Plasmonic Nanowires for Wide Wavelength Range Molecular Sensing
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Fabrication of Nanowire from Porous Alumina Template
4.2. Optical Characterizations
4.3. Electromagnetic Simulations
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kneipp, K.; Yang, W.; Kneipp, H.; Perelman, L.T.; Itzkan, I.; Dasari, R.R.; Feld, M.S. Single molecule detection using surface-enhanced raman scattering (SERS). Phys. Rev. Lett. 1997, 78, 1667. [Google Scholar] [CrossRef]
- Nie, S.M.; Emery, S.R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997, 275, 1102–1106. [Google Scholar] [CrossRef] [PubMed]
- Anker, J.N.; Hall, W.P.; Lyandres, O.; Shah, N.C.; Zhao, J.; Van Duyne, R.P. Biosensing with plasmonic nanosensors. Nat. Mater. 2008, 7, 442–453. [Google Scholar] [CrossRef] [PubMed]
- Haynes, C.L.; McFarland, A.D.; Duyne, R.P.V. Surface-enhanced raman spectroscopy. Anal. Chem. 2005, 77, 338A–346A. [Google Scholar] [CrossRef]
- Proietti Zaccaria, R.; Bisio, F.; Das, G.; Maidecchi, G.; Caminale, M.; Vu, C.D.; De Angelis, F.; Di Fabrizio, E.; Toma, A.; Canepa, M. Plasmonic color-graded nanosystems with achromatic subwavelength architectures for light filtering and advanced sers detection. ACS Appl. Mater. Interfaces 2016, 8, 8024–8031. [Google Scholar] [CrossRef] [PubMed]
- Ashley, M.J.; Bourgeois, M.R.; Murthy, R.R.; Laramy, C.R.; Ross, M.B.; Naik, R.R.; Schatz, G.C.; Mirkin, C.A. Shape and size control of substrate-grown gold nanoparticles for surface-enhanced raman spectroscopy detection of chemical analytes. J. Phys. Chem. C 2018, 122, 2307–2314. [Google Scholar] [CrossRef]
- Chirumamilla, M.; Toma, A.; Gopalakrishnan, A.; Das, G.; Zaccaria, R.P.; Krahne, R.; Rondanina, E.; Leoncini, M.; Liberale, C.; De Angelis, F.; et al. 3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering. Adv. Mater. 2014, 26, 2353–2358. [Google Scholar] [CrossRef] [PubMed]
- Jamil, A.K.M.; Izake, E.L.; Sivanesan, A.; Fredericks, P.M. Rapid detection of tnt in aqueous media by selective label free surface enhanced raman spectroscopy. Talanta 2015, 134, 732–738. [Google Scholar] [CrossRef] [PubMed]
- Das, G.; Mecarini, F.; Gentile, F.; De Angelis, F.; Mohan Kumar, H.G.; Candeloro, P.; Liberale, C.; Cuda, G.; Di Fabrizio, E. Nano-patterned sers substrate: Application for protein analysis vs. Temperature. Biosens. Bioelectron. 2009, 24, 1693–1699. [Google Scholar] [CrossRef] [PubMed]
- Toma, A.; Das, G.; Chirumamilla, M.; Saeed, A.; Proietti Zaccaria, R.; Razzari, L.; Leoncini, M.; Liberale, C.; De Angelis, F.; Di Fabrizio, E. Fabrication and characterization of a nanoantenna-based raman device for ultrasensitive spectroscopic applications. Microelectron. Eng. 2012, 98, 424–427. [Google Scholar] [CrossRef]
- Das, G.; Chirumamilla, M.; Toma, A.; Gopalakrishnan, A.; Zaccaria, R.P.; Alabastri, A.; Leoncini, M.; Di Fabrizio, E. Plasmon based biosensor for distinguishing different peptides mutation states. Sci. Rep. 2013, 3. [Google Scholar] [CrossRef] [PubMed]
- Candeloro, P.; Iuele, E.; Perozziello, G.; Coluccio, M.L.; Gentile, F.; Malara, N.; Mollace, V.; Di Fabrizio, E. Plasmonic nanoholes as sers devices for biosensing applications: An easy route for nanostructures fabrication on glass substrates. Microelectron. Eng. 2017, 175, 30–33. [Google Scholar] [CrossRef]
- Liebig, F.; Sarhan, R.M.; Sander, M.; Koopman, W.; Schuetz, R.; Bargheer, M.; Koetz, J. Deposition of gold nanotriangles in large scale close-packed monolayers for X-ray-based temperature calibration and sers monitoring of plasmon-driven catalytic reactions. ACS Appl. Mater. Interfaces 2017, 9, 20247–20253. [Google Scholar] [CrossRef] [PubMed]
- Haynes, C.L.; Van Duyne, R.P. Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J. Phys. Chem. B 2001, 105, 5599–5611. [Google Scholar] [CrossRef]
- Sharma, Y.; Dhawan, A. Plasmonic “nano-fingers on nanowires” as sers substrates. Opt. Lett. 2016, 41, 2085–2088. [Google Scholar] [CrossRef] [PubMed]
- Das, G.; Patra, N.; Gopalakrishnan, A.; Zaccaria, R.P.; Toma, A.; Thorat, S.; Di Fabrizio, E.; Diaspro, A.; Salerno, M. Fabrication of large-area ordered and reproducible nanostructures for sers biosensor application. Analyst 2012, 137, 1785–1792. [Google Scholar] [CrossRef] [PubMed]
- Coluccio, M.L.; Das, G.; Mecarini, F.; Gentile, F.; Pujia, A.; Bava, L.; Tallerico, R.; Candeloro, P.; Liberale, C.; De Angelis, F.; et al. Silver-based surface enhanced raman scattering (SERS) substrate fabrication using nanolithography and site selective electroless deposition. Microelectron. Eng. 2009, 86, 1085–1088. [Google Scholar] [CrossRef]
- Kanipe, K.N.; Chidester, P.P.F.; Stucky, G.D.; Moskovits, M. Large format surface-enhanced raman spectroscopy substrate optimized for enhancement and uniformity. ACS Nano 2016, 10, 7566–7571. [Google Scholar] [CrossRef] [PubMed]
- Polavarapu, L.; Zanaga, D.; Altantzis, T.; Rodal-Cedeira, S.; Pastoriza-Santos, I.; Pérez-Juste, J.; Bals, S.; Liz-Marzán, L.M. Galvanic replacement coupled to seeded growth as a route for shape-controlled synthesis of plasmonic nanorattles. J. Am. Chem. Soc. 2016, 138, 11453–11456. [Google Scholar] [CrossRef] [PubMed]
- Das, G.; Battista, E.; Manzo, G.; Causa, F.; Netti, P.A.; Di Fabrizio, E. Large-scale plasmonic nanocones array for spectroscopy detection. ACS Appl. Mater. Interfaces 2015, 7, 23597–23604. [Google Scholar] [CrossRef] [PubMed]
- Gentile, F.; Das, G.; Coluccio, M.L.; Mecarini, F.; Accardo, A.; Tirinato, L.; Tallerico, R.; Cojoc, G.; Liberale, C.; Candeloro, P.; et al. Ultra low concentrated molecular detection using super hydrophobic surface based biophotonic devices. Microelectron. Eng. 2010, 87, 798–801. [Google Scholar] [CrossRef]
- Gómez-Graña, S.; Fernández-López, C.; Polavarapu, L.; Salmon, J.-B.; Leng, J.; Pastoriza-Santos, I.; Pérez-Juste, J. Gold nanooctahedra with tunable size and microfluidic-induced 3D assembly for highly uniform sers-active supercrystals. Chem. Mater. 2015, 27, 8310–8317. [Google Scholar] [CrossRef]
- Coluccio, M.L.; Gentile, F.; Das, G.; Nicastri, A.; Perri, A.M.; Candeloro, P.; Perozziello, G.; Proietti Zaccaria, R.; Gongora, J.S.T.; Alrasheed, S.; et al. Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain. Sci. Adv. 2015, 1, e1500487. [Google Scholar] [CrossRef] [PubMed]
- Masuda, H.; Nishio, K. Synthesis and applications of highly ordered anodic porous alumina. In Self-Organized Nanoscale Materials; Adachi, M., Lockwood, D.J., Eds.; Springer: New York, NY, USA, 2006; pp. 296–312. [Google Scholar]
- Noyan, A.A.; Leontiev, A.P.; Yakovlev, M.V.; Roslyakov, I.V.; Tsirlina, G.A.; Napolskii, K.S. Electrochemical growth of nanowires in anodic alumina templates: The role of pore branching. Electrochim. Acta 2017, 226, 60–68. [Google Scholar] [CrossRef]
- Bran, C.; Yu, P.I.; Kosel, J.; Chubykalo-Fesenko, O.; Vazquez, M. Co/au multisegmented nanowires: A 3D array of magnetostatically coupled nanopillars. Nanotechnology 2017, 28, 095709. [Google Scholar] [CrossRef] [PubMed]
- Hideki, M.; Masahiro, S. Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask. Jpn. J. Appl. Phys. 1996, 35, L126. [Google Scholar]
- Salerno, M.; Patra, N.; Cingolani, R. Use of ionic liquid in fabrication, characterization, and processing of anodic porous alumina. Nanoscale Res. Lett. 2009, 4, 865–872. [Google Scholar] [CrossRef] [PubMed]
- Chuan, C.; Alfonso, H.W.N. Fast fabrication of self-ordered anodic porous alumina on oriented aluminum grains by high acid concentration and high temperature anodization. Nanotechnology 2013, 24, 215602. [Google Scholar]
- Sauer, G.; Brehm, G.; Schneider, S.; Nielsch, K.; Wehrspohn, R.B.; Choi, J.; Hofmeister, H.; Gösele, U. Highly ordered monocrystalline silver nanowire arrays. J. Appl. Phys. 2002, 91, 3243–3247. [Google Scholar] [CrossRef]
- Shingubara, S.; Murakami, Y.; Morimoto, K.; Takahagi, T. Formation of aluminum nanodot array by combination of nanoindentation and anodic oxidation of aluminum. Surf. Sci. 2003, 532–535, 317–323. [Google Scholar] [CrossRef]
- L.S. Fdtd Solutions. 2018. Available online: https://www.lumerical.com/ (accessed on 16 May 2018).
- Holze, R. The adsorption of thiophenol on gold—A spectroelectrochemical study. Phys. Chem. Chem. Phys. 2015, 17, 21364–21372. [Google Scholar] [CrossRef] [PubMed]
- Biggs, K.B.; Camden, J.P.; Anker, J.N.; Duyne, R.P.V. Surface-enhanced raman spectroscopy of benzenethiol adsorbed from the gas phase onto silver film over nanosphere surfaces: Determination of the sticking probability and detection limit time. J. Phys. Chem. A 2009, 113, 4581–4586. [Google Scholar] [CrossRef] [PubMed]
- Venkataramanan, M.; Ma, S.; Pradeep, T. 3D monolayers of 1,4-benzenedimethanethiol on au and ag clusters: Distinct difference in adsorption geometry with the corresponding 2D monolayers. J. Colloid Interface Sci. 1999, 216, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Hamoudi, H.; Prato, M.; Dablemont, C.; Cavalleri, O.; Canepa, M.; Esaulov, V.A. Self-assembly of 1,4-benzenedimethanethiol self-assembled monolayers on gold. Langmuir 2010, 26, 7242–7247. [Google Scholar] [CrossRef] [PubMed]
- Murty, K.V.G.K.; Venkataramanan, M.; Pradeep, T. Self-assembled monolayers of 1,4-benzenedimethanethiol on polycrystalline silver and gold films: An investigation of structure, stability, dynamics, and reactivity. Langmuir 1998, 14, 5446–5456. [Google Scholar] [CrossRef]
- Souza, A.d.M.; Rungger, I.; Pontes, R.B.; Rocha, A.R.; da Silva, A.J.R.; Schwingenschloegl, U.; Sanvito, S. Stretching of BDT-gold molecular junctions: Thiol or thiolate termination? Nanoscale 2014, 6, 14495–14507. [Google Scholar] [CrossRef] [PubMed]
- Das, G.; Moretti, M.; Torre, B.; Allione, M.; Giugni, A.; Di Fabrizio, E. Graphene: A building foundation for efficient plasmonic sers device. Biochem. Anal. Biochem. 2017, 6, 1–6. [Google Scholar] [CrossRef]
- Toma, A.; Das, G.; Proietti Zaccaria, R.; Chirumamilla, M.; Leoncini, M.; Liberale, C.; Francardi, M.; De Angelis, F.; Di Fabrizio, E. Nanostructures for plasmonics: Design, fabrication, and characterization. In Nanoantenna; de la Chapelle, M., Ed.; Taylor and Francis Group: New York, NY, USA; Pan Stanford: Stanford, CA, USA, 2006; pp. 267–296. [Google Scholar]
- Zoubir, A. Raman imaging of micro- and nano-structured materials. In Raman Imaging: Techniques and Applications; Zoubir, A., Ed.; Springer: Berlin, Germany, 2012; pp. 119–140. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marinaro, G.; Das, G.; Giugni, A.; Allione, M.; Torre, B.; Candeloro, P.; Kosel, J.; Di Fabrizio, E. Plasmonic Nanowires for Wide Wavelength Range Molecular Sensing. Materials 2018, 11, 827. https://doi.org/10.3390/ma11050827
Marinaro G, Das G, Giugni A, Allione M, Torre B, Candeloro P, Kosel J, Di Fabrizio E. Plasmonic Nanowires for Wide Wavelength Range Molecular Sensing. Materials. 2018; 11(5):827. https://doi.org/10.3390/ma11050827
Chicago/Turabian StyleMarinaro, Giovanni, Gobind Das, Andrea Giugni, Marco Allione, Bruno Torre, Patrizio Candeloro, Jurgen Kosel, and Enzo Di Fabrizio. 2018. "Plasmonic Nanowires for Wide Wavelength Range Molecular Sensing" Materials 11, no. 5: 827. https://doi.org/10.3390/ma11050827