Surface Texture-Based Surface Treatments on Ti6Al4V Titanium Alloys for Tribological and Biological Applications: A Mini Review
Abstract
:1. Introduction
2. Surface Texture-Based Surface Treatments with Improved Performance
2.1. Tribological Applications
2.2. Biological Applications
3. Summary and Outlook
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Liu, X.Y.; Chu, P.K.; Ding, C.X. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater. Sci. Eng. R 2004, 47, 49–121. [Google Scholar] [CrossRef]
- Sidambe, A.T. Biocompatibility of advanced manufactured titanium implants-a review. Materials 2014, 7, 8168–8188. [Google Scholar] [CrossRef] [PubMed]
- Attanasio, A.; Gelfi, M.; Pola, A.; Ceretti, E.; Giardini, C. Influence of material microstructures in micromilling of Ti6Al4V alloy. Materials 2013, 6, 4268–4283. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.H.; Yang, C.; Zhao, H.D.; Qu, S.G.; Li, X.Q.; Li, Y.Y. New developments of Ti-based alloys for biomedical applications. Materials 2014, 7, 1709–1800. [Google Scholar] [CrossRef] [PubMed]
- Attar, H.; Ehtemam-Haghighi, S.; Kent, D.; Okulov, I.V.; Wendrock, H.; Bӧnisch, M.; Volegov, A.S.; Calin, M.; Eckert, J.; Dargusch, M.S. Nanoindentation and wear properties of Ti and Ti-TiB composite materials produced by selective laser melting. Mater. Sci. Eng. A 2017, 688, 20–26. [Google Scholar] [CrossRef]
- Chien, C.-S.; Liu, C.-W.; Kuo, T.-Y. Effects of laser power level on microstructural properties and phase composition of laser-clad fluorapatite/zirconia composite coatings on Ti6Al4V substrates. Materials 2016, 9, 380. [Google Scholar] [CrossRef] [PubMed]
- Barriobero-Vila, P.; Gussone, J.; Haubrich, J.; Sandlöbes, S.; Da Silva, J.C.; Cloetens, P.; Schell, N.; Requena, G. Inducing stable α + β microstructures during selective laser melting of Ti-6Al-4V using intensified intrinsic heat treatments. Materials 2017, 10, 268. [Google Scholar] [CrossRef] [PubMed]
- Markhoff, J.; Krogull, M.; Schulze, C.; Rotsch, C.; Hunger, S.; Bader, R. Biocompatibility and inflammatory potential of titanium alloys cultivated with human osteoblasts, fibroblasts and macrophages. Materials 2017, 10, 52. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Liu, D.; Zhang, X.; Du, D.; Yu, S. Effects of plasma ZrN metallurgy and shot peening duplex treatment on fretting wear and fretting fatigue behavior of Ti6Al4V alloy. Materials 2016, 9, 217. [Google Scholar] [CrossRef] [PubMed]
- Cadena, N.L.; Cue-Sampedro, R.; Siller, H.R.; Arizmendi-Morquecho, A.M.; Rivera-Solorio, C.I.; Di-Nardo, S. Study of PVD AlCrN coating for reducing carbide cutting tool deterioration in the machining of titanium alloys. Materials 2013, 6, 2143–2154. [Google Scholar] [CrossRef] [PubMed]
- Campanelli, S.L.; Contuzzi, N.; Ludovico, A.D.; Caiazzo, F.; Cardaropoli, F.; Sergi, V. Manufacturing and characterization of Ti6Al4V lattice components manufactured by selective laser melting. Materials 2014, 7, 4803–4822. [Google Scholar] [CrossRef] [PubMed]
- Ernesto, B.P.; Aldo, M.U.; Benjamín, V.S.; Cristina, V.; Monica, C.; Alan, E.; Ernesto, V.; Francisco, V. Improved osteoblast and chondrocyte adhesion and viability by surface-modified Ti6Al4V alloy with anodized TiO2 nanotubes using a super-oxidative solution. Materials 2015, 8, 867–883. [Google Scholar]
- Strantza, M.; Vafadari, R.; de Baere, D.; Vrancken, B.; van Paepegem, W.; Vandendael, I.; Terryn, H.; Guillaume, P.; van Hemelrijck, D. Fatigue of Ti6Al4V structural health monitoring systems produced by selective laser melting. Materials 2016, 9, 106. [Google Scholar] [CrossRef] [PubMed]
- Bansal, D.G.; Eryilmaz, O.L.; Blau, P.J. Surface engineering to improve the durability and lubricity of Ti–6Al–4V alloy. Wear 2011, 271, 2006–2015. [Google Scholar] [CrossRef]
- Fazel, M.; Salimijazi, H.R.; Golozar, M.A.; Garsivaz jazi, M.R. A comparison of corrosion, tribocorrosion and electrochemical impedance properties of pure Ti and Ti6Al4V alloy treated by micro-arc oxidation process. Appl. Surf. Sci. 2015, 324, 751–756. [Google Scholar] [CrossRef]
- Montemor, M.F. Functional and smart coatings for corrosion protection: A review of recent advances. Surf. Coat. Technol. 2014, 258, 17–37. [Google Scholar] [CrossRef]
- Lin, N.M.; Zhang, H.Y.; Zou, J.J.; Tang, B. Recent developments in improving tribological performance of TC4 titanium alloy via double glow plasma surface alloying in China: A literature review. Rev. Adv. Mater. Sci. 2014, 38, 61–74. [Google Scholar]
- Liu, Y.J.; Luo, J.; Liu, B.; Zhang, J.Y. The cytocompatibility investigation of Ti6Al4V modified with a fluorine-contained copolymer thin film. Appl. Surf. Sci. 2011, 257, 6429–6434. [Google Scholar] [CrossRef]
- Li, S.M.; Zhu, M.Q.; Liu, J.H.; Yu, M.; Wu, L.; Zhang, J.D.; Liang, H.X. Enhanced tribological behavior of anodic films containing SiC and PTFE nanoparticles on Ti6Al4V alloy. Appl. Surf. Sci. 2014, 316, 28–35. [Google Scholar] [CrossRef]
- Cai, J.B.; Wang, X.L.; Bai, W.Q.; Zhao, X.Y.; Wang, T.Q.; Tu, J.P. Bias-graded deposition and tribological properties of Ti-contained a-C gradient composite film on Ti6Al4V alloy. Appl. Surf. Sci. 2013, 279, 450–457. [Google Scholar] [CrossRef]
- Du, D.X.; Liu, D.X.; Ye, Z.Y.; Zhang, X.H.; Li, F.Q.; Zhou, Z.Q.; Yu, L. Fretting wear and fretting fatigue behaviors of diamond-like carbon and graphite-like carbon films deposited on Ti-6Al-4V alloy. Appl. Surf. Sci. 2014, 313, 462–469. [Google Scholar] [CrossRef]
- Ҫelik, O.N. Microstructure and wear properties of WC particle reinforced composite coating on Ti6Al4V alloy produced by the plasma transferred arc method. Appl. Surf. Sci. 2013, 274, 334–340. [Google Scholar] [CrossRef]
- Straffelini, G.; Molinari, A. Dry sliding wear of Ti-6Al-4V alloy as influenced by the counterface and sliding conditions. Wear 1999, 236, 328–338. [Google Scholar] [CrossRef]
- Wang, C.; Hao, J.M.; Xing, Y.Z.; Guo, C.F.; Chen, H. High temperature oxidation behavior of TiO2 + ZrO2 composite ceramic coatings prepared by microarc oxidation on Ti6Al4V alloy. Surf. Coat. Technol. 2015, 261, 201–207. [Google Scholar] [CrossRef]
- Xu, J.; Liu, L.; Li, Z.; Munroe, P.; Xie, Z.H. Niobium addition enhancing the corrosion resistance of nanocrystalline Ti5Si3 coating in H2SO4 solution. Acta Mater. 2014, 63, 245–260. [Google Scholar] [CrossRef]
- Wang, Z.X.; Wu, H.R.; Shan, X.L.; Lin, N.M.; He, Z.Y.; Liu, X.P. Microstructure and erosive wear behaviors of Ti6Al4V alloy treated by plasma Ni alloying. Appl. Surf. Sci. 2015, 1–7. [Google Scholar] [CrossRef]
- Liu, L.L.; Xu, J.; Munroe, P.; Xie, Z.H. Microstructure, mechanical and electrochemical properties of in situ synthesized TiC reinforced Ti5Si3 nanocomposite coatings on Ti-6Al-4V substrates. Electrochim. Acta 2014, 115, 86–95. [Google Scholar] [CrossRef]
- Masmoudi, M.; Assoul, M.; Wery, M.; Abdelhedi, R.; El Halouani, F.; Monteil, G. Friction and wear behaviour of cp Ti and Ti6Al4V following nitric acid passivation. Appl. Surf. Sci. 2006, 253, 2237–2243. [Google Scholar] [CrossRef]
- Obadele, B.A.; Andrews, A.; Mathew, M.T.; Olubambi, P.A.; Pityana, S. Improving the tribocorrosion resistance of Ti6Al4V surface by laser surface cladding with TiNiZrO2 composite coating. Appl. Surf. Sci. 2015, 345, 99–108. [Google Scholar] [CrossRef]
- Pawlak, W.; Kubiak, K.J.; Wendler, B.G.; Mathia, T.G. Wear resistant multilayer nanocomposite WC1−x/C coating on Ti-6Al-4V titanium alloy. Tribol. Int. 2015, 82, 400–406. [Google Scholar] [CrossRef]
- Xiang, Z.F.; Liu, X.B.; Ren, J.; Luo, J.; Shi, S.H.; Chen, Y.; Shi, G.L.; Wu, S.H. Investigation of laser cladding high temperature anti-wear composite coatings on Ti6Al4V alloy with the addition of self-lubricant CaF2. Appl. Surf. Sci. 2014, 313, 243–250. [Google Scholar] [CrossRef]
- Durdu, S.; Usta, M. The tribological properties of bioceramic coatings produced on Ti6Al4V alloy by plasma electrolytic oxidation. Ceram. Int. 2014, 40, 3627–3635. [Google Scholar] [CrossRef]
- Pyka, G.; Kerckhofs, G.; Papantoniou, I.; Speirs, M.; Schrooten, J.; Wevers, M. Surface roughness and morphology customization of additive manufactured open porous Ti6Al4V structures. Materials 2013, 6, 4737–4757. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.P.; Tian, X.; Luo, H.; Ma, X.L. Hierarchically textured surfaces of versatile alloys for superamphiphobicity. Mater. Lett. 2015, 138, 184–187. [Google Scholar] [CrossRef]
- Wang, Z.Z.; Han, Z.W.; Ren, L.Q. Research on wear resistance of unsmoothed surface with regular burrs. J. Jilin Univ. (Eng. Technol. Ed.) 2002, 32, 45–48. [Google Scholar]
- Yu, H.W.; Huang, W.; Wang, X.L. Dimple patterns design for different circumstances. Lubr. Sci. 2013, 25, 67–78. [Google Scholar] [CrossRef]
- Bixler, G.D.; Bhushan, B. Bioinspired rice leaf and butterfly wing surface structures combining shark skin and lotus effects. Soft Matter 2012, 8, 11271–11284. [Google Scholar] [CrossRef]
- Wen, L.; Weaver, J.C.; Lauder, G.V. Biomimetic shark skin: Design; fabrication and hydrodynamic function. J. Exp. Biol. 2014, 217, 1656–1666. [Google Scholar] [CrossRef] [PubMed]
- Autumn, K.; Gravish, N. Gecko adhesion: Evolutionary nanotechnology. Philos. Trans. R. Soc. A 2008, 366, 1575–1590. [Google Scholar] [CrossRef] [PubMed]
- Etsion, I. Modeling of surface texturing in hydrodynamic lubrication. Friction 2013, 1, 195–209. [Google Scholar] [CrossRef]
- Etsion, I. State of the art in laser surface texturing. J. Tribol. 2005, 127, 248–253. [Google Scholar] [CrossRef]
- Ibatan, T.; Uddin, M.S.; Chowdhury, M.A.K. Recent development on surface texturing in enhancing tribological performance of bearing sliders. Surf. Coat. Technol. 2015, 272, 102–120. [Google Scholar] [CrossRef]
- Cho, M.H. Effect of contact configuration on the tribological performance of micro-textured AISI 1045 steel under oscillating conditions. Mater. Trans. 2014, 55, 363–370. [Google Scholar] [CrossRef]
- Wu, Z.; Deng, J.X.; Xing, Y.Q.; Cheng, H.W.; Zhao, J. Effect of surface texturing on friction properties of WC/Co cemented carbide. Mater. Des. 2012, 41, 142–149. [Google Scholar] [CrossRef]
- Huang, W.; Wang, X.L. Biomimetic design of elastomer surface pattern for friction control under wet conditions. Bioinspir. Biomim. 2013, 8, 046001. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.C.; Hu, L.T. Tribological properties of lubricating films on the Al-Si alloy surface via laser surface texturing. Tribol. Trans. 2011, 54, 800–805. [Google Scholar] [CrossRef]
- Ye, Y.W.; Wang, C.T.; Chen, H.; Wang, Y.X.; Zhao, W.J.; Mu, Y.T. Micro/Nanotexture design for improving tribological properties of Cr/GLC films in seawater. Trobol. Trans. 2017, 60, 95–105. [Google Scholar] [CrossRef]
- Yu, H.W. Optimal Design of Surface Texture Based on Hydrodynamic Lubrication. Ph.D. Thesis, Nanjing University of Aeronautics and Astronautics, Nanjing, China, 2011. [Google Scholar]
- Sun, Z.A. Theoretical and Experimental Study on Surface Texturing Piston Ring. Master’s Thesis, Nanjing University of Aeronautics and Astronautics, Nanjing, China, 2011. [Google Scholar]
- Liu, W. Research on Surface Texture of Piston Skirt by Model Test and FEM Simulation. Master’s Thesis, Nanjing University of Aeronautics and Astronautics, Nanjing, China, 2009. [Google Scholar]
- Yang, Z.W. The Manufacture of Array Micro-protrudes and Micro-Pits in Non-traditional Machining. Master’s Thesis, Nanjing University of Aeronautics and Astronautics, Nanjing, China, 2007. [Google Scholar]
- Zhang, Y.H. Improving the Tribological Performance of UHMWPE with Surface Texture. Master’s Thesis, Nanjing University of Aeronautics and Astronautics, Nanjing, China, 2009. [Google Scholar]
- Xu, Y. A Study on Tribological Properties of Ceramic Class Composite Materials in Water. Master’s Thesis, Nanjing University of Aeronautics and Astronautics, Nanjing, China, 2010. [Google Scholar]
- Yuan, S.H. Research on Friction Properties of Micro-Grooves Surface Textures. Master’s Thesis, Nanjing University of Aeronautics and Astronaoutics, Nanjing, China, 2011. [Google Scholar]
- Yan, D.S. Fundamental Research on Tribological Performance of Textured Piston Ring. Master’s Thesis, Nanjing University of Aeronautics and Astronautics, Nanjing, China, 2009. [Google Scholar]
- Mu, Q. Research on Tribological Properties of Bionic Hexagonal Pillar-Textured Surfaces. Master’s Thesis, Nanjing University of Aeronautics and Astronautics, Nanjing, China, 2013. [Google Scholar]
- Tang, W.; Zhou, Y.K.; Zhu, H.; Yang, H.F. The effect of surface texturing on reducing the friction and wear of steel under lubricated sliding contact. Appl. Surf. Sci. 2013, 273, 199–204. [Google Scholar] [CrossRef]
- Li, J.L.; Xiong, D.S.; Wu, H.Y.; Zhang, Y.K.; Qin, Y.K. Tribological properties of laser surface texturing and molybdenizing duplex-treated stainless steel at elevated temperatures. Surf. Coat. Technol. 2012, 228, S219–S223. [Google Scholar] [CrossRef]
- Reinert, L.; Lasserre, F.; Gachot, C.; Grützmacher, P.; MacLucas, T.; Souza, N.; Mücklich, F.; Suarez, S. Long-lasting solid lubrication by CNT-coated patterned surfaces. Sci. Rep. 2017, 7, 42873. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.Z.; Hu, T.C.; Zhang, Y.S.; Fang, Y.; Song, J.J.; Hu, L.T. Tribological properties of micro-textured surfaces of ZTA ceramic nanocomposites under the combined effect of test conditions and environments. Tribol. Int. 2014, 78, 134–141. [Google Scholar] [CrossRef]
- Dong, Y.C.; Svoboda, P.; Vrbka, M.; David, K.; Urban, F.; Cizek, J.R.P.; Dong, H.S.; Krupka, I.; Hartl, M. Towards near-permanent CoCrMo prosthesis surface by combining micro-texturing and low temperature plasma carburising. J. Mech. Behav. Biomed. Mater. 2015, 55, 215–227. [Google Scholar] [CrossRef] [PubMed]
- Dobrzański, L.A.; Drygała, A. Surface texturing of multicrystalline silicon solar cells. J. Achiev. Mater. Manuf. Eng. 2008, 31, 77–82. [Google Scholar]
- Higuera Garrido, A.; González, R.; Cadenas, M.; Hernández Battez, A. Tribological behavior of laser-textured NiCrBSi coatings. Wear 2011, 271, 925–933. [Google Scholar] [CrossRef]
- He, D.Q.; Zheng, S.X.; Pu, J.B.; Zhang, G.A.; Hu, L.T. Improving tribological properties of titanium alloys by combining laser surface texturing and diamond-like carbon film. Tribol. Int. 2015, 82, 20–27. [Google Scholar] [CrossRef]
- Hu, T.C.; Zhang, Y.S.; Hu, L.T. Tribological investigation of MoS2 coatings deposited on the laser textured surface. Wear 2012, 278–279, 77–82. [Google Scholar] [CrossRef]
- Zhang, X.H.; Tan, J.; Zhang, Q.; Wang, M.; Meng, L.D. Effect of laser surface texturing depth on the adhesion of electroless plated nickel coating on alumina. Surf. Coat. Technol. 2017, 311, 151–156. [Google Scholar] [CrossRef]
- Ripoll, M.R.; Simič, R.; Brenner, J.; Podgornik, B. Friction and lifetime of laser surface-textured and MoS2-coated Ti6Al4V under dry reciprocating sliding; Tribol. Lett. 2013, 51, 261–271. [Google Scholar]
- Rapoport, L.; Moshkovich, A.; Perfilyev, V.; Gedanken, A.; Koltypin, Y.; Sominski, E.; Halperin, G.; Etsion, I. Wear life and adhesion of solid lubricant films on laser-textured steel surfaces. Wear 2009, 267, 1203–1207. [Google Scholar] [CrossRef]
- Li, J.L.; Xiong, D.S.; Zhang, Y.K.; Zhu, H.G.; Qin, Y.K.; Kong, J. Friction and wear properties of MoS2-overcoated laser surface-textured silver-containing nickel-based alloy at elevated temperatures. Tribol. Lett. 2011, 43, 221–228. [Google Scholar] [CrossRef]
- Wang, Y.M.; Guo, J.W.; Zhuang, J.P.; Jing, Y.B.; Shao, Z.K.; Jin, M.S.; Zhang, J.; Wei, D.Q.; Zhou, Y. Development and characterization of MAO bioactive ceramic coatinggrown on micro-patterned Ti6Al4V alloy surface. Appl. Surf. Sci. 2014, 299, 58–65. [Google Scholar] [CrossRef]
- Wan, Y.; Xiong, D.S.; Wang, J. Tribological properties of dimpled surface alloying layer on carbon steel. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2009, 24, 218–222. [Google Scholar] [CrossRef]
- Lamraoui, A.; Costil, S.; Langlade, C.; Coddet, C. Laser surface texturing (LST) treatment before thermal spraying: A new process to improve the substrate-coating adherence. Surf. Coat. Technol. 2010, 205, S164–S167. [Google Scholar] [CrossRef]
- Li, J.L.; Xiong, D.S.; Wu, H.Y.; Huang, Z.J.; Dai, J.H.; Tyagi, R. Tribological properties of laser surface texturing and molybdenizing duplex-treated Ni-base alloy. Tribol. Trans. 2010, 53, 195–202. [Google Scholar] [CrossRef]
- Tripathi, K.; Gyawali, G.; Amanov, A.; Lee, S.W. Synergy effect of ultrasonic nanocrystalline surface modification and laser surface texturing on friction and wear behavior of graphite cast iron. Tribol. Trans. 2017, 2, 226–237. [Google Scholar] [CrossRef]
- Shum, P.W.; Zhou, Z.F.; Li, K.Y. To increase the hydrophobicity; non-stickiness and wear resistance of DLC surface by surface texturing using a laser ablation process. Tribol. Int. 2014, 78, 1–6. [Google Scholar] [CrossRef]
- Mello, D.J.D.B.; Gonçalves, J.J.L.; Costa, H.L. Influence of surface texturing and hard chromium coating on the wear of steels used in cold rolling mill rolls. Wear 2013, 302, 1295–1309. [Google Scholar] [CrossRef]
- Guo, L.T.; Tian, J.L.; Wu, J.; Li, B.; Zhu, Y.B.; Xu, C.; Qiang, Y.H. Effect of surface texturing on the bonding strength of titanium-porcelain. Mater. Lett. 2014, 131, 321–323. [Google Scholar] [CrossRef]
- Kumari, R.; Scharnweber, T.; Pfleging, W.; Besser, H.; Majumdar, J.D. Laser surface textured titanium alloy (Ti-6Al-4V)-Part II-Studies on bio-compatibility. Appl. Surf. Sci. 2015, 357, 750–758. [Google Scholar] [CrossRef]
- Martínez-Calderon, M.; Manso-Silván, M.; Rodríguez, A.; Gómez-Aranzadi, M.; García-Ruiz, J.P.; Olaizola, S.M.; Martín-Palma, R.J. Surface micro- and nano-texturing of stainless steel by femtosecond laser for the control of cell migration. Sci. Rep. 2016, 6, 36296. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.Z.; Tao, J.; Tao, H.J.; Chen, S.L.; Pan, L.; Wang, T. Nanostructures in superhydrophobic Ti6Al4V hierarchical surfaces control wetting state transitions. Soft Matter 2015, 11, 3806–3811. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.Z.; Tao, H.J.; Chen, S.L.; Zhu, L.M.; Wang, T.; Tao, J. Icephobic/anti-icing potential of superhydrophobic Ti6Al4V surfaces with hierarchical textures. RSC Adv. 2015, 5, 1666–1672. [Google Scholar] [CrossRef]
- Pfleging, W.; Kumari, R.; Besser, H.; Scharnweber, T.; Majumdar, J.D. Laser surface textured titanium alloy (Ti-6Al-4V)-Part I-Surface characterization. Appl. Surf. Sci. 2015, 355, 104–111. [Google Scholar] [CrossRef]
- Zhang, X.L.; Jia, J.H. Frictional behavior of micro/nanotextured surfaces investigated by atomic force microscope: A review. Surf. Rev. Lett. 2015, 22, 1530001. [Google Scholar] [CrossRef]
- Lin, N.M.; Liu, Q.; Zou, J.J.; Guo, J.W.; Li, D.L.; Yuan, S.; Ma, Y.; Wang, Z.X.; Wang, Z.H.; Tang, B. Surface texturing-plasma nitriding duplex treatment for improving tribological performance of AISI 316 stainless steel. Materials 2016, 9, 875. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Wu, Y.X.; Gong, H.; Shi, W.Z. Effect of surface texturing on stresses during rapid changes in temperature. Metals 2016, 6, 290. [Google Scholar] [CrossRef]
- Kolobov, Y.R.; Golosov, E.V.; Vershinina, T.N.; Zhidkov, M.V.; Ionin, A.A.; Kudryashov, S.I.; Makarov, S.V.; Seleznev, L.V.; Sinitsyn, D.V.; Ligachev, A.E. Structural transformation and residual stresses in surface layers of α + β titanium alloys nanotextured by femtosecond laser pulses. Appl. Phys. A Mater. Sci. Process. 2015, 119, 241–247. [Google Scholar] [CrossRef]
- Zenebe, S.D.; Hwang, P. Friction control by multi-shape textured surface under pin-on-disc test. Tribol. Int. 2015, 91, 111–117. [Google Scholar] [CrossRef]
- Mukherjee, S. Laser Surface Modification of Ti6Al4V Implants. In Proceedings of the 1st International Electronic Conference on Materials, 30 May 2014; pp. 1–6. [Google Scholar]
- Soveja, A.; Cicală, E.; Grevey, D.; Jouvard, J.M. Optimisation of TA6V alloy surface laser texturing using an experimental design approach. Opt. Lasers Eng. 2008, 46, 671–678. [Google Scholar] [CrossRef]
- Guo, Y.B.; Caslaru, R. Fabrication and characterization of micro dent arrays produced by laser shock peening on titanium Ti-6Al-4V surfaces. J. Mater. Process. Technol. 2011, 211, 729–736. [Google Scholar] [CrossRef]
- Wang, M.L.; Zhang, C.T.; Wang, X.L. The wear behavior of textured steel sliding against polymers. Materials 2017, 10, 330. [Google Scholar] [CrossRef] [PubMed]
- Men, B.; Wan, Y.; Zhang, R.; Zhang, D.; Liu, C. Fabrication of micro-featured array with laser and parameter optimization. Tool Eng. 2015, 49, 17–20. [Google Scholar]
- Anand, P.; Bajpai, V.; Singh, R.K. Experimental Characterization of Fiber Laser Based Surface Texturing. In Proceedings of the 7th International Conference on Micro Manufacturing, Evanston, IL, USA, 17–19 March 2012; pp. 60–65. [Google Scholar]
- Arslan, A.; Masjuki, H.H.; Kalam, M.A.; Varman, M.; Mufti, R.A.; Mosarof, M.H.; Khuong, L.S.; Quazi, M.M. Surface Texture Manufacturing Techniques and Tribological Effect of Surface Texturing on Cutting Tool Performance: A Review. Crit. Rev. Solid State Mater. Sci. 2016, 41, 447–481. [Google Scholar] [CrossRef]
- Faure, L.; Bolle, B.; Philippon, S.; Schuman, C.; Chevrier, P.; Tidu, A. Friction experiments for titanium alloy tribopairs sliding in dry conditions: Sub-surface and surface analysis. Tribol. Int. 2012, 54, 17–25. [Google Scholar] [CrossRef]
- Saranadhi, D.; Chen, D.Y.; Kleingartner, J.A.; Srinivasan, S.; Cohen, R.E.; McKinley, G.H. Sustained drag reduction in a turbulent flow using a low-temperature Leidenfrost surface. Sci. Adv. 2016, 2, e1600686. [Google Scholar] [CrossRef] [PubMed]
- Mo, J.L.; Wang, Z.G.; Chen, G.X.; Shao, T.M.; Zhu, M.H.; Zhou, Z.R. The effect of groove-textured surface on friction and wear and friction-induced vibration and noise. Wear 2013, 301, 671–681. [Google Scholar] [CrossRef]
- Obadelea, B.A.; Lepule, M.L.; Andrews, A.; Olubambi, P.A. Tribocorrosion characteristics of laser deposited Ti-Ni-ZrO2 composite coatings on AISI 316 stainless steel. Tribol. Int. 2014, 78, 160–167. [Google Scholar] [CrossRef]
- Obrosov, A.; Sutygina, A.N.; Volinsky, A.A.; Manakhov, A.; Weiß, S.; Kashkarov, E.B. Effect of hydrogen exposure on mechanical and tribological behavior of CrxN coatings deposited at different pressures on IN718. Materials 2017, 10, 563. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Akhtar, S.N.; Anup, K.P.; Ramkumar, J.; Balani, K. Tribological performance of laser peened Ti-6Al-4V. Wear 2015, 322–323, 203–217. [Google Scholar] [CrossRef]
- Caslaru, R. Frbrication, Characterization, and Tribological Performance of Micro Dent Arrays Produced by Laser Shock Peening on Ti-6Al-4V Alloy; The University of Alabama: Tuscaloosa, AL, USA, 2010. [Google Scholar]
- Tripathi, K.; Joshi, B.; Gyawali, G.; Amanov, A.; Lee, S.W. A study on the effect of laser surface texturing on friction and wear behavior of graphite cast iron. J. Tribol. 2016, 138, 011601. [Google Scholar] [CrossRef]
- Amanov, A.; Watabe, T.; Tsuboi, R.; Sasaki, S. Improvement in the tribological characteristics of Si-DLC coating by laser surface texturing under oil-lubricated point contacts at various temperatures. Surf. Coat. Technol. 2013, 2632, 549–560. [Google Scholar] [CrossRef]
- Hu, T.C.; Hu, L.T.; Ding, Q. The effect of laser surface texturing on the tribological behavior of Ti-6Al-4V. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2012, 226, 854–863. [Google Scholar] [CrossRef]
- Lian, F.; Zhang, H.C.; Pang, L.Y. Laser texture manufacturing on Ti6A14V surface and its dry tribological characteristics. Lubr. Eng. 2011, 36, 1–5. [Google Scholar]
- Xu, P.F.; Zhou, F.; Wang, Q.Z.; Peng, Y.J.; Chen, J.N.; Yun, N.Z. Influence of meshwork pattern grooves on the tribological characteristics of Ti-6Al-4V alloy in water lubrication. J. Tribol. 2012, 32, 377–383. [Google Scholar]
- Bonse, J.; Koter, R.; Hartelt, M.; Spaltmann, D.; Pentzien, S.; Höhm, S.; Rosenfeld, A.; Krüger, J. Femtosecond laser-induced periodic surface structures on steel and titanium alloy for tribological applications. Appl. Phys. A Mater. Sci. Process. 2014, 117, 103–110. [Google Scholar] [CrossRef]
- Lian, F.; Zang, L.P.; Xiang, Q.K.; Zhang, H.C. Tribological performance of surper hydrophobic titanium alloy surface in artificial seawater. Acta Metall. Sin. 2016, 52, 592–598. [Google Scholar]
- Lian, F.; Ren, H.M.; Guan, S.K.; Zhang, H.C. Preparation of super hydrophobic titanium alloy surface and its tribological performance. Chin. J. Nonferrous Met. 2015, 25, 2421–2427. [Google Scholar]
- Hu, T.C.; Hu, L.T.; Ding, Q. Effective solution for the tribological problems of Ti-6Al-4V: Combination of laser surface texturing and solid lubricant film. Surf. Coat. Technol. 2012, 206, 5060–5066. [Google Scholar] [CrossRef]
- Amanov, A.; Sasaki, S. A study on the tribological characteristics of duplex-treated Ti-6Al-4V alloy under oil-lubricated sliding conditions. Tribol. Int. 2013, 64, 155–163. [Google Scholar] [CrossRef]
- Arslan, E.; Totik, Y.; Demirci, E.E.; Efeoglu, I. Wear and adhesion resistance of duplex coatings deposited on Ti6Al4V alloy using MAO and CFUBMS. Surf. Coat. Technol. 2013, 214, 1–7. [Google Scholar] [CrossRef]
- Prem Ananth, M.; Ramesh, R. Influence of surface texture on tribological performance of AlCrN nanocomposite coated titanium alloy surfaces. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2013, 227, 1157–1164. [Google Scholar]
- Prem Ananth, M.; Ramesh, R. Tribological improvement of titanium alloy surfaces through texturing and TiAlN coating. Surf. Eng. 2014, 30, 758–762. [Google Scholar] [CrossRef]
- Qin, Y.K.; Xiong, D.S.; Li, J.L. Tribological properties of laser surface textured and plasma electrolytic oxidation duplex-treated Ti6Al4V alloy deposited with MoS2 film. Surf. Coat. Technol. 2015, 269, 266–272. [Google Scholar] [CrossRef]
- Qin, Y.K.; Xiong, D.S.; Li, J.L. Characterization and friction behavior of LST/PEO duplex-treated Ti6Al4V alloy with burnished MoS2 film. Appl. Surf. Sci. 2015, 347, 475–484. [Google Scholar] [CrossRef]
- Lin, N.M.; Liu, Q.; Zou, J.J.; Li, D.L.; Yuan, S.; Wang, Z.H.; Tang, B. Surface damage mitigation of Ti6Al4V alloy via thermal oxidation for oil and gas exploitation application: Characterization of the microstructure and evaluation of the surface performance. RSC Adv. 2017, 7, 13517–13535. [Google Scholar] [CrossRef]
- Sun, Q.C.; Hu, T.C.; Fan, H.Z.; Zhang, Y.S.; Hu, L.T. Thermal oxidation behavior and tribological properties of textured TC4 surface: Influence of thermal oxidation temperature and time. Tribol. Int. 2016, 94, 479–489. [Google Scholar] [CrossRef]
- Martinez, J.M.V.; Pedemonte, F.J.B.; Galvin, M.B.; Gomez, J.S.; Barcena, M.M. Sliding wear behavior of UNS R56400 titanium alloy samples thermally oxidized by laser. Materials 2017, 10, 830. [Google Scholar] [CrossRef] [PubMed]
- Sreedhar, B.K.; Albert, S.K.; Pandit, A.B. Cavitation damage: Theory and measurements—A review. Wear 2017, 372–373, 177–196. [Google Scholar] [CrossRef]
- Pola, A.; Montesano, L.; Tocci, M.; La Vecchia, G.M. Influence of ultrasound treatment on cavitation erosion resistance of AlSi7 alloy. Materials 2017, 10, 256. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Lu, J.-Z.; Zhang, Y.-K.; Ma, H.-L.; Luo, K.-Y.; Dai, F.-Z. Effects of laser shock processing on morphologies and mechanical properties of ANSI 304 stainless steel weldments subjected to cavitation erosion. Materials 2017, 10, 292. [Google Scholar] [CrossRef] [PubMed]
- Pang, L.Y.; Lian, F.; Gao, Y.Z.; Zhang, H.C. Topographical characteristics of cavitation erosion on Ti6A14V alloy with surface texture manufactured by laser. J. Dalian Marit. Univ. 2010, 36, 101–103. [Google Scholar]
- Lian, F.; Zhang, H.C.; Gao, Y.Z.; Pang, L.Y. Influence of surface texture and surface film on cavitation erosion characteristics of Ti6A14V alloy. Rare Met. Mater. Eng. 2011, 40, 793–796. [Google Scholar]
- Olivares-Navarrete, R.; Hyzy, S.L.; Berg, M.E.; Schneider, J.M.; Hotchkiss, K.; Schwartz, Z.; Boyano, B.D. Osteoblast lineage cells can discriminate microscale topographic features on titanium-aluminum-vanadium surfaces. Ann. Biomed. Eng. 2014, 42, 2551–2561. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.N.; Wang, A.H.; Wu, Y.; Wang, X.; Xia, H.B.; Wang, Y.N. Blind micro-hole array Ti6Al4V templates for carrying biomaterialsfabricated by fiber laser drilling. J. Mater. Process. Technol. 2015, 222, 335–343. [Google Scholar] [CrossRef]
- Bhadra, C.M.; Truong, V.K.; Pham, V.T.H.; Kobaisi, M.A.; Seniutinas, G.; Wang, J.Y.; Juodkazis, S.; Crawford, R.J.; Ivanova, E.P. Antibacterial titanium nanopatterned arrays inspired by dragonfly wings. Sci. Rep. 2015, 5, 16817. [Google Scholar] [CrossRef] [PubMed]
- Kurella, A.; Dahotre, N.B. Laser induced multi-scale textured zirconia coating on Ti-6Al-4V. J. Mater. Sci. Mater. Med. 2006, 17, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.N.; Zhang, L.; Li, B.; Han, Y. Enhancement in sustained release of antimicrobial peptide from dual-diameter-structured TiO2 nanotubes for long-lasting antibacterial activity and cytocompatibility. ACS Appl. Mater. Interf. 2017, 9, 9449–9461. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Mwenifumbo, S.; Langhammer, C.; McGovern, J.-P.; Li, M.; Beye, A.; Soboyejo, W.O. Cell/Surface interactions and adhesion on Ti-6Al-4V: Effects of surface texture. J. Biomed. Mater. Res. Part B Appl. Biomater. 2007, 82, 360–373. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Ulerich, J.P.; Abelev, E.; Fasasi, A.; Arnold, C.B.; Soboyejo, W.O. An investigation of the initial attachment and orientation of osteoblast-like cells on laser grooved Ti-6Al-4V surfaces. Mater. Sci. Eng. C 2009, 29, 1442–1452. [Google Scholar] [CrossRef]
- Fasasi, A.Y.; Mwenifumbo, S.; Rahbar, N.; Chen, J.; Li, M.; Beye, A.C.; Arnold, C.B.; Soboyejo, W.O. Nano-second UV laser processed micro-grooves on Ti6Al4V for biomedical applications. Mater. Sci. Eng. C-Bio S 2009, 29, 5–13. [Google Scholar] [CrossRef]
- Dahotre, N.B.; Paital, S.R.; Samant, A.N.; Daniel, C. Wetting behaviour of laser synthetic surface microtextures on Ti-6Al-4V for bioapplication. Phil. Trans. R. Soc. A 2010, 368, 1863–1889. [Google Scholar] [CrossRef] [PubMed]
- Paital, S.R.; He, W.; Dahotre, N.B. Laser pulse dependent micro textured calcium phosphate coatings for improved wettability and cell compatibility. J. Mater. Sci. Mater. Med. 2010, 21, 2187–2200. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Dhara, S.; Saha, P. Enhancing the biocompatibility of Ti6Al4V implants by laser surface microtexturing: An in vitro study. Int. J. Adv. Manuf. Technol. 2013, 76, 5–15. [Google Scholar] [CrossRef]
- Mirhosseini, N.; Crouse, P.L.; Schmidth, M.J.J.; Li, L.; Garrod, D. Laser surface micro-texturing of Ti-6Al-4V substrates for improved cell integration. Appl. Surf. Sci. 2007, 253, 7738–7743. [Google Scholar] [CrossRef]
- Kummer, K.M.; Taylor, E.; Webster, T.J. Biological applications of anodized TiO2 nanostructures: A review from orthopedic to stent applications. Nanosci. Nanotechnol. Lett. 2012, 4, 483–493. [Google Scholar] [CrossRef]
- Kummer, K.M.; Taylor, E.N.; Durmas, N.G.; Tarquinio, K.M.; Ercan, B.; Webster, T.J. Effects of different sterilization techniques and varying anodized TiO2 nanotube dimensions on bacteria growth. J. Biomed. Mater. Res. Part B Appl. Biomater. 2013, 101, 677–688. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.; Webster, T.J. Anodization: A promising nano-modification technique of titanium implants for orthopedic applications. J. Nanosci. Nanotechnol. 2006, 6, 2682–2692. [Google Scholar] [CrossRef] [PubMed]
- Balasundaram, G.; Yao, C.; Webster, T.J. TiO2 nanotubes functionalized with regions of bone morphogenetic protein-2 increases osteoblast adhesion. J. Biomed. Mater. Res. Part A 2008, 84, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Zile, M.A.; Puckett, S.; Webster, T.J. Nanostructured titanium promotes keratinocyte density. J. Biomed. Mater. Res. Part B Appl. Biomater. 2011, 97, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Bhatia, R.; Webster, T.J. Atomic layer deposition of nano-TiO2 thin films with enhanced biocompatibility and antimicrobial activity for orthopedic implants. Int. J. Nanomed. 2017, 12, 8711–8723. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, G.; Webster, T.J. Reduced bacterial growth and increased osteoblast proliferation on titanium with a nanophase TiO2 surface treatment. Int. J. Nanomed. 2017, 12, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S.; Jahangirian, H.; Webster, T.J.; Soltani, S.M.; Aroua, M.K. Synthesis, characterization, and performance evaluation of multilayered photoanodes by introducing mesoporous carbon and TiO2 for humic acid adsorption. Int. J. Nanomed. 2016, 11, 3969–3978. [Google Scholar]
- Hanson, A.D.; Wall, M.E.; Pourdeyhimi, B.; Loboa, E.G. Effects of oxygen plasma treatment on adipose-derived human mesenchymal stem cell adherence to poly(L-lactic acid) scaffolds. J. Biomater. Sci. Polym. Ed. 2007, 18, 1387–1400. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, M.; Mazare, A.; Gongadze, E.; Perutková, Š.; Iglič, V.; Milosev, I.; Schmuki, P.; Iglič, A.; Mozetic, M. Titanium nanostructures for biomedical applications. Nanotechnol. 2015, 26, 062002. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.H.; Shokuhfar, T.; Choi, C.K.; Lee, S.H.; Friedrich, C. Wettability changes of TiO2 nanotube surfaces. Nanotechnology 2011, 22, 315704. [Google Scholar] [CrossRef] [PubMed]
- Junkar, I.; Kulkarni, M.; Drasler, B.; Rugelj, N.; Mazare, A.; Flasker, A.; Drobne, D.; Humpolicek, P.; Resnik, M.; Schmuki, P.; et al. Influence of various sterilization procedures on TiO2 nanotubes used for biomedical devices. Bioelectrochemistry 2016, 109, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, M.; Mazare, A.; Park, J.; Gongadze, E.; Killian, M.S.; Kralj, S.; Mark, K.; Iglič, A.; Schmuki, P. Protein interactions with layers of TiO2 nanotube and nanopore arrays: Morphology and surface charge influence. Acta Biomater. 2016, 45, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Kabaso, D.; Gongadze, E.; Perutková, Š.; Matschegewski, C.; Kralj-Iglič, V.; Beck, U.; van Rienen, U.; Iglič, A. Mechanics and electrostatics of the interactions between osteoblasts and titanium surface. Comput. Methods Biomech. Biomed. Eng. 2011, 14, 469–482. [Google Scholar] [CrossRef] [PubMed]
- Hamlekhan, A.; Butt, A.; Patel, S.; Royhman, D.; Takoudis, C.; Sukotjo, C.; Yuan, J.; Jursich, G.; Mathew, M.T.; Hendrickson, W.; et al. Fabrication of anti-aging TiO2 nanotubes on biomedical Ti alloys. PLoS ONE 2014, 9, e96213. [Google Scholar] [CrossRef] [PubMed]
- Cunha, A.; Serro, A.P.; Oliveira, V.; Almeida, A.; Vilar, R.; Durrieu, M.C. Wetting behaviour of femtosecond laser textured Ti–6Al–4V surfaces. Appl. Surf. Sci. 2013, 265, 688–696. [Google Scholar] [CrossRef]
- Shen, Y.Z.; Tao, J.; Tao, H.J.; Chen, S.L.; Pan, L.; Wang, T. Superhydrophobic Ti6Al4V surfaces with regular array patterns for anti-icing applications. RSC Adv. 2015, 5, 32813–32818. [Google Scholar] [CrossRef]
- Shen, Y.Z.; Tao, H.J.; Chen, S.L.; Xie, Y.J.; Zhou, T.; Wang, T.; Tao, J. Water repellency of hierarchical superhydrophobic Ti6Al4V surfaces improved by secondary nanostructures. Appl. Surf. Sci. 2014, 321, 469–474. [Google Scholar] [CrossRef]
- Lian, F.; Tan, J.Z.; Zhang, H.C. The impacts of the surface pattern on its wettability and antifouling performance. Funct. Mater. 2014, 45, 2105–2109. [Google Scholar]
- Lian, F.; Tan, J.Z.; Zhang, H.C. Preparation of superhydrophobic titanium alloy surface and its antifouling of halobios. Rare Met. Mater. Eng. 2014, 43, 2267–2271. [Google Scholar]
- Lian, F.; Zhang, H.C.; Pang, L.Y.; Li, J. Fabrication of superhydrophobic surfaces on Ti6Al4V alloy and its wettability. Nanotechnol. Precis. Eng. 2011, 9, 6–10. [Google Scholar]
- Lian, F.; Zhang, H.C.; Pang, L.Y.; Zhu, H.B. Effects of surface film on superhydrophobic characteristics of Ti6Al4V with dotted matrix structure. Rare Met. Mater. Eng. 2012, 41, 612–616. [Google Scholar]
- Lian, F.; Zhang, H.C.; Pang, L.Y. Fabrication of surface texture on Ti6Al4V alloy and its wettability. Funct. Mater. 2011, 42, 464–467. [Google Scholar]
- Drelich, J.; Chibowski, E.; Meng, D.D.S.; Terpilowski, K. Hydrophilic and superhydrophilic surfa ces and materials. Soft Matter 2012, 7, 9804–9828. [Google Scholar] [CrossRef]
- Att, W.; Hori, N.; Iwasa, F.; Yamada, M.; Ueno, T.; Ogawa, T. The effect of UV-photofunctionalization on the time-related bioactivity of titanium and chromium-cobalt alloys. Biomaterials 2009, 30, 4268–4276. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, N.; Li, D.; Zou, J.; Xie, R.; Wang, Z.; Tang, B. Surface Texture-Based Surface Treatments on Ti6Al4V Titanium Alloys for Tribological and Biological Applications: A Mini Review. Materials 2018, 11, 487. https://doi.org/10.3390/ma11040487
Lin N, Li D, Zou J, Xie R, Wang Z, Tang B. Surface Texture-Based Surface Treatments on Ti6Al4V Titanium Alloys for Tribological and Biological Applications: A Mini Review. Materials. 2018; 11(4):487. https://doi.org/10.3390/ma11040487
Chicago/Turabian StyleLin, Naiming, Dali Li, Jiaojuan Zou, Ruizhen Xie, Zhihua Wang, and Bin Tang. 2018. "Surface Texture-Based Surface Treatments on Ti6Al4V Titanium Alloys for Tribological and Biological Applications: A Mini Review" Materials 11, no. 4: 487. https://doi.org/10.3390/ma11040487
APA StyleLin, N., Li, D., Zou, J., Xie, R., Wang, Z., & Tang, B. (2018). Surface Texture-Based Surface Treatments on Ti6Al4V Titanium Alloys for Tribological and Biological Applications: A Mini Review. Materials, 11(4), 487. https://doi.org/10.3390/ma11040487