Simulation and Analysis of Mechanical Properties of Silica Aerogels: From Rationalization to Prediction
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Preparation
2.2. Characterization
3. Simulation Method
4. Results and Discussion
4.1. Characterization and Modeling
4.2. Compression Behavior
4.3. Scaling Laws of Elastic Modulus and Yield Stress
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kistler, S.S. Coherent Expanded-Aerogels. J. Phys. Chem. 1931, 36, 52–64. [Google Scholar] [CrossRef]
- Bond, G.C.; Flamerz, S. Structure and reactivity of titania-supported oxides. Part 3: Reaction of isopropanol over vanadia-titania catalysts. Appl. Catal. 1987, 33, 219–230. [Google Scholar] [CrossRef]
- Venkateswara Rao, A.; Hegde, N.D.; Hirashima, H. Absorption and desorption of organic liquids in elastic superhydrophobic silica aerogels. J. Colloid Interface Sci. 2007, 305, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Gurav, J.L.; Jung, I.-K.; Park, H.-H.; Kang, E.S.; Nadargi, D.Y. Silica Aerogel: Synthesis and Applications. J. Nanomater. 2010, 2010, 1–11. [Google Scholar] [CrossRef]
- Yan, Z.G. A Review of Aerogels and Their Application as a Multi-functional Building Material. Appl. Mech. Mater. 2012, 253, 564–567. [Google Scholar] [CrossRef]
- Fu, B.; Luo, H.; Wang, F.; Churu, G.; Chu, K.T.; Hanan, J.C.; Sotiriou-Leventis, C.; Leventis, N.; Lu, H. Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. J. Non-Cryst. Solids 2011, 357, 2063–2074. [Google Scholar] [CrossRef]
- Katti, A.; Shimpi, N.; Roy, S.; Lu, H.; Fabrizio, E.F.; Dass, A.; Capadona, L.A.; Leventis, N. Chemical, physical, and mechanical characterization of isocyanate cross-Linked amine-modified silica aerogels. Chem. Mater. 2006, 18, 285–296. [Google Scholar] [CrossRef]
- Feng, J.; Zhang, C.; Feng, J. Carbon fiber reinforced carbon aerogel composites for thermal insulation prepared by soft reinforcement. Mater. Lett. 2012, 67, 266–268. [Google Scholar] [CrossRef]
- Xiao, L.; Grogan, M.D.W.; Leon-Saval, S.G.; Williams, R.; England, R.; Wadsworth, W.J.; Birks, T.A. Tapered fibers embedded in silica aerogel. Opt. Lett. 2009, 34, 2724–2726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baumann, T.F.; Gash, A.E.; Chinn, S.C.; Sawvel, A.M.; Maxwell, R.S.; Satcher, J.H.; Li, L.; National, V.; Box, P.O.; Li, V.; et al. Synthesis of High-Surface-Area Alumina Aerogels without the Use of Alkoxide Precursors. Chem. Mater. 2005, 395–401. [Google Scholar] [CrossRef]
- Ma, H.; Roberts, A.P.; Prevost, J.-H.; Scherer, G.W. Mechanical structure—Property relationship of aerogels. J. Non-Cryst. Solids 2000, 277, 127–141. [Google Scholar] [CrossRef]
- Kieffer, J.; Angell, C.A. Generation of fractal structures by negative pressure rupturing of SiO2 glass. J. Non-Cryst. Solids 1988, 106, 336–342. [Google Scholar] [CrossRef]
- Nakano, A.; Bi, L.; Kalia, R.K.; Vashishta, P. Structural correlations in porous silica: Molecular dynamics simulation on a parallel computer. Phys. Rev. Lett. 1993, 71, 85–88. [Google Scholar] [CrossRef] [PubMed]
- Rimsza, J.M.; Du, J. Structural and mechanical properties of nanoporous silica. J. Am. Ceram. Soc. 2014, 97, 772–781. [Google Scholar] [CrossRef]
- Rivas Murillo, J.S.; Bachlechner, M.E.; Campo, F.A.; Barbero, E.J. Structure and mechanical properties of silica aerogels and xerogels modeled by molecular dynamics simulation. J. Non-Cryst. Solids 2010, 356, 1325–1331. [Google Scholar] [CrossRef]
- Gelb, L.D. Aerogels Handbook; Springer Science & Business Media: Berlin, Germany, 2011; pp. 565–581. ISBN 978-1-4419-7477-8. [Google Scholar]
- Guo, J.; Zhao, X.; Zhu, H.; Zhang, X.; Pan, R. Numerical simulation of interaction of hydraulic fracture and natural fracture based on the cohesive zone finite element method. J. Nat. Gas Sci. Eng. 2015, 25, 180–188. [Google Scholar] [CrossRef]
- Zhu, Q.J.; He, Y.F.; Yin, Y. Finite element analysis of deformation mechanism for porous materials under fluid–solid interaction. Mater. Res. Innov. 2014, 18, S2–S22. [Google Scholar] [CrossRef]
- Sun, Y.T.; Shi, D.Q.; Yang, X.G.; Mi, C.H.; Feng, J.; Jiang, Y.G. Stress state analysis of iosipescu shear specimens for aerogel composite with different properties in tension and compression. Procedia Eng. 2013, 67, 517–524. [Google Scholar] [CrossRef]
- Gersborg-Hansen, A.; Bendsøe, M.P.; Sigmund, O. Topology optimization of heat conduction problems using the finite volume method. Struct. Multidiscip. Optim. 2006, 31, 251–259. [Google Scholar] [CrossRef]
- Jasak, H.; Weller, H.G. Application of the finite volume method and unstructured meshes to linear elasticity. Int. J. Numer. Methods Eng. 2000, 48, 267–287. [Google Scholar] [CrossRef]
- Keilegavlen, E.; Nordbotten, J.M. Finite volume methods for elasticity with weak symmetry. Int. J. Numer. Methods Eng. 2017, 112, 939–962. [Google Scholar] [CrossRef]
- Nordbotten, J.M. Finite volume hydromechanical simulation in porous media. Water Resour. Res. 2014, 50, 4379–4394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, F.; Zhu, J.; Zou, X.; Pang, X.; Yang, R.; Chen, S.; Fang, Y.; Shao, T.; Luo, X.; Zhang, L. Three-dimensional TiO2/SiO2 composite aerogel films via atomic layer deposition with enhanced H2S gas sensing performance. Ceram. Int. 2018, 44, 1078–1085. [Google Scholar] [CrossRef]
- GeoDict. Available online: www.GeoDict.com (accessed on 10 September 2017).
- Zhang, G.; Dass, A.; Rawashdeh, A.M.M.; Thomas, J.; Counsil, J.A.; Sotiriou-Leventis, C.; Fabrizio, E.F.; Ilhan, F.; Vassilaras, P.; Scheiman, D.A.; et al. Isocyanate-crosslinked silica aerogel monoliths: Preparation and characterization. J. Non-Cryst. Solids 2004, 350, 152–164. [Google Scholar] [CrossRef]
- Abràmoff, M.D.; Magalhães, P.J.; Ram, S.J. Image processing with imageJ. Biophotonics Int. 2004, 11, 36–41. [Google Scholar] [CrossRef]
- Karadagli, I.; Schulz, B.; Schestakow, M.; Milow, B.; Gries, T.; Ratke, L. Production of porous cellulose aerogel fibers by an extrusion process. J. Supercrit. Fluids 2015, 106, 105–114. [Google Scholar] [CrossRef]
- Wang, L.; Sánchez-Soto, M. Green bio-based aerogels prepared from recycled cellulose fiber suspensions. RSC Adv. 2015, 5, 31384–31391. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.; Wei, Y.; Chen, S.; Wang, P.; Liu, L. Bio-based graphene/sodium alginate aerogels for strain sensors. RSC Adv. 2016, 6, 64056–64064. [Google Scholar] [CrossRef]
- Gross, J.; Schlief, T.; Fricke, J. Ultrasonic evaluation of elastic properties of silica aerogels. Mater. Sci. Eng. A 1993, 168, 235–238. [Google Scholar] [CrossRef]
- Gross, J.; Reichenauer, G.; Fricke, J. Mechanical properties of SiO2 aerogels. J. Phys. D Appl. Phys. 1988, 21, 1447–1451. [Google Scholar] [CrossRef]
- Groß, J.; Fricke, J. Scaling of elastic properties in highly porous nanostructured aerogels. Nanostruct. Mater. 1995, 6, 905–908. [Google Scholar] [CrossRef]
- Woignier, T.; Reynes, J.; Hafidi Alaoui, A.; Beurroies, I.; Phalippou, J. Different kinds of structure in aerogels: Relationships with the mechanical properties. J. Non-Cryst. Solids 1998, 241, 45–52. [Google Scholar] [CrossRef]
- Woignier, T.; Pelous, J.; Phalippou, J.; Vacher, R.; Courtens, E. Elastic properties of silica aerogels. J. Non-Cryst. Solids 1987, 95, 1197–1202. [Google Scholar] [CrossRef]
- Campbell, T.; Kalia, R.K.; Nakano, A.; Shimojo, F.; Tsuruta, K.; Vashishta, P.; Ogata, S. Structural Correlations and Mechanical Behavior in Nanophase Silica Glasses. Phys. Rev. Lett. 1999, 82, 4018–4021. [Google Scholar] [CrossRef]
- Liu, Q.; Lu, Z.; Zhu, M.; Yuan, Z.; Yang, Z.; Hu, Z.; Li, J. Simulation of the tensile properties of silica aerogels: The effects of cluster structure and primary particle size. Soft Matter 2014, 10, 6266–6277. [Google Scholar] [CrossRef] [PubMed]
PLIG 1 | PAS 1 | Pore Size (nm) | Ligament Diameter (nm) | Particle Size (nm) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean Value | Standard Deviation | Distribution Bound | Mean Value | Standard Deviation | Distribution Bound | Mean Value | Standard Deviation | Distribution Bound | |||
SA-I | 0.1 | 0.04 | 250 | 50 | 100 | 50 | 10 | 20 | 21.72 | 2.87 | 5.74 |
0.2 | 0.08 | 170 | 34 | 68 | 50 | 10 | 20 | 21.72 | 2.87 | 5.74 | |
0.3 | 0.12 | 132 | 26.4 | 52.8 | 50 | 10 | 20 | 21.72 | 2.87 | 5.74 | |
0.4 | 0.16 | 112 | 22.4 | 44.8 | 50 | 10 | 20 | 21.72 | 2.87 | 5.74 | |
0.5 | 0.20 | 95 | 19 | 38 | 50 | 10 | 20 | 21.72 | 2.87 | 5.74 | |
SA-II | 0.1 | 0.04 | 250 | 0 | 0 | 50 | 0 | 0 | 21.72 | 2.87 | 5.74 |
0.2 | 0.08 | 170 | 0 | 0 | 50 | 0 | 0 | 21.72 | 2.87 | 5.74 | |
0.3 | 0.12 | 132 | 0 | 0 | 50 | 0 | 0 | 21.72 | 2.87 | 5.74 | |
0.4 | 0.16 | 112 | 0 | 0 | 50 | 0 | 0 | 21.72 | 2.87 | 5.74 | |
0.5 | 0.20 | 95 | 0 | 0 | 50 | 0 | 0 | 21.72 | 2.87 | 5.74 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, H.; Zheng, X.; Luo, X.; Yi, Y.; Yang, F. Simulation and Analysis of Mechanical Properties of Silica Aerogels: From Rationalization to Prediction. Materials 2018, 11, 214. https://doi.org/10.3390/ma11020214
Ma H, Zheng X, Luo X, Yi Y, Yang F. Simulation and Analysis of Mechanical Properties of Silica Aerogels: From Rationalization to Prediction. Materials. 2018; 11(2):214. https://doi.org/10.3390/ma11020214
Chicago/Turabian StyleMa, Hao, Xiaoyang Zheng, Xuan Luo, Yong Yi, and Fan Yang. 2018. "Simulation and Analysis of Mechanical Properties of Silica Aerogels: From Rationalization to Prediction" Materials 11, no. 2: 214. https://doi.org/10.3390/ma11020214
APA StyleMa, H., Zheng, X., Luo, X., Yi, Y., & Yang, F. (2018). Simulation and Analysis of Mechanical Properties of Silica Aerogels: From Rationalization to Prediction. Materials, 11(2), 214. https://doi.org/10.3390/ma11020214