioxide aggregate as pulp-capping material in human teeth: A double-blinded, randomized controlled trial. Int. Endod. J. 2011, 44, 1029–1033. [Google Scholar] [CrossRef] [PubMed]
Materials | Composition | Setting Time |
---|---|---|
PMTA | Tricalcium silicate | Initial setting time: 78 min (±5 min) Final setting time: 261 min (±21 min) |
Tricalcium aluminate | ||
Dicalcium silicate | ||
Tetracalcium aluminoferrite | ||
Gypsum | ||
Free calcium oxide | ||
Bismuth oxide | ||
OMTA | Tricalcium silicate | Initial setting time: 180 min Final setting time: 360 min (±21 min) |
Dicalcium silicate | ||
Tricalcium aluminate | ||
Tetracalcium aluminoferrite | ||
Free calcium oxide | ||
Bismuth oxide | ||
EMTA | Calcium oxide | Initial setting time: 2 min (±30 s) Final setting time: 4 min (±30 s) |
Silicon dioxide | ||
Bismuth oxide | ||
Aluminum oxide | ||
H2O/CO2 | ||
Magnesium oxide | ||
Sulfur trioxide | ||
Ferrous oxide | ||
Titanium dioxide |
Scores | Calcific Barrier Continuity |
1 | Complete calcific barrier formation |
2 | Partial/incomplete calcific barrier formation extending to more than one-half of the exposure site but not completely closing the exposure site |
3 | Initial calcific barrier formation extending to no more than one-half of the exposure site |
4 | No calcific barrier formation |
Scores | Calcific barrier morphology |
1 | Dentin or dentin-associated with irregular hard tissue |
2 | Only irregular hard tissue deposition |
3 | Only a thin layer of hard tissue deposition |
4 | No hard tissue deposition |
Scores | Tubules in calcific barrier |
1 | No tubules present |
2 | Mild (tubules present in less than 30% of the calcific barrier) |
3 | Moderate to severe (tubules present in more than 30% of the calcific barrier) |
4 | No hard tissue deposition |
Scores | Inflammation intensity |
1 | Absent or very few inflammatory cells |
2 | Mild (an average of <10 inflammatory cells) |
3 | Moderate (an average of 10–25 inflammatory cells) |
4 | Severe (an average >25 inflammatory cells) |
Scores | Inflammation extensity |
1 | Absent |
2 | Mild (inflammatory cells next to the dentin bridge or area of pulp exposure only) |
3 | Moderate (inflammatory cells observed in one-third or more of the coronal pulp or in the mid pulp) |
4 | Severe (all of the coronal pulp is infiltrated or necrotic) |
Scores | Inflammation type |
1 | No inflammation |
2 | Chronic inflammation |
3 | Acute and chronic inflammation |
4 | Acute inflammation |
Scores | Dental pulp congestion |
1 | No congestion |
2 | Mild (enlarged blood vessels next to the dentin bridge or area of pulp exposure only) |
3 | Moderate (enlarged blood vessels observed in one-third or more of the coronal pulp or in the mid pulp) |
4 | Severe (all of the coronal pulp is infiltrated with blood cells) |
Scores | Odontoblastic cell layer |
1 | Complete palisading cell pattern |
2 | Partial/incomplete palisading cell pattern |
3 | Presence of odontoblast-like cells only |
4 | Absent |
Groups | Calcific Barrier Continuity (%) | |||
1 | 2 | 3 | 4 | |
PMTA | 100 (15/15) * | - | - | - |
OMTA | 66.67 (12/18) | 16.67 (3/18) | 16.67 (3/18) | - |
EMTA | 45.45 (5/11) | 18.18 (2/11) | 27.27 (3/11) | 9.09 (1/11) |
Groups | Calcific Barrier Morphology (%) | |||
1 | 2 | 3 | 4 | |
PMTA | 86.67 (13/15) | 13.33 (2/15) | - | - |
OMTA | 38.89 (7/18) | 27.78 (5/18) | 33.33 (6/18) | - |
EMTA | 45.45 (5/11) | 18.18 (2/11) | 27.27 (3/11) | 9.09 (1/11) |
Groups | Tubules in Calcific Barrier (%) | |||
1 | 2 | 3 | 4 | |
PMTA | 60 (9/15) | 33.33 (5/15) | 6.67 (1/15) | - |
OMTA | 61.11 (11/18) | 27.78 (5/18) | 11.11 (2/18) | - |
EMTA | 63.64 (7/11) | 18.18 (2/11) | 9.09 (1/11) | 9.09 (1/11) |
Groups | Inflammation Intensity (%) | |||
1 | 2 | 3 | 4 | |
PMTA | 73.33 (11/15) * | 26.67 (4/15) | - | - |
OMTA | 55.56 (10/18) | 44.44 (8/18) | - | - |
EMTA | 36.36 (4/11) | 63.64 (7/11) | - | - |
Groups | Inflammation Extensity (%) | |||
1 | 2 | 3 | 4 | |
PMTA | 73.33 (11/15) | 26.67 (4/15) | - | - |
OMTA | 55.56 (10/18) | 44.44 (8/18) | - | - |
EMTA | 36.36 (4/11) | 54.55 (6/11) | 9.09 (1/11) | - |
Groups | Inflammation Type (%) | |||
1 | 2 | 3 | 4 | |
PMTA | 73.33 (11/15) | 26.67 (4/15) | - | - |
OMTA | 55.56 (10/18) | 44.44 (8/18) | - | - |
EMTA | 36.36 (4/11) | 63.64 (7/11) | - | - |
Groups | Dental Pulp Congestion (%) | |||
1 | 2 | 3 | 4 | |
PMTA | 40 (6/15) | 53.33 (8/15) | 6.67 (1/15) | - |
OMTA | 27.78 (5/18) | 61.11 (11/18) | 11.11 (2/18) | - |
EMTA | 18.18 (2/11) | 63.64 (7/11) | 18.18 (2/11) | - |
Groups | Odontoblastic Cell Layer (%) | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
PMTA | 60 (9/15) * | 26.67 (4/15) | 13.33 (4/15) | - |
OMTA | 33.33 (6/18) | 50 (9/18) | 16.67 (3/18) | - |
EMTA | 45.45 (5/11) | 18.18 (2/11) | 27.27 (3/11) | 9.09 (1/11) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, C.-M.; Hwang, J.; Song, J.S.; Lee, J.-H.; Choi, H.-J.; Shin, Y. Effects of Three Calcium Silicate Cements on Inflammatory Response and Mineralization-Inducing Potentials in a Dog Pulpotomy Model. Materials 2018, 11, 899. https://doi.org/10.3390/ma11060899
Kang C-M, Hwang J, Song JS, Lee J-H, Choi H-J, Shin Y. Effects of Three Calcium Silicate Cements on Inflammatory Response and Mineralization-Inducing Potentials in a Dog Pulpotomy Model. Materials. 2018; 11(6):899. https://doi.org/10.3390/ma11060899
Chicago/Turabian StyleKang, Chung-Min, Jiwon Hwang, Je Seon Song, Jae-Ho Lee, Hyung-Jun Choi, and Yooseok Shin. 2018. "Effects of Three Calcium Silicate Cements on Inflammatory Response and Mineralization-Inducing Potentials in a Dog Pulpotomy Model" Materials 11, no. 6: 899. https://doi.org/10.3390/ma11060899
APA StyleKang, C.-M., Hwang, J., Song, J. S., Lee, J.-H., Choi, H.-J., & Shin, Y. (2018). Effects of Three Calcium Silicate Cements on Inflammatory Response and Mineralization-Inducing Potentials in a Dog Pulpotomy Model. Materials, 11(6), 899. https://doi.org/10.3390/ma11060899