# Digital Image Correlation of 2D X-ray Powder Diffraction Data for Lattice Strain Evaluation

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. The XRD-DIC Approach

#### 2.1. DIC Introduction

#### 2.2. DIC Implementation

#### 2.2.1. Pre-Processing

#### 2.2.2. Tracking and Post-Processing

#### 2.3. Advantages of XRD-DIC

## 3. Material and Experiment

#### 3.1. Three-Point Bending

#### 3.2. XRD Experiment

#### 3.3. DIC Analysis

## 4. Results and Discussion

## 5. Conclusions and Outlook

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Mishurova, T.; Cabeza, S.; Artzt, K.; Haubrich, J.; Klaus, M.; Genzel, C.; Requena, G.; Bruno, G. An assessment of subsurface residual stress analysis in SLM Ti-6Al-4V. Materials
**2017**, 10, 348. [Google Scholar] [CrossRef] [PubMed] - Ma, Y.; Song, W.; Bleck, W. Investigation of the Microstructure Evolution in a Fe-17Mn-1.5 Al-0.3 C Steel via In Situ Synchrotron X-ray Diffraction during a Tensile Test. Materials
**2017**, 10, 1129. [Google Scholar] - Yi, S.B.; Davies, C.; Brokmeier, H.G.; Bolmaro, R.; Kainer, K.; Homeyer, J. Deformation and texture evolution in AZ31 magnesium alloy during uniaxial loading. Acta Mater.
**2006**, 54, 549–562. [Google Scholar] [CrossRef] - Bohr, J.; Feidenhans, R.; Nielsen, M.; Toney, M.; Johnson, R.; Robinson, I. Model-independent structure determination of the InSb (111) 2 × 2 surface with use of synchrotron X-ray diffraction. Phys. Rev. Lett.
**1985**, 54, 1275. [Google Scholar] [CrossRef] [PubMed] - Guss, J.M.; Merritt, E.A.; Phizackerley, R.P.; Hedman, B.; Murata, M.; Hodgson, K.O.; Freeman, H.C. Phase determination by multiple-wavelength X-ray diffraction: Crystal structure of a basic “blue” copper protein from cucumbers. Science
**1988**, 241, 806–811. [Google Scholar] [CrossRef] [PubMed] - Yang, X.Q.; McBreen, J.; Yoon, W.S.; Grey, C.P. Crystal structure changes of LiMn 0.5 Ni 0.5 O 2 cathode materials during charge and discharge studied by synchrotron based in situ XRD. Electrochem. Commun.
**2002**, 4, 649–654. [Google Scholar] [CrossRef] - Shin, H.C.; Park, S.B.; Jang, H.; Chung, K.Y.; Cho, W.I.; Kim, C.S.; Cho, B.W. Rate performance and structural change of Cr-doped LiFePO 4/C during cycling. Electrochim. Acta
**2008**, 53, 7946–7951. [Google Scholar] [CrossRef] - Langford, J.I.; Louer, D. Powder diffraction. Rep. Prog. Phys.
**1996**, 59, 131. [Google Scholar] [CrossRef] - Daum, R.; Chu, Y.; Motta, A. Identification and quantification of hydride phases in Zircaloy-4 cladding using synchrotron X-ray diffraction. J. Nucl. Mater.
**2009**, 392, 453–463. [Google Scholar] [CrossRef] - Almer, J.; Lienert, U.; Peng, R.L.; Schlauer, C.; Odén, M. Strain and texture analysis of coatings using high-energy X-rays. J. Appl. Phys.
**2003**, 94, 697–702. [Google Scholar] [CrossRef] - Xie, M. X-ray and Neutron Diffraction analysis and Fem Modelling of Stress and Texture Evolution in cubic Polycrystals. Ph.D. Thesis, University of Oxford, Oxford, UK, 2014. [Google Scholar]
- Shi, X.; Ghose, S.; Dooryhee, E. Performance calculations of the X-ray powder diffraction beamline at NSLS-II. J. Synchrotron Radiat.
**2013**, 20, 234–242. [Google Scholar] [CrossRef] [PubMed] - Wanner, A.; Dunand, D.C. Synchrotron X-ray study of bulk lattice strains in externally loaded Cu-Mo composites. Metall. Mater. Trans. A
**2000**, 31, 2949–2962. [Google Scholar] [CrossRef] - Poshadel, A.; Dawson, P.; Johnson, G. Assessment of deviatoric lattice strain uncertainty for polychromatic X-ray microdiffraction experiments. J. Synchrotron Radiat.
**2012**, 19, 237–244. [Google Scholar] [CrossRef] [PubMed] - Hutchinson, J. Plastic stress and strain fields at a crack tip. J. Mech. Phys. Solids
**1968**, 16, 337–342. [Google Scholar] [CrossRef] - Hill, R. The Mathematical Theory of Plasticity; Oxford University Press: Oxford, UK, 1998. [Google Scholar]
- Macherauch, E. Introduction to Residual Stress. In Advances in Surface Treatments: Technology-Application-Effect; A Niku-Lari; Pergamon Press: Oxford, UK, 1986; Volume 4, pp. 1–36. [Google Scholar]
- Zhang, S.Y. High Energy White Beam X-ray Diffraction Studies of Strains in Engineering Materials and Components. Ph. D. Thesis, University of Oxford, Oxford, UK, 2008. [Google Scholar]
- Rendler, N.; Vigness, I. Hole-drilling strain-gage method of measuring residual stresses. Exp. Mech.
**1966**, 6, 577–586. [Google Scholar] [CrossRef] - Sebastiani, M.; Eberl, C.; Bemporad, E.; Pharr, G.M. Depth-resolved residual stress analysis of thin coatings by a new FIB–DIC method. Mater. Sci. Eng. A
**2011**, 528, 7901–7908. [Google Scholar] [CrossRef] - Korsunsky, A.M.; Sebastiani, M.; Bemporad, E. Residual stress evaluation at the micrometer scale: Analysis of thin coatings by FIB milling and digital image correlation. Surf. Coat. Technol.
**2010**, 205, 2393–2403. [Google Scholar] [CrossRef] - Cheng, W.; Finnie, I. Residual Stress Measurement and the Slitting Method; Springer Science & Business Media: New York, NY, USA, 2007. [Google Scholar]
- Treuting, R.; Read, W., Jr. A mechanical determination of biaxial residual stress in sheet materials. J. Appl. Phys.
**1951**, 22, 130–134. [Google Scholar] [CrossRef] - Window, A.L.; Holister, G.S. Strain Gauge Technology; Applied Science Publishers: London, UK, 1982. [Google Scholar]
- Cullity, B.D. Elements of X-ray Diffraction; Addison-Wesley Publishing Company, Inc.: Reading, MA, USA, 1956. [Google Scholar]
- Korsunsky, A.M.; Wells, K.E.; Withers, P.J. Mapping two-dimensional state of strain using synchroton X-ray diffraction. Scr. Mater.
**1998**, 39, 1705–1712. [Google Scholar] [CrossRef] - Comley, A.; Maddox, B.; Rudd, R.; Prisbrey, S.; Hawreliak, J.; Orlikowski, D.; Peterson, S.; Satcher, J.; Elsholz, A.; Park, H.S. Strength of shock-loaded single-crystal tantalum [100] determined using in situ broadband X-ray Laue diffraction. Phys. Rev. Lett.
**2013**, 110, 115501. [Google Scholar] [CrossRef] [PubMed] - Daniels, J.; Drakopoulos, M. High-energy X-ray diffraction using the Pixium 4700 flat-panel detector. J. Synchrotron Radiat.
**2009**, 16, 463–468. [Google Scholar] [CrossRef] [PubMed] - He, B.B. Two-Dimensional X-ray Diffraction; John Wiley & Sons: New York, NY, USA, 2011. [Google Scholar]
- Petit, J.; Bornert, M.; Hofmann, F.; Robach, O.; Micha, J.; Ulrich, O.; Le Bourlot, C.; Faurie, D.; Korsunsky, A.; Castelnau, O. Combining Laue microdiffraction and digital image correlation for improved measurements of the elastic strain field with micrometer spatial resolution. Procedia IUTAM
**2012**, 4, 133–143. [Google Scholar] [CrossRef] - Zhang, F.; Castelnau, O.; Bornert, M.; Petit, J.; Marijon, J.; Plancher, E. Determination of deviatoric elastic strain and lattice orientation by applying digital image correlation to Laue microdiffraction images: The enhanced Laue-DIC method. J. Appl. Crystallogr.
**2015**, 48, 1805–1817. [Google Scholar] [CrossRef] - Pan, B.; Qian, K.; Xie, H.; Asundi, A. Two-dimensional digital image correlation for in-plane displacement and strain measurement: A review. Meas. Sci. Technol.
**2009**, 20, 062001. [Google Scholar] [CrossRef] - Lunt, A.J.; Baimpas, N.; Salvati, E.; Dolbnya, I.P.; Sui, T.; Ying, S.; Zhang, H.; Kleppe, A.K.; Dluhoš, J.; Korsunsky, A.M. A state-of-the-art review of micron-scale spatially resolved residual stress analysis by FIB-DIC ring-core milling and other techniques. J. Strain Anal. Eng. Design
**2015**, 50, 426–444. [Google Scholar] [CrossRef] - Yates, J.; Zanganeh, M.; Tai, Y. Quantifying crack tip displacement fields with DIC. Eng. Fract. Mech.
**2010**, 77, 2063–2076. [Google Scholar] [CrossRef] - Abanto-Bueno, J.; Lambros, J. Investigation of crack growth in functionally graded materials using digital image correlation. Eng. Fract. Mech.
**2002**, 69, 1695–1711. [Google Scholar] [CrossRef] - McCormick, N.; Lord, J. Digital image correlation. Mater. Today
**2010**, 13, 52–54. [Google Scholar] [CrossRef] - Kujawińska, M.; Malesa, M.; Malowany, K. Measuring structural displacements with digital image correlation. SPIE Newsroom
**2013**, 2013, 1–4. [Google Scholar] [CrossRef] - Senn, M.; Eberl, C. Digital Image Correlation and Tracking, 2015. Available online: https://cn.mathworks.com/matlabcentral/fileexchange/50994-digital-image-correlation-and-tracking?requestedDomain=true (accessed on 1 February 2018).
- Lunt, A.J.; Korsunsky, A.M. A review of micro-scale focused ion beam milling and digital image correlation analysis for residual stress evaluation and error estimation. Surf. Coat. Technol.
**2015**, 283, 373–388. [Google Scholar] [CrossRef] - Lunt, A.J.; Salvati, E.; Ma, L.; Dolbyna, I.P.; Neo, T.K.; Korsunsky, A.M. Full in-plane strain tensor analysis using the microscale ring-core FIB milling and DIC approach. J. Mech. Phys. Solids
**2016**, 94, 47–67. [Google Scholar] [CrossRef] - Fong, K.S.; Atsushi, D.; Jen, T.M.; Chua, B.W. Effect of Deformation and Temperature Paths in Severe Plastic Deformation Using Groove Pressing on Microstructure, Texture, and Mechanical Properties of AZ31-O. J. Manuf. Sci. Eng.
**2015**, 137, 051004. [Google Scholar] [CrossRef] - Liu, W.; Wu, G.; Zhai, C.; Ding, W.; Korsunsky, A.M. Grain refinement and fatigue strengthening mechanisms in as-extruded Mg–6Zn–0.5 Zr and Mg–10Gd–3Y–0.5 Zr magnesium alloys by shot peening. Int. J. Plast.
**2013**, 49, 16–35. [Google Scholar] [CrossRef] - Estrin, Y.; Vinogradov, A. Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta Mater.
**2013**, 61, 782–817. [Google Scholar] [CrossRef] - Mathworks. Digital Image Correlation and Tracking, 2017. Available online: https://uk.mathworks.com/help/images/index.html (accessed on 1 February 2018).
- Hammersley, A.; Svensson, S.; Hanfland, M.; Fitch, A.; Hausermann, D. Two-dimensional detector software: From real detector to idealised image or two-theta scan. Int. J. High Press. Res.
**1996**, 14, 235–248. [Google Scholar] [CrossRef] - Matlab Version R2016a; The MathWorks Inc.: Natick, MA, USA, 2016.

**Figure 1.**Schematic demonstration of definitions of subset window, marker, correlation size and searching area in the DIC performed.

**Figure 2.**(

**a**) Layout of XRD experiment; (

**b**) Set-up of 3-point bending and (

**c**) EBSD of as-CGPed sample.

**Figure 3.**DIC setup illustrated for the base image with markers placed at different azimuthal angles on the (101) diffraction ring. The markers and searching area for the ${90}^{\circ}$ azimuthal angle are shown at a higher magnification in the figure inserts as an example.

**Figure 4.**Comparison of residual elastic strains obtained from XRD-DIC (red dots with error bar) and ConFit method (solid black curve) at the azimuthal angles of ${0}^{\circ}$, ${45}^{\circ}$, ${90}^{\circ}$, ${135}^{\circ}$, ${180}^{\circ}$, ${225}^{\circ}$, ${270}^{\circ}$ and ${315}^{\circ}$ respectively.

**Figure 5.**The azimuthal variation of residual elastic strains obtained using XRD-DIC from distance 0.19 mm, 1.02 mm and 1.31 mm as examples, showing the results of least squares fitting along with corresponding polar plots.

**Figure 6.**Quiver plot of in-plane principal strains across the central line in the bent bar plotted together with the residual elastic strain at ${90}^{\circ}$ calculated using XRD-DIC.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Zhang, H.; Sui, T.; Salvati, E.; Daisenberger, D.; Lunt, A.J.G.; Fong, K.S.; Song, X.; Korsunsky, A.M.
Digital Image Correlation of 2D X-ray Powder Diffraction Data for Lattice Strain Evaluation. *Materials* **2018**, *11*, 427.
https://doi.org/10.3390/ma11030427

**AMA Style**

Zhang H, Sui T, Salvati E, Daisenberger D, Lunt AJG, Fong KS, Song X, Korsunsky AM.
Digital Image Correlation of 2D X-ray Powder Diffraction Data for Lattice Strain Evaluation. *Materials*. 2018; 11(3):427.
https://doi.org/10.3390/ma11030427

**Chicago/Turabian Style**

Zhang, Hongjia, Tan Sui, Enrico Salvati, Dominik Daisenberger, Alexander J. G. Lunt, Kai Soon Fong, Xu Song, and Alexander M. Korsunsky.
2018. "Digital Image Correlation of 2D X-ray Powder Diffraction Data for Lattice Strain Evaluation" *Materials* 11, no. 3: 427.
https://doi.org/10.3390/ma11030427