# Optical Properties of Complex Plasmonic Materials Studied with Extended Effective Medium Theories Combined with Rigorous Coupled Wave Analysis

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Fabrication of Gold Nanoparticle Gratings

#### 2.2. Analytical and Numerical Models

## 3. Results and Discussion

## 4. Conclusions

## Supplementary Materials

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Hedayati, M.; Faupel, F.; Elbahri, M. Review of Plasmonic Nanocomposite Metamaterial Absorber. Materials
**2014**, 7, 1221–1248. [Google Scholar] [CrossRef] [PubMed] - Malafronte, A.; Capretti, A.; Pepe, G.P.; Forestiere, C.; Miano, G.; Auriemma, F.; De Rosa, C.; Di Girolamo, R. Simple Theoretical Considerations for Block-Copolymer-Based Plasmonic Metamaterials. Macromol. Symp.
**2016**, 359, 72–78. [Google Scholar] [CrossRef] - Stefik, M.; Guldin, S.; Vignolini, S.; Wiesner, U.; Steiner, U. Block copolymer self-assembly for nanophotonics. Chem. Soc. Rev.
**2015**, 44, 5076–5091. [Google Scholar] [CrossRef] [PubMed] - Stratakis, E.; Kymakis, E. Nanoparticle-based plasmonic organic photovoltaic devices. Mater. Today
**2013**, 16, 133–146. [Google Scholar] [CrossRef] - Babu, V.J.; Vempati, S.; Sundarrajan, S.; Sireesha, M.; Ramakrishna, S. Effective nanostructred morphologies for efficient hybrid solar cells. Sol. Energy
**2014**, 106, 1–22. [Google Scholar] [CrossRef] - Cocoyer, C.; Rocha, L.; Fiorini-Debuisschert, C.; Sicot, L.; Vaufrey, D.; Sentein, C.; Geffroy, B.; Raimond, P. Implementation of a submicrometer patterning technique in azopolymer films towards optimization of photovoltaic solar cells efficiency. Thin Solid Films
**2006**, 511, 517–522. [Google Scholar] [CrossRef] - Soum-Glaude, A.; Di Giacomo, L.; Quoizola, S.; Laurent, T.; Flamant, G. Selective Surfaces for Solar Thermal Energy Conversion in CSP: From Multilayers to Nanocomposites. In Nanotechnology for Energy Sustainability; Wiley: Hoboken, NJ, USA, 2017; pp. 231–248. [Google Scholar]
- Sellappan, R.; Nielsen, M.G.; González-Posada, F.; Vesborg, P.C.K.; Chorkendorff, I.; Chakarov, D. Effects of plasmon excitation on photocatalytic activity of Ag/TiO
_{2}and Au/TiO_{2}nanocomposites. J. Catal.**2013**, 307, 214–221. [Google Scholar] [CrossRef] [Green Version] - Wang, M.; Ye, M.; Iocozzia, J.; Lin, C.; Lin, Z. Plasmon-mediated solar energy conversion via photocatalysis in noble metal/semiconductor composites. Adv. Sci.
**2015**, 3, 1600024. [Google Scholar] [CrossRef] [PubMed] - Ma, X.C.; Dai, Y.; Yu, L.; Huang, B.B. Energy transfer in plasmonic photocatalytic composites. Light Sci. Appl.
**2016**, 5, e16017. [Google Scholar] [CrossRef] - Mubeen, S.; Lee, J.; Singh, N.; Krämer, S.; Stucky, G.D.; Moskovits, M. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat. Nanotechnol.
**2013**, 8, 247–251. [Google Scholar] [CrossRef] [PubMed] - DeSario, P.A.; Pietron, J.J.; De Vantier, D.E.; Brintlinger, T.H.; Stroud, R.M.; Rolison, D.R. Plasmonic enhancement of visible-light water splitting with Au–TiO
_{2}composite aerogels. Nanoscale**2013**, 5, 8073. [Google Scholar] [CrossRef] [PubMed] - Erwin, W.R.; Coppola, A.; Zarick, H.F.; Arora, P.; Miller, K.J.; Bardhan, R. Plasmon enhanced water splitting mediated by hybrid bimetallic Au–Ag core–shell nanostructures. Nanoscale
**2014**, 6, 12626–12634. [Google Scholar] [CrossRef] [PubMed] - Maguire, J.F. Polymer Nanocomposites With Prescribed Morphology: Going Beyond Nanoparticle-Filled Polymers (Preprint). Chem. Mater.
**2007**, 19, 2736–2751. [Google Scholar] - Lu, X.; Song, D.P.; Ribbe, A.; Watkins, J.J. Chiral Arrangements of Au Nanoparticles with Prescribed Handedness Templated by Helical Pores in Block Copolymer Films. Macromolecules
**2017**, 50, 5293–5300. [Google Scholar] [CrossRef] - Ye, W.; Long, R.; Huang, H.; Xiong, Y. Plasmonic nanostructures in solar energy conversion. J. Mater. Chem. C
**2016**, 5, 1008–1021. [Google Scholar] [CrossRef] - Davis, T.J.; Gómez, D.E.; Roberts, A. Plasmonic circuits for manipulating optical information. Nanophotonics
**2017**, 6, 543–559. [Google Scholar] [CrossRef] - Juhl, A.T.; Busbee, J.D.; Koval, J.J.; Natarajan, L.V.; Tondiglia, V.P.; Vaia, R.A.; Bunning, T.J.; Braun, P.V. Holographically directed assembly of polymer nanocomposites. ACS Nano
**2010**, 4, 5953–5961. [Google Scholar] [CrossRef] [PubMed] - Gallinet, B.; Butet, J.; Martin, O.J.F. Numerical methods for nanophotonics: Standard problems and future challenges. Laser Photonics Rev.
**2015**, 9, 577–603. [Google Scholar] [CrossRef] - Draine, B.T. The discrete-dipole approximation and its application to interstellar graphite grains. Astrophys. J.
**1988**, 333, 848. [Google Scholar] [CrossRef] - Yurkin, M.A.; Hoekstra, A.G. The discrete dipole approximation: An overview and recent developments. J. Quant. Spectrosc. Radiat. Transf.
**2007**, 106, 558–589. [Google Scholar] [CrossRef] - Taflove, A.; Oskooi, A.; Johnson, S.G. Advances in FDTD Computational Electrodynamics: Photonics and Nanotechnology; Artech House Publishers: Norwood, MA, USA, 2013; ISBN 1608071707. [Google Scholar]
- Trügler, A. Modeling the Optical Response of Metallic Nanoparticles. In Optical Properties of Metallic Nanoparticles; Springer Publishing: New York, NY, USA, 2011; pp. 101–1127. [Google Scholar]
- Hohenester, U.; Trügler, A. MNPBEM—A Matlab toolbox for the simulation of plasmonic nanoparticles. Comput. Phys. Commun.
**2012**, 183, 370–381. [Google Scholar] [CrossRef] - Myroshnychenko, V.; Rodríguez-Fernández, J.; Pastoriza-Santos, I.; Funston, A.M.; Novo, C.; Mulvaney, P.; Liz-Marzán, L.M.; García de Abajo, F.J. Modelling the optical response of gold nanoparticles. Chem. Soc. Rev.
**2008**, 37, 1792–1805. [Google Scholar] [CrossRef] [PubMed] - Choy, T.C. Effective Medium Theory: Principles and Applications; Oxford University Press: New York, NY, USA, 2015. [Google Scholar]
- Markel, V.A. Introduction to the Maxwell Garnett approximation: Tutorial. J. Opt. Soc. Am. A
**2016**, 33, 1244–1256. [Google Scholar] [CrossRef] [PubMed] - Knop, K. Rigorous diffraction theory for transmission phase gratings with deep rectangular grooves. J. Opt. Soc. Am.
**1978**, 68, 1206–1210. [Google Scholar] [CrossRef] - Li, L. Multilayer modal method for diffraction gratings of arbitrary profile, depth, and permittivity: Addendum. J. Opt. Soc. Am. A
**1994**, 11, 1685. [Google Scholar] [CrossRef] - Jackson, J.D. Classical Electrodynamics, 3rd ed.; Wiley: Hoboken, NJ, USA, 1999. [Google Scholar]
- Nadal, E.; Barros, N.; Glénat, H.; Laverdant, J.; Schmool, D.S.; Kachkachi, H. Plasmon-enhanced diffraction in nanoparticle gratings fabricated by in situ photo-reduction of gold chloride doped polymer thin films by laser interference patterning. J. Mater. Chem. C
**2017**, 5, 3553–3560. [Google Scholar] [CrossRef] - Johnson, P.B.; Christy, R.W. Optical Constants of the Noble Metals. Phys. Rev. B
**1972**, 6, 4370–4379. [Google Scholar] [CrossRef] - Derkachova, A.; Kolwas, K.; Demchenko, I. Dielectric Function for Gold in Plasmonics Applications: Size Dependence of Plasmon Resonance Frequencies and Damping Rates for Nanospheres. Plasmonics
**2016**, 11, 941–951. [Google Scholar] [CrossRef] [PubMed] - Ashcroft, N.W.; Mermin, N.D. Solid State Physics; Holt, Rinehart and Winston: New York, NY, USA, 1976. [Google Scholar]
- Lermé, J.; Celep, G.; Broyer, M.; Cottancin, E.; Pellarin, M.; Arbouet, A.; Christofilos, D.; Guillon, C.; Langot, P.; Del Fatti, N.; et al. Effects of confinement on the electron and lattice dynamics in metal nanoparticles. Eur. Phys. J. D At. Mol. Opt. Plasma Phys.
**2005**, 34, 199–204. [Google Scholar] [CrossRef] - Ruppin, R. Evaluation of extended Maxwell-Garnett theories. Opt. Commun.
**2000**, 182, 273–279. [Google Scholar] [CrossRef] - Havel, H.; Fritz, S.; Hilger, A.; Kreibig, U.; Vollmer, M. Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping. Phys. Rev. B
**1993**, 48, 18178–18188. [Google Scholar] [CrossRef] - Hu, M.; Novo, C.; Funston, A.; Wang, H.; Staleva, H.; Zou, S.; Mulvaney, P.; Xia, Y.; Hartland, G.V. Dark-field microscopy studies of single metal nanoparticles: Understanding the factors that influence the linewidth of the localized surface plasmon resonance. J. Mater. Chem.
**2008**, 18, 1949–1960. [Google Scholar] [CrossRef] [PubMed] - Berciaud, S.; Cognet, L.; Tamarat, P.; Lounis, B. Observation of intrinsic size effects in the optical response of individual gold nanoparticles. Nano Lett.
**2005**, 5, 515–518. [Google Scholar] [CrossRef] [PubMed] - Battie, Y.; Resano-Garcia, A.; Chaoui, N.; Zhang, Y.; En Naciri, A. Extended Maxwell-Garnett-Mie formulation applied to size dispersion of metallic nanoparticles embedded in host liquid matrix. J. Chem. Phys.
**2014**, 140, 044705. [Google Scholar] [CrossRef] [PubMed] - Mie, G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys.
**1908**, 330, 377–445. [Google Scholar] [CrossRef] - Yilmaz, E.; Ertas, G.; Bengu, E.; Suzer, S. Photopatterning of PMMA Films with Gold Nanoparticles: Diffusion of AuCl
_{4}^{−}Ions. J. Phys. Chem. C**2010**, 114, 18401–18406. [Google Scholar] [CrossRef] - Ghosh, S.K.; Pal, T. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications. Chem. Rev.
**2007**, 107, 4797–4862. [Google Scholar] [CrossRef] [PubMed] - Lee, Y.H.; Lee, T.K.; Song, I.; Yu, H.; Lee, J.; Ko, H.; Kwak, S.K.; Oh, J.H. Boosting the Performance of Organic Optoelectronic Devices Using Multiple-Patterned Plasmonic Nanostructures. Adv. Mater.
**2016**, 28, 4976–4982. [Google Scholar] [CrossRef] [PubMed]

**Figure 1.**(

**a**) Gold nanoparticle gratings in polymer thin films and (

**b**) modeling of the system by combining the RCWA and the effective medium theory.

**Figure 2.**AFM images of the GNGs (

**a**) and the HFs (

**b**) with gold/polymer ratio of 3 wt %, 5 wt %, and 10 wt %. The surface profiles of the gratings are shown in (

**c**).

**Figure 4.**(

**a**) Histogram and fitted size distribution of the HFs at 5 wt % and 10 wt %; (

**b**) 3D view of typical AFM images of these samples.

**Figure 5.**Comparison between the absorption spectra from experiments (dotted line) and simulations (continuous line) using the MGc model (

**a**) and the MMMGc model (

**b**).

**Figure 6.**(

**a**) Histograms and fitted size distributions of the GNGs at 5 wt % and 10 wt %; (

**b**) 3D view of typical AFM images of these samples.

**Figure 7.**Comparison between the absorption spectra and the diffraction efficiency (DE) spectra measured experimentally and simulated using the MGc model (

**a**,

**b**) and the MMMGc model (

**c**,

**d**).

**Figure 8.**Specific consideration for the GNG at 10 wt %. (

**a**) Parameters for the new modeling approach (M2) and the previous one (M1). (

**b**) Absorption and (

**c**) Diffraction efficiency (DE) spectra of the GNG: comparison between the experimental data and the two models.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Nadal, E.; Barros, N.; Glénat, H.; Kachakachi, H.
Optical Properties of Complex Plasmonic Materials Studied with Extended Effective Medium Theories Combined with Rigorous Coupled Wave Analysis. *Materials* **2018**, *11*, 351.
https://doi.org/10.3390/ma11030351

**AMA Style**

Nadal E, Barros N, Glénat H, Kachakachi H.
Optical Properties of Complex Plasmonic Materials Studied with Extended Effective Medium Theories Combined with Rigorous Coupled Wave Analysis. *Materials*. 2018; 11(3):351.
https://doi.org/10.3390/ma11030351

**Chicago/Turabian Style**

Nadal, Elie, Noémi Barros, Hervé Glénat, and Hamid Kachakachi.
2018. "Optical Properties of Complex Plasmonic Materials Studied with Extended Effective Medium Theories Combined with Rigorous Coupled Wave Analysis" *Materials* 11, no. 3: 351.
https://doi.org/10.3390/ma11030351