Progress in the Development of SERS-Active Substrates Based on Metal-Coated Porous Silicon
Abstract
:1. Introduction
2. What is Porous Silicon?
2.1. Fabrication of Porous Silicon
2.2. Morphology of Porous Silicon
3. Why Porous Silicon is a Good Template for SERS-Active Substrates
4. Approaches for Coating Porous Silicon with Metals for SERS
4.1. Thermal Decomposition of Metal Salt
4.2. Immersion Deposition of Metals
5. Plasmonic Structures on Mesoporous Silicon
5.1. Substrates Based on p-Type Silicon
5.2. Substrates Based on n-Type Silicon
6. Plasmonic Structures on Macroporous Silicon
7. Application of PS-Based SERS-Active Substrates
7.1. Detection of Biomolecules
7.2. Antimony Detection
8. Limitations
9. Conclusions and Perspectives
Supplementary Materials
Acknowledgments
Conflicts of Interest
References
- Fan, M.; Andrade, G.; Brolo, A. A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Anal. Chim. Acta 2011, 693, 7–25. [Google Scholar] [CrossRef] [PubMed]
- Sharma, H.S.S.; Carmichael, E.; MacCall, D. Fabrication of SERS substrate for the detection of rhodamine 6G, glyphosate, melamine and salicylic acid. Vib. Spectrosc. 2016, 83, 159–169. [Google Scholar] [CrossRef]
- Fleischmann, M.; Hendra, P.J.; McQuillan, A.J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26, 163–166. [Google Scholar] [CrossRef]
- Natan, M.J. Concluding remarks surface enhanced raman scattering. Faraday Discuss. 2006, 132, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Lorenzo, L. Surface-enhanced Raman scattering (SERS) nanoparticle sensors for biochemical and environmental sensing. In Nanosensors for Chemical and Biological Applications; Honeychurch, K.C., Ed.; Woodhead Publishing: Sawston, UK, 2014; pp. 197–230. [Google Scholar] [CrossRef]
- Le Ru, E.C.; Etchegoin, P.G. Principles of Surface Enhanced Raman Spectroscopy and Related Plasmonic Effects; Elsevier: Oxford, UK, 2008; p. 663. ISBN 978-0-44-52779-0. [Google Scholar]
- Vinod, M.; Gopchandran, K.G. Au, Ag and Au:Ag colloidal nanoparticles synthesized by pulsed laser ablation as SERS substrates. Prog. Nat. Sci. Mater. Int. 2014, 24, 569–578. [Google Scholar] [CrossRef]
- Makarov, G.N. Laser applications in nanotechnology: Nanofabrication using laser ablation and laser nanolithography. Phys.-Uspekhi 2013, 56, 643–682. [Google Scholar] [CrossRef]
- Poole, C.P.; Owens, F.J. Introduction to Nanotechnology; Wiley-Interscience: Hoboken, NJ, USA, 2003; ISBN 0-471-07935-9. [Google Scholar]
- Koglin, E.; Sequaris, J.-M.; Fritz, J.-C.; Valenta, P. Surface enhanced Raman scattering (SERS) of nucleic acid bases adsorbed on silver colloids. J. Mol. Struct. 1984, 114, 219–223. [Google Scholar] [CrossRef]
- Barhoumi, A.; Zhang, D.; Tam, F.; Halas, N.J. Surface-enhanced Raman spectroscopy of DNA. J. Am. Chem. Soc. 2008, 130, 5523–5529. [Google Scholar] [CrossRef] [PubMed]
- Girel, K.; Yantcevich, E.; Arzumanyan, G.; Doroshkevich, N.; Bandarenka, H. Detection of DNA molecules by SERS spectroscopy with silvered porous silicon as an active substrate. Phys. Status Solidi A 2016, 213, 2911–2915. [Google Scholar] [CrossRef]
- Nie, S.; Emory, S.R. Probing single molecules and single nanoparticles by surface-enhanced raman scattering. Science 1997, 275, 1102–1106. [Google Scholar] [CrossRef] [PubMed]
- Napper, D.H. Steric stabilization. In Colloids and Interface Science, Volume 1: Plenary and Invited Lectures, Proceedings of the International Conference on Colloids and Surfaces, San Juan, Puerto Rico, 21–25 June 1976; Kerker, M., Zettlemoyer, A.C., Rowell, R.L., Eds.; Elsevier: New York, NY, USA, 1977; p. 101016978. [Google Scholar]
- Tai, Z.; Zhang, J.; Gao, J.; Xue, G. Surface-enhanced Raman scattering study of the surface coordination of porphyrins adsorbed on silver. J. Mater. Chem. 1993, 3, 417–420. [Google Scholar] [CrossRef]
- Fukami, K.; Chourou, M.L.; Miyagawa, R.; Noval, Á.M.; Sakka, T.; Manso-Silván, M.; Martín-Palma, R.J.; Ogata, Y.H. Gold nanostructures for surface-enhanced Raman spectroscopy, prepared by electrodeposition in porous silicon. Materials 2011, 4, 791–800. [Google Scholar] [CrossRef] [PubMed]
- Chan, S.; Kwon, S.; Koo, T.-W.; Lee, L.P.; Berlin, A.A. Surface-enhanced Raman scattering of small molecules from silver-coated silicon nanopores. Adv. Mater. 2003, 15, 1595–1598. [Google Scholar] [CrossRef]
- Cottat, M.; Lidgi-Guigui, N.; Tijunelyte, I.; Barbillon, G.; Hamouda, F.; Gogol, P.; Aassime, A.; Lourtioz, J.M.; Bartenlian, B.; Chapelle, M.L. Soft UV nanoimprint lithography-designed highly sensitive substrates for SERS detection. Nanoscale Res. Lett. 2014, 9, 623. [Google Scholar] [CrossRef] [PubMed]
- Felidj, N.; Aubard, J.; Lévi, G.; Krenn, J.R.; Hohenau, A.; Schider, G.; Leitner, A.; Aussenegg, F.R. Optimized surface-enhanced Raman scattering on gold nanoparticle arrays. Appl. Phys. Lett. 2003, 82, 3095–3097. [Google Scholar] [CrossRef]
- Grand, J.; Chapelle, M.L.; Bijeon, J.L.; Adam, P.M.; Vial, A.; Royer, P. Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays. Phys. Rev. B 2005, 72, 033407. [Google Scholar] [CrossRef]
- D’Andrea, C.; Bochterle, J.; Toma, A.; Huck, C.; Neubrech, F.; Messina, E.; Fazio, B.; Marago, O.M.; Fabrizio, E.; Chapelle, M.L.; et al. Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy. ACS Nano 2013, 7, 3522–3531. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Shi, L.; He, T.; Sun, X.; Mo, Y. SERS enhancement dependence on the diameter and aspect ratio of silver-nanowire array fabricated by anodic aluminium oxide template. Appl. Surf. Sci. 2008, 255, 1901–1905. [Google Scholar] [CrossRef]
- Zeiri, L.; Rechav, K.; Porat, Z.; Zeiri, Y. Silver nanoparticles deposited on porous silicon as a surface-enhanced raman scattering (SERS) Active Substrate. Appl. Spectrosc. 2012, 66, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Roguska, A.; Kudelskic, A.; Pisarek, M.; Opara, M.; Janik-Czachor, M. Raman investigations of SERS activity of Ag nanoclusters on a TiO2-nanotubes/Ti Substrate. Vib. Spectrosc. 2011, 55, 38–43. [Google Scholar] [CrossRef]
- Chan, S.; Berlin, A.; Yamakawa, M. Metal Coated Nanocrystalline Silicon as an Active Surface Enhanced Raman Spectroscopy (SERS) Substrate. US Patent 6,970,239 B2, 29 November 2005. [Google Scholar]
- Uhlir, A. Electrolytic shaping of germanium and silicon. Bell Syst. Tech. 1956, 35, 333–347. [Google Scholar] [CrossRef]
- Labunov, V.; Bondarenko, V.; Glinenko, L.; Dorofeev, A.; Tabulina, L. Heat treatment effect on porous silicon. Thin Solid Films 1984, 137, 123–134. [Google Scholar] [CrossRef]
- Yakovtseva, V.; Dolgyi, L.; Vorozov, N.; Kazuchits, N.; Bondarenko, V.; Balucani, M.; Lamedica, G.; Ferrari, A. Oxidized porous silicon: From dielectric isolation to integrated optical waveguides. J. Porous Mater. 2000, 7, 215–222. [Google Scholar] [CrossRef]
- Cullis, A.G.; Canham, L.T. Visible light emission due to quantum size effect in highly porous crystalline silicon. Nature 1991, 353, 335–338. [Google Scholar] [CrossRef]
- Bondarenko, V.P.; Borisenko, V.E.; Dorofeev, A.M.; Germanenko, I.N.; Gaponenko, S.V. Spectral characteristics of visible light emission from porous Si: Quantum confinement or impurity effect ? J. Appl. Phys. 1994, 75, 2727–2729. [Google Scholar] [CrossRef]
- Maiello, G.; La Monica, S.; Ferrari, A.; Masini, G.; Bondarenko, V.P.; Dorofeev, A.M.; Kazuchits, N.M. Light guiding in oxidized porous silicon optical waveguides. Thin Solid Films 1997, 297, 311–313. [Google Scholar] [CrossRef]
- Canham, L.T.; Reeves, C.L.; Wallis, D.J.; Newey, J.P.; Houlton, M.R.; Sapsford, G.J.; Godfrey, R.E.; Loni, A.; Simons, A.J.; Cox, T.I.; et al. Silicon as an active biomaterial. MRS Proc. 2011, 452, 579. [Google Scholar] [CrossRef]
- Sailor, M.J. Porous Silicon in Practice, 1st ed.; Wiley-VCH: Weinheim, Germany, 2012; ISBN 978-3-527-31378-5. [Google Scholar]
- Pio, M.S.; Kwon, S.; Choi, Y.-K.; Lee, L.P. Batch Fabrication of Nanopillars for Autonomous Nanofluidic SERS Arrays. Mater. Res. Soc. Symp. Proc. 2002, 729, 179–184. [Google Scholar] [CrossRef]
- Liu, G.L.; Choi, Y.K.; Kwon, S.; Lee, L.P. Nanopilllar substrate for SERS. In Proceedings of the 7th Internatonal Conference on Miniaturized Chemical and Biochemlcal Analysts Systems, Squaw Valley, CA, USA, 5–9 October 2003; pp. 705–708. [Google Scholar]
- Chattopadhyay, S.; Lo, H.-C.; Hsu, C.-H.; Chen, L.-C.; Chen, K.-H. Surface-enhanced Raman spectroscopy using self-assembled silver nanoparticles on silicon nanotips. Chem. Mater. 2005, 17, 553–559. [Google Scholar] [CrossRef]
- Schmidt, M.S.; Hübner, J.; Boisen, A. Large area fabrication of leaning silicon nanopillars for surface enhanced Raman spectroscopy. Adv. Mater. 2012, 24, OP11–OP18. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Palla, M.; Bosco, F.G.; Rindzevicius, T.; Alstrøm, T.S.; Schmidt, M.S.; Boisen, A.; Ju, J.; Lin, Q. Surface-enhanced Raman spectroscopy based quantitative bioassay on aptamer-functionalized nanopillars using large-area raman mapping. ACS Nano 2013, 7, 5350–5359. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Palla, M.; Bosco, F.G.; Schmidt, M.S.; Rindzevicius, T.; Boisen, A.; Ju, J.; Lin, Q. A microfluidic surface enhanced Raman spectroscopic biosensor using aptamer functionalized nanopillars. In Proceedings of the Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems, Barcelona, Spain, 16–20 June 2013. [Google Scholar] [CrossRef]
- Castillo, J.J.; Rindzevicius, T.; Wu, K.; Schmidt, M.S.; Janik, K.A.; Boisen, A.; Svendsen, W.; Rozlosnik, N.; Castillo-Leon, J. Synthesis and characterization of covalent diphenylalanine nanotube-folic acid conjugates. J. Nanopart. Res. 2014, 16, 2525. [Google Scholar] [CrossRef]
- Wong, C.L.; Dinish, U.S.; Schmidt, M.S.; Olivo, M. Non-labeling multiplex surface enhanced Raman scattering (SERS) detection of volatile organic compounds (VOCs). Anal. Chim. Acta 2014, 844, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Castillo, J.; Rindzevicius, T.; Wu, K.; Rozo, C.E.; Schmidt, M.S.; Boisen, A. Silver-capped Si nanopillar platforms for adsorption studies of folic acid using surface enhanced Raman spectroscopy and density functional theory. J. Raman Spectrosc. 2015, 46, 1087–1094. [Google Scholar] [CrossRef]
- Lauridsen, R.K.; Rindzevicius, T.; Molin, S.; Johansen, H.K.; Berg, R.W.; Alstrøm, T.S.; Almdal, K.; Larsen, F.; Schmidt, M.S.; Boisen, A. Towards quantitative SERS detection of hydrogen cyanide at ppb level for human breath analysis. Sens. Bio-Sens. Res. 2015, 5, 84–89. [Google Scholar] [CrossRef] [Green Version]
- Wu, K.; Rindzevicius, T.; Schmidt, M.S.; Mogensen, K.B.; Hakonen, A.; Boisen, A. Wafer-scale leaning silver nanopillars for molecular detection at ultra-low concentrations. J. Phys. Chem. C 2015, 119, 2053–2062. [Google Scholar] [CrossRef] [Green Version]
- Hakonen, A.; Rindzevicius, T.; Schmidt, M.S.; Andersson, P.O.; Juhlin, L.; Svedendahl, M.; Boisen, A.; Käll, M. Detection of nerve gases using surface-enhanced Raman scattering substrates with high droplet adhesion. Nanoscale 2016, 8, 1305–1308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, F.; Zhi, G.; Jia, H.S.; Cheng, L.; Tian, Y.T.; Li, X.J. SERS detection of low-concentration adenine by a patterned silver structure immersion plated on a silicon nanoporous pillar array. Nanotechnology 2009, 20, 295501–295506. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.F.; Shan, W.W.; Ling, H.; Wang, Y.S.; Cao, Y.X.; Li, X.J. Surface-enhanced Raman scattering of patterned copper nanostructure electrolessly plated on arrayed nanoporous silicon pillars. Condens. Matter 2010, 22, 415105. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Q.; Ma, S.; Yang, Q.Q.; Li, X.J. Size-dependent SERS detection of R6G by silver NPs immersion-plated on Si nanoporous pillar array. Appl. Surf. Sci. 2012, 258, 5881–5885. [Google Scholar] [CrossRef]
- Ye, W.; Shen, C.; Tian, J.; Wang, C.; Bao, L.; Gao, H. Self-assembled synthesis of SERS-active silver dendrites and photoluminescence properties of a thin porous silicon layer. Electrochem. Commun. 2008, 10, 625–629. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, H.; Lu, L.; Ai, K.; Zhang, G.; Cheng, X. Large-area silver-coated silicon nanowire arrays for molecular sensing using surface-enhanced Raman spectroscopy. Adv. Funct. Mater. 2008, 18, 2348–2355. [Google Scholar] [CrossRef]
- Galopin, E.; Patriarche, G.; Barbillat, J.; Szunerits, S.; Patriarche, G.; Boukherroub, R. Silicon nanowires coated with silver nanostructures as ultrasensitive interfaces for surface-enhanced Raman spectroscopy. ACS Appl. Mater. Interface 2009, 1, 1396–1403. [Google Scholar] [CrossRef] [PubMed]
- Kiraly, B.; Yang, S.; Huang, T.J. Multifunctional porous silicon nanopillar arrays: Antireflection, superhydrophobicity, photoluminescence, and surface-enhanced Raman scattering. Nanotechnology 2013, 24, 245704. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Wang, N.; Li, H. Deep etched porous Si decorated with Au NPs for surface-enhanced Raman spectroscopy (SERS). Appl. Surf. Sci. 2013, 284, 549–555. [Google Scholar] [CrossRef]
- Lee, B.S.; Lin, P.C.; Lin, D.Z.; Yen, T.J. Rapid biochemical mixture screening by three-dimensional patterned multifunctional substrate with ultra-thin layer chromatography (UTLC) and surface enhanced Raman scattering (SERS). Sci. Rep. 2018, 8, 516. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, V.; Stengl, R.; Luigart, A. On the morphology and the electrochemical formation mechanism of mesoporous silicon. Mater. Sci. Eng. B 2000, 69–70, 11–22. [Google Scholar] [CrossRef]
- Herino, R. Nanocomposite materials from porous silicon. Mater. Sci. Eng. B 2000, 69–70, 70–76. [Google Scholar] [CrossRef]
- Chubenko, E.; Redko, S.; Dolgiy, A.; Bandarenka, H.; Prischepa, S.; Bondarenko, V. Porous silicon as host and template material for fabricating composites and hybrid materials. In Porous Silicon: From Formation to Applications. Vol. 3. Optoelectronics, Microelectronics, and Energy Technology Applications; Korotchenko, G., Ed.; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA, 2016; pp. 181–206. [Google Scholar]
- Grosman, А.; Ortega, C. Chemical composition of fresh porous silicon. In Properties of Porous Silicon; Canham, L.T., Ed.; INSPEC: London, UK, 2004; pp. 145–153. ISBN 978-0852969328. [Google Scholar]
- Canham, L.T. Chemical composition of ‘aged’ porous silicon. In Properties of Porous Silicon; Canham, L.T., Ed.; INSPEC: London, UK, 2004; pp. 154–157. ISBN 978-0852969328. [Google Scholar]
- Harraz, F.A.; Ismail, A.A.; Bouzida, H.; Al-Sayari, S.A.; Al-Hajry, A.; Al-Assirid, M.S. Surface-enhanced Raman scattering (SERS)-active substrates silver plated-porous Si for detection of crystal violet. Appl. Surf. Sci. 2015, 331, 241–247. [Google Scholar] [CrossRef]
- Chi, T.T.K.; Le, N.T.; Hien, B.T.T.; Trung, D.Q.; Liem, N.Q. Preparation of SERS substrates for the detection of organic molecules at low concentration. Commun. Phys. 2016, 26, 261–268. [Google Scholar] [CrossRef]
- Chiadò, A.; Novara, C.; Lamberti, A.; Geobaldo, F.; Giorgis, F.; Rivolo, P. Immobilization of oligonucleotides on metal-dielectric nanostructures for miRNA detection. Anal. Chem. 2016, 88, 9554–9563. [Google Scholar] [CrossRef] [PubMed]
- Bu, Y.; Zhu, G.; Li, S.; Qi, R.; Bhave, G.; Zhang, D.; Han, R.; Sun, D.; Liu, X.; Hu, Z.; et al. Silver-nanoparticle-embedded porous Si disks enabled SERS signal amplification for selective glutathione detection. ACS Appl. Nano Mater. 2018, 1, 410–417. [Google Scholar] [CrossRef]
- Wang, J.; Jia, Z.; Lv, C. Enhanced Raman scattering in porous Si grating. Opt. Express 2018, 26, 6507–6518. [Google Scholar] [CrossRef] [PubMed]
- Froner, E.; Baschera, F.; Tessarolo, F.; Bettotti, P.; Pavesi, L.; Rossi, B.; Scarpa, M.; Mariotto, G.; Rigo, A. Hybrid nanostructured supports for surface enhanced Raman scattering. Appl. Surf. Sci. 2009, 255, 7652–7656. [Google Scholar] [CrossRef]
- Kleps, I.; Miu, M.; Simion, M.; Ignat, T.; Bragaru, A.; Craciunoiu, F.; Danila, M. Study of the micro- and nanostructured Si for biosensing and medical applications. J. Biomed. Nanotechnol. 2009, 5, 300–309. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Lv, X.; Lv, C.; Jia, Z. n-Type porous silicon as an efficient surface enhancement Raman scattering substrate. Opt. Eng. 2012, 51, 099003. [Google Scholar] [CrossRef]
- Mikac, L.; Ivanda, M.; Gotić, M.; Ristić, D.; Đerek, V.; Gebavi, H.; Gucciardi, P.G.; Trusso, S.; D’Andrea, C. Preparation and characterization of SERS substrates: Colloids to solid substrates. In Proceedings of the 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 25–29 May 2015. [Google Scholar] [CrossRef]
- Ko, E.; Hwang, J.; Kim, J.H.; Lee, J.H.; Tran, V.K.; Chung, W.S.; Park, C.H.; Choo, J.; Seong, G.H. Electrochemical fabrication of nanostructures on porous Si for biochemical sensing. Anal. Sci. 2016, 32, 681–686. [Google Scholar] [CrossRef] [PubMed]
- Terekhov, S.N.; Mojzes, P.; Kachan, S.M.; Mukhurov, N.I.; Zhvavyi, S.P.; Panarin, A.Y.; Khodasevich, I.A.; Orlovich, V.A.; Thorel, A.; Grillond, F.; et al. Acomparative study of surface-enhanced Raman scattering from silver-coated anodic aluminum oxide and porous silicon. J. Raman. Spectrosc. 2011, 42, 12–20. [Google Scholar] [CrossRef]
- Gladkova, O.L.; Panarin, A.Y.; Khodasevich, I.A.; Terekhov, S.N. Surface-enhanced Raman spectra of a complex of antimony with phenylfluorone and their interpretation. Opt. Spectrosc. 2012, 112, 489–496. [Google Scholar] [CrossRef]
- Jabbar, A.A.; Alwan, A.M.; Haider, A.J. Modifying and fine controlling of silver nanoparticle nucleation sites and SERS performance by double Si etching process. Plasmonics 2017. [Google Scholar] [CrossRef]
- He, Y.; Su, S.; Xu, T.; Zhong, Y.; Zapien, J.A.; Li, J.; Fan, C.; Lee, S.T. Silicon nanowires-based highly-efficient SERS-active platform for ultrasensitive DNA detection. Nano Today 2011, 6, 122–130. [Google Scholar] [CrossRef]
- Panarin, A.Y.; Turpin, P.-Y. Silver-coated nanoporous silicon as SERS-active substrate for investigation of tetrapyrrolic molecules. In Proceedings of the SPIE 6728, ICONO 2007: Novel Photonics Materials; Optics and Optical Diagnostics of Nanostructures, Minsk, Belarus, 29 May–2 June 2007; p. 672828. [Google Scholar] [CrossRef]
- Giorgis, F.; Virga, A.; Descrovi, E.; Chiodoni, A.; Rivolo, P.; Venturello, A.; Geobaldo, F. SERS-active substrates based on silvered porous silicon. Phys. Status Solidi C 2009, 6, 1736–1739. [Google Scholar] [CrossRef]
- Virga, A.; Gazia, R.; Pallavidino, L.; Mandracci, P.; Descrovi, E.; Chiodoni, A.; Geobaldo, F.; Giorgis, F. Metal-dielectric nanostructures for amplified Raman and fluorescence spectroscopy. Phys. Status Solidi C 2010, 7, 1196–1199. [Google Scholar] [CrossRef]
- Miyagawa, R.; Fukami, K.; Sakka, T.; Ogata, Y.H. Surface-enhanced Raman scattering from gold deposited mesoporous silicon. Phys. Status Solidi A 2011, 208, 1471–1474. [Google Scholar] [CrossRef]
- Chiolerio, A.; Virga, A.; Pandolfi, P.; Martino, P.; Rivolo, P.; Geobaldo, F.; Giorgis, F. Direct patterning of silver particles on porous Si by inkjet printing of a silver salt via in-situ reduction. Nanoscale Res. Lett. 2012, 7, 502. [Google Scholar] [CrossRef] [PubMed]
- Virga, A.; Rivolo, P.; Descrovi, E.; Chiolerio, A.; Digregorio, G.; Frascella, F.; Soster, M.; Bussolino, F.; Marchio, S.; Geobaldo, F.; et al. SERS active Ag nanoparticles in mesoporous silicon: Detection of organic molecules and peptide–antibody assays. J. Raman Spectrosc. 2012, 43, 730–736. [Google Scholar] [CrossRef]
- Virga, A.; Rivolo, P.; Frascella, F.; Angelini, A.; Descrovi, E.; Geobaldo, F.; Giorgis, F. Silver NPs on porous Si: Approaching single molecule detection in resonant SERS regime. J. Phys. Chem. C 2013, 117, 20139–20145. [Google Scholar] [CrossRef]
- Lü, C.; Wang, J.; Lü, X.; Jia, Z. Silver particles deposited on porous Si as SERS-active substrate. Chin. Opt. Lett. 2014, 12, S12401. [Google Scholar] [CrossRef]
- Mikac, L.; Ivanda, M.; Derek, V.; Gotic, M. Influence of mesoporous Si preparation condition on silver clustering and SERS enhancement. J. Raman Spectrosc. 2016, 47, 1036–1041. [Google Scholar] [CrossRef]
- Lin, H.; Mock, J.; Smith, D.; Gao, T.; Sailor, M.J. Surface-enhanced Raman scattering from silver-plated porous silicon. J. Phys. Chem. B 2004, 108, 11654–11659. [Google Scholar] [CrossRef]
- Terekhov, S.N.; Panarin, A.Y.; Kholostov, K.I.; Bondarenko, V.P.; Turpin, P.Y. Nanostructured silver films on meso- and macroporous silicon layers as a substrate for surface-enhanced Raman scattering. Phys. Chem. Appl. Nanostruct. 2009, 507–510. [Google Scholar] [CrossRef]
- Artsemyeva, K.; Dolgiy, A.; Bandarenka, H.; Panarin, A.; Khodasevich, I.; Terekhov, S.; Bondarenko, V. Fabrication of SERS-active substrates by electrochemical and electroless deposition of metals in macroporous silicon. ECS Trans. 2013, 53, 85–95. [Google Scholar] [CrossRef]
- Niauzorau, S.; Girel, K.; Sherstnyov, A.; Chubenko, E.; Bandarenka, H.; Bondarenko, V. Fabrication of nanocomposites based on silicon nanowires and study of their optical properties. Phys. Status Solidi C 2016, 13, 146–150. [Google Scholar] [CrossRef]
- Li, Y.; Dykes, J.; Gilliam, T.; Chopra, N. A new heterostructured SERS substrate: Free-standing Si nanowires decorated with graphene-encapsulated gold NPs. Nanoscale 2017, 9, 5263–5272. [Google Scholar] [CrossRef] [PubMed]
- Mikac, L.; Ivanda, M.; Gotic, M.; Gebavi, H.; Derek, V. Preparation of SERS substrate based on Ag coated microporous Si. In Proceedings of the 5th Workshop: Specific Methods for Food Safety and Quality, Belgrade, Serbia, 27 September 2016; Petrović, S., Lazarević-Pašti, T., Leskovac, A., Momić, T., Stoiljković, M., Eds.; VINČA Institute of Nuclear Sciences: Belgrade, Serbia, 2016; pp. 138–141, ISBN 8673061334; 9788673061337. [Google Scholar]
- Kosovic, M.; Balarin, M.; Ivanda, M.; Ðerek, V.; Marcius, M.; Ristic, M.; Gamulin, O. Porous silicon covered with silver nanoparticles as surface-enhanced Raman scattering (sers) substrate for ultra-low concentration detection. Appl. Spectrosc. 2015, 69, 1417–1424. [Google Scholar] [CrossRef] [PubMed]
- Morinaga, H.; Suyama, M.; Ohmi, T. Mechanism of metallic particle growth and metal-induced pitting on Si wafer surface in wet chemical processing. J. Electrochem. Soc. 1994, 141, 2834–2841. [Google Scholar] [CrossRef]
- Zavatski, S.; Khinevich, N.; Girel, K.; Bondarenko, V.; Smirnov, A.; Bandarenka, H. Corrosive deposition of metals on porous silicon for fabrication of the SERS-active substrates. In Proceedings of the Porous Semiconductors—Science and Technology, La Grande Motte, France, 11–16 March 2018; pp. 271–272. [Google Scholar]
- Giorgis, F.; Destrovi, E.; Chiodoni, A.; Froner, E.; Scarpa, M.; Venturello, A.; Geobaldo, F. Porous silicon as efficient surface enhanced Raman scattering (SERS) substrate. Appl. Surf. Sci. 2008, 254, 7494–7497. [Google Scholar] [CrossRef]
- Bandarenka, H.; Redko, S.; Smirnov, A.; Panarin, A.; Terekhov, S.; Nenzi, P.; Balucani, M.; Bondarenko, V. Nanostructures formed by displacement of porous silicon with copper: From nanoparticles to porous membranes. Nanoscale Res. Lett. 2012, 7, 477. [Google Scholar] [CrossRef] [PubMed]
- Dridi, H.; Moadhen, A.; Haji, L. Comparative SERS study carried out on unsilanized and silanized oxidized porous silicon surface coated by small gold nanoparticles. J. Porous Mater. 2015, 22, 239–245. [Google Scholar] [CrossRef] [Green Version]
- Ignat, T.; Munoz, R.; Kleps, I.; Miu, M.; Obieta, I.; Simion, M. SERS-active substrate based on macroporous silicon. Roman. J. Inf. Sci. Technol. 2009, 12, 496–503. [Google Scholar]
- Dridi, H.; Haji, L.; Moadhen, A. Rough SERS substrate based on gold coated porous Si layer prepared on the Si backside surface. Superlattices Microstruct. 2017, 104, 266–270. [Google Scholar] [CrossRef]
- Kamińska, A.; Szymborski, T.; Jaroch, T.; Zmysłowski, A.; Szterk, A. Gold-capped Si for ultrasensitive SERS-biosensing: Towards human biofluids analysis. Mater. Sci. Eng. C 2018, 84, 208–217. [Google Scholar] [CrossRef] [PubMed]
- D’Andrea, C.; Faro, M.J.L.; Bertino, G.; Ossi, P.M.; Neri, F.; Trusso, S.; Musumeci, P.; Galli, M.; Cioffi, N.; Irrera, A.; et al. Decoration of silicon nanowires with silver nanoparticles for ultrasensitive surface enhanced Raman scattering. Nanotechnology 2016, 27, 375603. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Liu, J.T.; Wang, Y.; Zhang, D.; Guo, Y.; Tasciotti, E.; Hu, Z.; Liu, X. In situ reductive synthesis of structural supported gold nanorods in porous Si particles for multifunctional nanovectors. ACS Appl. Mater. Interfaces 2016, 8, 11881–11891. [Google Scholar] [CrossRef] [PubMed]
- Ogata, Y.H.; Sasano, J.; Jorne, J.; Tsuboi, T.; Harraz, F.A.; Sakka, T. Immersion plating of copper on porous silicon in various solutions. Phys. Status Solidi A 2000, 182, 71–77. [Google Scholar] [CrossRef]
- Bandarenka, H.V.; Girel, K.V.; Bondarenko, V.P.; Khodasevich, I.A.; Panarin, A.Y.; Terekhov, S.N. Formation regularities of plasmonic silver nanostructures on porous silicon for effective surface-enhanced Raman scattering. Nanoscale Res. Lett. 2016, 11, 262. [Google Scholar] [CrossRef] [PubMed]
- Chan, S.; Berlin, A.; Kwon, S.; Sundararajan, N.; Yamakawa, M. Metal coated nanocrystalline silicon as an active surface enhanced Raman spectroscopy (SERS) substrate. US Patent 6,989,897 B2, 24 January 2006. [Google Scholar]
- Chan, S. Detection of Biomolecules Using Porous Biosensors and Raman Spectroscopy. US Patent 7,271,896 B2, 18 September 2007. [Google Scholar]
- Chan, S. Methods for Uniform Metal Impregnation into a Nanoporous Material. US Patent 7,361,313 B2, 22 April 2008. [Google Scholar]
- Chursanova, M.V.; Germash, L.P.; Yukhymchuk, V.O.; Dzhagan, V.M.; Khodasevich, I.A.; Cojoc, D. Optimization of porous silicon preparation technology for SERS applications. Appl. Surf. Sci. 2010, 256, 3369–3373. [Google Scholar] [CrossRef]
- Panarin, A.Y.; Chirvony, V.S.; Kholostov, K.I.; Turpin, P.-Y.; Terekhov, S.N. Formation of SERS-active silver structures on the surface of mesoporous silicon. J. Appl. Spectrosc. 2009, 76, 280–287. [Google Scholar] [CrossRef]
- Panarin, A.Y.; Terekhov, S.N.; Kholostov, K.I.; Bondarenko, V.P. SERS-active substrates based on n-type porous silicon. Appl. Surf. Sci. 2010, 256, 6969–6976. [Google Scholar] [CrossRef]
- Khajehpour, K.J.; Williams, T.; Bourgeois, L.; Adeloju, S. Gold nanothorns–macroporous silicon hybrid structure: A simple and ultrasensitive platform for SERS. Chem. Commun. 2012, 48, 5349–5351. [Google Scholar] [CrossRef] [PubMed]
- Girel, K.; Dolgyi, L.; Bandarenka, H. Deposition of silver dendrites on porous silicon for fabrication of SERS-active substrates. In Proceedings of the International Conference Nanomeeting, Minsk, Belarus, 26–29 May 2015; pp. 600–603. [Google Scholar] [CrossRef]
- Alwan, A.M.; Naseef, I.A.; Dheyab, A.B. Well controlling of plasmonic features of gold nanoparticles on macro porous silicon substrate by HF acid concentration. Plasmonics 2018, 1–9. [Google Scholar] [CrossRef]
- Cintra, S.; Abdelsalam, M.E.; Bartlett, P.N.; Baumberg, J.J.; Kelf, T.A.; Sugawara, Y.; Russell, A.E. Sculpted substrates for SERS. Faraday Discuss. 2006, 132, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Yakimchuk, D.; Kaniukov, E.; Bundyukova, V.; Osminkina, L.; Teichert, S.; Demyanov, S.; Sivakov, V. Silver nanostructures evolution in porous SiO2/p-Si matrices for wide wavelength surface-enhanced Raman scattering applications. MRS Commun. 2018, 8, 95–99. [Google Scholar] [CrossRef]
- Khrustalev, V.V.; Khrustaleva, T.A.; Kahanouskaya, E.Y.; Rudnichenko, Y.A.; Bandarenka, H.V.; Arutyunyan, A.M.; Girel, K.V.; Khinevich, N.V.; Ksenofontov, A.L.; Kordyukova, L.V. The alpha helix 1 from the first conserved region of HIV1 gp120 is reconstructed in the short NQ21 peptide. Arch. Biochem. Biophys. 2018, 638, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Koktysh, D.S.; Phambu, N.; Weiss, S.M. Dual-mode sensing platform based on colloidal gold functionalized porous silicon. Appl. Phys. Lett. 2010, 97, 153125. [Google Scholar] [CrossRef]
- Arzumanyan, G.; Doroshkevich, N.; Mamatkulov, K.; Shashkov, S.; Girel, K.; Bandarenka, H.; Borisenko, V. Phospholipid detection by surface-enhanced Raman scattering using silvered porous silicon substrates. Phys. Status Solidi A 2017, 214, 1600915. [Google Scholar] [CrossRef]
- Lai, Y.; Wang, J.; He, T.; Sunet, S. Improved surface enhanced Raman scattering for nanostructured silver on porous silicon for ultrasensitive determination of 2,4,6-trinitrotoluene. Anal. Lett. 2014, 47, 833–842. [Google Scholar] [CrossRef]
- Novara, C.; Petracca, F.; Virga, A.; Rivolo, P.; Ferrera, S.; Chiolerio, A.; Geobaldo, F.; Porro, S.; Giorgis, F. SERS active silver nanoparticles synthesized by inkjet printing on mesoporous silicon. Nanoscale Res. Lett. 2014, 9, 527. [Google Scholar] [CrossRef] [PubMed]
- Terekhov, S.N.; Gladkov, L.L.; Gladkova, O.L.; Parkhats, M.V.; Khodasevich, I.A.; Panarin, A.Y.; Turpin, P.Y. Raman spectra of tetrapyrrole photosensitizer chlorin e6 and their interpretation. Opt. Spectrosc. 2009, 106, 813–820. [Google Scholar] [CrossRef]
- Novara, C.; Lambetti, A.; Chiado, A.; Virga, A.; Rivolo, P.; Geobaldo, F.; Giorgis, F. Surface-enhanced Raman spectroscopy on porous silicon membranes decorated with Ag nanoparticles integrated in elastomeric microfluidic chips. RSC Adv. 2016, 6, 21865–21870. [Google Scholar] [CrossRef]
- Panarin, A.Y.; Khodasevich, I.A.; Gladkova, O.L.; Terekhov, S.N. Determination of antimony by surface-enhanced Raman spectroscopy. Appl. Spectrosc. 2014, 68, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Anderson, S.H.C.; Elliott, H.; Wallis, D.J.; Canham, L.T.; Powell, J.J. Dissolution of different forms of partially porous silicon wafers under simulated physiological conditions. Phys. Status Solidi A 2003, 197, 331–335. [Google Scholar] [CrossRef]
- Canham, L.T. Nanoscale semiconducting silicon as a nutritional food additive. Nanotechnology 2007, 18, 185704. [Google Scholar] [CrossRef]
- Prestidge, C.A.; Barnes, T.J.; Lau, C.H.; Barnett, C.; Loni, A.; Canham, L. Mesoporous silicon: A platform for the delivery of therapeutics. Expert Opin. Drug Deliv. 2007, 4, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Bandarenka, H.; Artsemyeva, K.; Redko, S.; Panarin, A.; Khodasevich, I.; Terekhov, S.; Bondarenko, V. Effect of swirl-like resistivity striations in n+-type Sb doped Si wafers on the properties of Ag/porous silicon SERS substrates. Phys. Status Solidi C 2013, 10, 549–553. [Google Scholar] [CrossRef]
- Bandarenka, H. SERS analysis with porous silicon. In Handbook of Porous Silicon, 2nd ed.; Springer International Publishing: Cham, Switzerland, 2018; ISBN 978-3-319-71380-9. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bandarenka, H.V.; Girel, K.V.; Zavatski, S.A.; Panarin, A.; Terekhov, S.N. Progress in the Development of SERS-Active Substrates Based on Metal-Coated Porous Silicon. Materials 2018, 11, 852. https://doi.org/10.3390/ma11050852
Bandarenka HV, Girel KV, Zavatski SA, Panarin A, Terekhov SN. Progress in the Development of SERS-Active Substrates Based on Metal-Coated Porous Silicon. Materials. 2018; 11(5):852. https://doi.org/10.3390/ma11050852
Chicago/Turabian StyleBandarenka, Hanna V., Kseniya V. Girel, Sergey A. Zavatski, Andrei Panarin, and Sergei N. Terekhov. 2018. "Progress in the Development of SERS-Active Substrates Based on Metal-Coated Porous Silicon" Materials 11, no. 5: 852. https://doi.org/10.3390/ma11050852