Application of High-Density Electropulsing to Improve the Performance of Metallic Materials: Mechanisms, Microstructure and Properties
Abstract
:1. Introduction
2. Effects of EPT on Microstructure and Texture
2.1. Recrystallization and Grains Refinement
2.2. Phase Transitions and Grains Refinement
2.3. Formation of Oriented Microstructure and Texture Evolution
3. Effects of EPT on the Properties of Materials
3.1. The EPT-Induced Microstructure-Properties Relationship of Materials
3.1.1. Titanium Alloy
3.1.2. Zinc Alloy
3.1.3. Magnesium Alloy
3.1.4. Iron and Steel
3.2. Effect of EPT on the Corrosion Performance
4. Application of EPT in Crack Healing
5. Theoretical Discussions on the EPT
5.1. Thermal and Athermal Effects
5.2. Accumulation and Annihilation Effects
6. Challenges and Future Outlook
6.1. The Microstructure and Properties
6.2. Applications in the Future
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Guo, J.D.; Wang, X.L.; Dai, W.B. Microstructure evolution in metals induced by high density electric current pulses. Mater. Sci. Technol. 2015, 31, 1545–1554. [Google Scholar] [CrossRef]
- Pai, S.T.; Marton, J.P. Electromigration in metals. Can. J. Phys. 1977, 55, 103–115. [Google Scholar] [CrossRef]
- Misra, A.K. A novel solidification technique of metals and alloys: Under the influence of applied potential. Metall. Trans. 1985, 16A, 1354–1355. [Google Scholar] [CrossRef]
- Troitskii, O.A. Pressure shaping by the application of a high energy. Mater. Sci. Eng. 1985, 75, 37–50. [Google Scholar] [CrossRef]
- Valeev, I.S.; Kamalov, Z.G. Structure evolution in copper resulting from the effect of powerful current pulses. J. Mater. Eng. Perform. 2003, 12, 272–278. [Google Scholar] [CrossRef]
- Zhou, Y.Z.; Zhang, W.; Guo, J.; He, G. Diffusive phase transformation in a Cu–Zn alloy under rapid heating by electropulsing. Philos. Mag. Lett. 2004, 84, 341–348. [Google Scholar] [CrossRef]
- Zhou, Y.Z.; Xiao, S.H.; Guo, J.H. Recrystallized microstructure in cold worked brass produced by electropulsing treatment. Mater. Lett. 2004, 58, 1948–1951. [Google Scholar] [CrossRef]
- Wang, X.L.; Guo, J.D.; Wang, Y.M.; Wu, X.Y.; Wang, B.Q. Segregation of lead in Cu–Zn alloy under electric current pulses. Appl. Phys. Lett. 2006, 89, 061910. [Google Scholar] [CrossRef]
- Zhu, R.F.; Liu, J.N.; Tang, G.Y.; Shi, S.Q.; Fu, M.W. Properties;microstructure and texture evolution of cold rolled Cu strips under electropulsing treatment. J. Alloys Compd. 2012, 544, 203–208. [Google Scholar] [CrossRef]
- Zhu, R.F.; Tang, G.Y.; Shi, S.Q.; Fu, M.W. Microstructure evolution of copper strips with gradient temperature in electropulsing treatment. J. Alloys Compd. 2013, 581, 160–165. [Google Scholar] [CrossRef]
- Song, H.; Wang, Z.J.; He, X.D. Improving in plasticity of orthorhombic TI2AlNb-based alloys sheet by high density electropulsing. Trans. Nonferrous Met. Soc. 2013, 23, 32–37. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, G.Q.; Fu, X.S.; Zhou, W.L. Effect of electropulsing on deformation behavior of Ti-6Al-4V alloy during cold drawing. Trans. Nonferrous Met. Soc. 2014, 24, 1012–1021. [Google Scholar] [CrossRef]
- Xu, Z.; Tang, G.; Ding, F.; Tian, S.; Tian, H. The effect of multiple pulse treatment on the recrystallization behavior of Mg-3Al-1Zn alloy strip. Appl. Phys. A-Mater. 2007, 88, 429–433. [Google Scholar] [CrossRef]
- Xu, Q.; Guan, L.; Jiang, Y.; Tang, G.; Wang, S. Improved plasticity of Mg-Al-Zn alloy by electropulsing tension. Mater. Lett. 2010, 64, 1085–1087. [Google Scholar] [CrossRef]
- Xu, Q.; Tang, G.Y.; Jiang, Y.B. Thermal and electromigration effects of electropulsing on dynamic recrystallization in Mg-3Al-1Zn alloy. Mater. Sci. Eng. A 2011, 528, 4431–4436. [Google Scholar] [CrossRef]
- Cao, F.R.; Xia, F.; Hou, H.L.; Ding, H.; Li, Z.Q. Effects of high-density pulse current on mechanical properties and microstructure in a rolled Mg-9.3Li-1.79Al-1.61Zn alloy. Mater. Sci. Eng. A 2015, 637, 89–97. [Google Scholar] [CrossRef]
- Xu, X.F.; Zhao, Y.G.; Ma, B.D.; Zhang, J.T.; Zhang, M. Rapid grain refinement of 2024 Al alloy through recrystallization induced by electropulsing. Mater. Sci. Eng. A 2014, 612, 223–226. [Google Scholar] [CrossRef]
- Lu, Z.C.; Guo, C.H.; Li, P.; Wang, Z.Q.; Chang, Y.P.; Tang, G.Y.; Jiang, F.C. Effect of electropulsing treatment on microstructure and mechanical properties of intermetallic Al3Ti alloy. J. Alloys Compd. 2017, 708, 834–843. [Google Scholar] [CrossRef]
- Yuan, Y.; Liu, W.; Fu, B.Q.; Xu, H.Y.; Luo, G.N.; Tang, G.Y.; Jiang, Y.B. The effects of electropulsing on the recrystallization behavior of rolled pure tungsten. J. Mater. Res. 2012, 27, 2630–2638. [Google Scholar] [CrossRef]
- Konovalov, S.V.; Atroshkina, A.A.; Ivanov, Y.F.; Gromov, V.E. Evolution of dislocation substructures in fatigue loaded and failed stainless steel with the intermediate electropulsing treatment. Mater. Sci. Eng. A 2010, 527, 3040–3043. [Google Scholar] [CrossRef]
- Qin, R.S.; Samuel, E.I.; Bhowmik, A. Electropulse-induced cementite nanoparticle formation in deformed pearlitic steels. J. Mater. Sci. 2011, 46, 2838–2842. [Google Scholar] [CrossRef]
- Dai, W.; Wang, X.; Zhao, H.; Zhao, X. Effect of ellectric current on microstructural evolution in a cold-rolled 3% si steel. Mater. Trans. 2012, 53, 229–233. [Google Scholar] [CrossRef]
- Elliottbowman, B. Electropulsing of Pearlitic Steels. Ph.D. Thesis, Imperial College London, London, UK, 2005. [Google Scholar]
- Lu, W.J.; Qin, R.S. Influence of κ-carbide interface structure on the formability of lightweight steels. Mater. Des. 2016, 104, 211–216. [Google Scholar] [CrossRef]
- Delville, R.; Malard, B.; Pilch, J.; Sittner, P.; Schryvers, D. Microstructure changes during non-conventional heat treatment of thin Ni-Ti wires by pulsed electric current studied by transmission electron microscopy. Acta Mater. 2010, 58, 4503–4515. [Google Scholar] [CrossRef]
- Zhu, R.F.; Tang, G.Y.; Shi, S.Q.; Fu, M.W. Effect of electroplastic rolling on the ductility and superelasticity of TiNi shape memory alloy. Mater. Des. 2013, 44, 606–611. [Google Scholar] [CrossRef]
- Zhu, R.F.; Tang, G.Y.; Shi, S.Q.; Fu, M.W.; Gromov, V.E. Effect of electropulsing treatment on the microstructure and superelasticity of TiNi alloy. Appl. Phys. A-Mater. 2013, 111, 1195–1201. [Google Scholar] [CrossRef]
- Cao, W.H.; Zhang, J.L.; Shek, C.H. Effects of electropulsing treatment on mechanical properties in Ti rich TiNi shape memory alloy. Mater. Sci. Technol. 2013, 29, 1135–1138. [Google Scholar] [CrossRef]
- Zhu, R.F.; Liu, J.N.; Tang, G.Y.; Shi, S.Q.; Fu, M.W.; Tse, Z.T.H. The improved superelasticity of NiTi alloy via electropulsing treatment for minutes. J. Alloys Compd. 2014, 584, 225–231. [Google Scholar] [CrossRef]
- Lai, Z.H.; Conrad, H.; Teng, G.Q.; Chao, Y.S. Nanocrystallization of amorphous Fe-Si-B alloys using high current density electropulsing. Mater. Sci. Eng. A 2000, 287, 238–247. [Google Scholar] [CrossRef]
- Kim, J.J.; Choi, Y.; Suresh, S.; Argon, A.S. Nanocrystallization during nanoindentation of a bulk amorphous metal alloy at room temperature. Science 2002, 295, 654–657. [Google Scholar] [PubMed]
- Hao, T.; Tanimoto, H.; Mizubayashi, H. Transformation to Nanocrystallites in Amorphous Alloys Induced by Resonant Electropulsing. Mater. Trans. 2005, 46, 2898–2907. [Google Scholar] [CrossRef]
- Hu, G.L.; Tang, G.Y.; Zhu, Y.H.; Shek, C. Electropulsing Induced Texture Evolution in the Recrystallization of Fe-3 Pct Si Alloy Strip. Metall. Mater. Trans. A 2011, 42, 3484–3490. [Google Scholar] [CrossRef]
- Mizubayashi, H.; Takahashi, T.; Nakamoto, K. Nanocrystalline Transformation and Inverse Transformation in Metallic Glasses Induced by Electropulsing. Mater. Trans. 2007, 48, 1665–1670. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.K.; Li, X.H.; Kuang, J.; Li, X.P.; Tang, G.Y. Texture modification of magnesium alloys during electropulse treatment. Mater. Sci. Technol. 2017, 33, 1421–1427. [Google Scholar] [CrossRef]
- Qin, R.S.; Su, S.X. Thermodynamics of crack healing under electropulsing. J. Mater. Res. 2002, 17, 2048–2052. [Google Scholar] [CrossRef]
- Hosoi, A.; Yano, T.; Morita, Y.; Ju, Y. Quantitative evaluation of the displacement distribution and stress intensity factor of fatigue cracks healed by a controlled high-density electric current field. Fatigue Fract. Eng. Mater. Struct. 2014, 37, 1025–1033. [Google Scholar] [CrossRef]
- Troitskiy, O.A.; Baranov, Yu.V. Physical Bases and Technologies of Processing of Modern Materials: Theory, Technology, Structure and Properties, 3rd ed.; Institute of computer researches: Moscow-Izhevsk, Russia, 2004; p. 590. ISBN 5-93972-335-7. [Google Scholar]
- Wang, H.; Chen, L.; Liu, D.; Song, G.; Tang, G. Study on electropulsing assisted turning process for AISi 304 stainless steel. Mater. Sci. Technol. 2015, 31, 1564–1571. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, H.; Sun, Z.; Ye, Y.; Tang, G. Effect of electropulsing-assisted turning process on AISi 5120 cementation steel. Mater. Sci. Technol. 2017, 33, 1454–1460. [Google Scholar] [CrossRef]
- Zhang, X.F.; Lu, W.J.; Qin, R.S. Removal of MnS inclusions in molten steel using electropulsing. Scr. Mater. 2013, 69, 453–456. [Google Scholar] [CrossRef]
- Qin, R.S. Critical Assessment 8: Outstanding issues in electropulsing processing. Mater. Sci. Technol. 2015, 31, 203–206. [Google Scholar] [CrossRef]
- Zhang, X.F.; Qin, R.S. Separation of electrically neutral non-metallic inclusions from molten steel by pulsed electric current. Mater. Sci. Technol. 2017, 33, 1399–1403. [Google Scholar] [CrossRef]
- Gao, L.L.; Liu, J.X.; Cheng, X.W.; Li, S.K.; Luo, Y.M.; Guo, Q.W. Effects of short time electric pulse heat treatment on microstructures and mechanical properties of hot-rolled Ti-6Al-4V alloy. Mater. Sci. Eng. A 2014, 618, 104–111. [Google Scholar] [CrossRef]
- Ivanov, Y.; Alsaraeva, K.; Gromov, V.; Konovalov, S.; Semina, O. Evolution of Al–19⋅4Si alloy surface structure after electron beam treatment and high cycle fatigue. Mater. Sci. Technol. 2015, 31, 1523–1529. [Google Scholar] [CrossRef]
- Ye, X.X.; Liu, T.; Ye, Y.D.; Wang, H.B.; Tang, G.Y.; Song, G.L. Enhanced grain refinement and microhardness of Ti-Al-V alloy by electropulsing ultrasonic shock. J. Alloys Compd. 2015, 621, 66–70. [Google Scholar] [CrossRef]
- Ye, Y.; Li, X.; Kuang, J.; Geng, Y.; Tang, G. Effects of electropulsing assisted ultrasonic impact treatment on welded components. Mater. Sci. Technol. 2015, 31, 1583–1588. [Google Scholar] [CrossRef]
- Du, X.N.; Wang, B.Q.; Guo, J.D. Formation of nanocrystalline surface of a Cu-Zn alloy under electropulsing surface treatment. J. Mater. Res. 2007, 22, 1947–1953. [Google Scholar] [CrossRef]
- Stolyarov, V.V. Electroplastic effect in nanocrystal and amorphous alloys. Inorg. Mater. 2015, 52, 1541–1544. [Google Scholar] [CrossRef]
- Zhu, Y.H.; Jiang, J.; Xiao, Y.K.; Luk, C.M.; Lai, W.E. Electropulsing-induced microstructure evolution and its effect on electrical conductivity of (Bi0.25Sb0.75)2Te3 thin films. Scr. Mater. 2013, 69, 219–222. [Google Scholar] [CrossRef]
- Zhang, W.; Zhao, W.S.; Li, D.X.; Sui, M.L. Martensitic transformation from α-Ti to β-Ti on rapid heating. Appl. Phys. Lett. 2004, 84, 4872–4874. [Google Scholar] [CrossRef]
- Jiang, Y.B.; Tang, G.Y.; Shek, C.; Zhu, Y.H.; Xu, Z.H. On the thermodynamics and kinetics of electropulsing induced dissolution of β-Mg17Al12 phase in an aged Mg-9Al-1Zn alloy. Acta Mater. 2009, 57, 4797–4808. [Google Scholar] [CrossRef]
- Xu, Q.; Tang, G.Y.; Jiang, Y.B.; Hu, G.L.; Zhu, Y.H. Accumulation and annihilation effects of electropulsing on dynamic recrystallization in magnesium alloy. Mater. Sci. Eng. A 2011, 528, 3249–3252. [Google Scholar] [CrossRef]
- Xiao, S.H.; Guo, J.D.; Wu, S.D.; He, G.H.; Li, S.X. Recrystallization in fatigued copper single crystals under electropulsing. Scr. Mater. 2002, 46, 1–6. [Google Scholar] [CrossRef]
- Song, H.; Wang, Z.J. Microcrack healing and local recrystallization in pre-deformed sheet by high density electropulsing. Mater. Sci. Eng. A 2008, 490, 1–6. [Google Scholar] [CrossRef]
- Liu, Y.; Fan, J.; Zhang, H.; Jin, W.; Dong, H.; Xu, B. Recrystallization and microstructure evolution of the rolled Mg-3Al-1Zn alloy strips under electropulsing treatment. J. Alloys Compd. 2015, 622, 229–235. [Google Scholar] [CrossRef]
- Samuel, E.I.; Bhowmik, A.; Qin, R.S. Accelerated spheroidization induced by high intensity electric pulse in a severely deformed eutectoid steel. J. Mater. Res. 2010, 25, 1020–1024. [Google Scholar] [CrossRef]
- Rahnama, A.; Qin, R.S. The effect of electropulsing on the interlamellar spacing and mechanical properties of a hot-rolled 0.14% carbon steel. Mater. Sci. Eng. A 2015, 627, 145–152. [Google Scholar] [CrossRef]
- Lu, W.J.; Zhang, X.F.; Qin, R.S. Stability of precipitates under electropulsing in 316L stainless steel. Mater. Sci. Technol. 2015, 31, 1530–1535. [Google Scholar] [CrossRef]
- Conrad, H. Effects of electric current on solid state phase transformations in metals. Mater. Sci. Eng. A 2000, 287, 227–237. [Google Scholar] [CrossRef]
- Zhu, R.F.; Jiang, Y.B.; Guan, L.; Li, H.L.; Tang, G.Y. Difference in recrystallization between electropulsing-treated and furnace-treated NiTi alloy. J. Alloys Compd. 2016, 658, 548–554. [Google Scholar] [CrossRef]
- Wang, Z.J.; Song, H. Effect of high-density electropulsing on microstructure and mechanical properties of cold-rolled TA15 titanium alloy sheet. J. Alloys Compd. 2009, 470, 522–530. [Google Scholar] [CrossRef]
- Song, H.; Wang, Z.J.; Gao, T.J. Effect of high density electropulsing treatment on formability of TC4 titanium alloy sheet. Trans. Nonferrous Met. Soc. 2007, 17, 87–92. [Google Scholar] [CrossRef]
- Li, X.P.; Li, X.H.; Zhu, J.; Ye, X.X.; Tang, G.Y. Microstructure and texture evolution of cold-rolled Mg-3Al-1Zn alloy by electropulse treatment stimulating recrystallization. Scr. Mater. 2016, 112, 23–27. [Google Scholar] [CrossRef]
- Guan, L.; Tang, G.; Jiang, Y.; Chu, P.K. Texture evolution in cold-rolled AZ31 magnesium alloy during electropulsing treatment. J. Alloys Compd. 2009, 487, 309–313. [Google Scholar] [CrossRef]
- Jiang, Y.B.; Tang, G.Y.; Shek, C.; Liu, W. Microstructure and texture evolution of the cold-rolled AZ91 magnesium alloy strip under electropulsing treatment. J. Alloys Compd. 2011, 509, 4308–4313. [Google Scholar] [CrossRef]
- Jin, W.; Fan, J.F.; Zhang, H.; Liu, Y.; Dong, H.B.; Xu, B.S. Microstructure, mechanical properties and static recrystallization behavior of the rolled ZK60 magnesium alloy sheets processed by electropulsing treatment. J. Alloys Compd. 2015, 646, 1–9. [Google Scholar] [CrossRef]
- Jiang, Y.B.; Guan, L.; Tang, G.Y.; Shek, C.; Zhang, Z.H. Influence of electropulsing treatment on microstructure and mechanical properties of cold-rolled Mg-9Al-1Zn alloy strip. Mater. Sci. Eng. A 2011, 528, 5627–5635. [Google Scholar] [CrossRef]
- Jiang, Y.B.; Tang, G.Y.; Shek, C.; Xie, J.X.; Xu, Z.H.; Zhang, Z.H. Mechanism of electropulsing induced recrystallization in a cold-rolled Mg-9Al-1Zn alloy. J. Alloys Compd. 2012, 536, 94–105. [Google Scholar] [CrossRef]
- Ma, B.D.; Zhao, Y.G.; Ma, J.; Guo, H.C.; Yang, Q. Formation of local nanocrystalline structure in a boron steel induced by electropulsing. J. Alloys Compd. 2013, 549, 77–81. [Google Scholar] [CrossRef]
- Qin, R.S.; Rahnama, A.; Lu, W.J.; Zhang, X.F.; Elliott-Bowman, B. Electropulsed steels. Mater. Sci. Technol. 2014, 30, 1040–1044. [Google Scholar] [CrossRef]
- Lu, W.J.; Qin, R.S. Effects of Electropulsing on the Microstructure Evolution of 316L Stainless Steel. Adv. Mater. Res. 2014, 922, 441–445. [Google Scholar] [CrossRef]
- Zhang, W.; Sui, M.L.; Zhou, Y.Z. Electropusing-induced evolution of microstructures in materials. Acta Metall. Sin. 2003, 39, 1009–1018. [Google Scholar]
- Dolinsky, Y.; Elperin, T. Thermodynamics of phase transitions in current-carrying conductors. Phys. Rev. B Condens. Matter 1993, 47, 14778–14785. [Google Scholar] [CrossRef] [PubMed]
- Klinger, L.M.; Levin, L.; Srolovitz, D.J. Interface diffusion under an electric field. Interface evolution. Mater. Sci. Forum 1996, 207–209, 109–112. [Google Scholar] [CrossRef]
- Lu, W.J.; Zhang, X.F.; Qin, R.S. Electropulsing-induced strengthening of steel at high temperature. Philos. Mag. Lett. 2014, 94, 688–695. [Google Scholar] [CrossRef]
- Zhou, Y.Z.; Zhang, W.; Wang, B.Q.; He, G.H.; Guo, J.D. Grain refinement and formation of ultrafine-grained microstructure in a low-carbon steel under electropulsing. J. Mater. Res. 2002, 17, 2105–2111. [Google Scholar] [CrossRef]
- Zhou, Y.Z.; Zhang, W.; Sui, M.L.; Li, D.X.; He, G.H.; Guo, J.D. Formation of a nanostructure in a low-carbon steel under high current density electropulsing. J. Mater. Res. 2002, 17, 921–924. [Google Scholar] [CrossRef]
- Zhou, Y.Z.; Zhang, W.; Wang, B.Q.; Guo, J.D. Ultrafine-grained microstructure in a Cu-Zn alloy produced by electropulsing treatment. J. Mater. Res. 2003, 18, 1991–1997. [Google Scholar] [CrossRef]
- Ye, X.X.; Tse, Z.T.H.; Tang, G.Y.; Song, G.L. Effect of High-Energy Electropulsing on the Phase Transition and Mechanical Properties of Two-Phase Titanium Alloy Strips. Adv. Eng. Mater. 2015, 17, 995–1007. [Google Scholar] [CrossRef]
- Zhou, Y.Z.; Guo, J.D.; Zhang, W.; He, G.H. Influence of electropulsing on nucleation during phase transformation. J. Mater. Res. 2002, 17, 3012–3014. [Google Scholar] [CrossRef]
- Song, H.; Wang, Z.J. Grain refinement by means of phase transformation and recrystallization induced by electropulsing. Trans. Nonferrous Met. Soc. 2011, 21, s353–s357. [Google Scholar] [CrossRef]
- To, S.; Zhu, Y.H.; Lee, W.B.; Tang, G.Y.; Liu, X.M.; Jiang, Y.B. Effects of Dynamic Electropulsing on Phase Transformation of a Zn-Al Based Alloy. Mater. Trans. 2009, 50, 1105–1112. [Google Scholar] [CrossRef]
- To, S.; Zhu, Y.H.; Lee, W.B.; Liu, X.M.; Jiang, Y.B.; Tang, G.Y. Effects of current density on electropulsing-induced phase transformations in a Zn–Al based alloy. Appl. Phys. A-Mater. 2009, 96, 939–944. [Google Scholar] [CrossRef]
- Zhu, Y.H.; To, S.; Lee, W.B.; Liu, X.; Jiang, Y.; Tang, G. Electropulsing-induced phase transformations in a Zn–Al-based alloy. J. Mater. Res. 2011, 24, 2661–2669. [Google Scholar] [CrossRef]
- Zhu, Y.H.; To, S.; Lee, W.B.; Liu, X.M.; Jiang, Y.B.; Tang, G.Y. Effects of dynamic electropulsing on microstructure and elongation of a Zn-Al alloy. Mater. Sci. Eng. A 2009, 501, 125–132. [Google Scholar] [CrossRef]
- Jiang, Y.B.; Guan, L.; Tang, G.Y.; Zhang, Z.H. Improved mechanical properties of Mg-9Al-1Zn alloy by the combination of aging, cold-rolling and electropulsing treatment. J. Alloys Compd. 2015, 626, 297–303. [Google Scholar] [CrossRef]
- Jeong, H.J.; Kim, M.J.; Park, J.W.; Yim, C.D.; Kim, J.J.; Kwon, O.D.; Madakashira, P.P.; Han, H.N. Effect of pulsed electric current on dissolution of Mg17Al12 phases in as-extruded AZ91 magnesium alloy. Mater. Sci. Eng. A 2017, 684, 668–676. [Google Scholar] [CrossRef]
- Lin, S.X.; Chu, X.R.; Bao, W.K.; Gao, J.; Ruan, L.Q. Experimental investigation of pulse current on mechanical behaviour of AZ31 alloy. Mater. Sci. Technol. 2014, 31, 1131–1138. [Google Scholar] [CrossRef]
- Lu, W.J. Phase Stability in Steels under Electropulsing. Ph.D. Thesis, Imperial College London, London, UK, 2015. [Google Scholar]
- Rahnama, A.; Qin, R.S. Room temperature texturing of austenite/ferrite steel by electropulsing. Sci. Rep.-UK 2017, 7, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Dai, W.; Ma, C.; Zhao, X. Effect of electric current direction on recrystallization rate and texture of a Cu-Zn alloy. J. Mater. Res. 2014, 29, 294. [Google Scholar] [CrossRef]
- Rahnama, A.; Qin, R.S. Electropulse-induced microstructural evolution in a ferritic-pearlitic 0.14% C steel. Scr. Mater. 2015, 96, 17–20. [Google Scholar] [CrossRef]
- Qin, R.S.; Luo, Y.K.; Elliott-Bowman, B.; Omoigiade, O. Fabrication of nanostructured pearlite steel wires using electropulsing. Mater. Sci. Technol. 2017, 14, 1–6. [Google Scholar] [CrossRef]
- Tskhondiya, G.A.; Beklemishev, N.N. Simulating the effect of a high density electric current pulse on the stress field during plastic deformation. Int. J. Mater. Form. 2012, 5, 157–162. [Google Scholar] [CrossRef]
- Li, D.; Yu, E. Computation method of metal’s flow stress for electroplastic effect. Mater. Sci. Eng. A 2009, 505, 62–64. [Google Scholar] [CrossRef]
- Magargee, J.; Morestin, F.; Cao, J. Characterization of flow stress for commercially pure titanium subjected to electrically assisted deformation. J. Eng. Mater.-Technol. ASME 2013, 135, 215. [Google Scholar] [CrossRef]
- Song, H.; Wang, Z.J. Improvement of mechanical properties of cold-rolled commercially pure Ti sheet by high density electropulsing. Trans. Nonferrous Met. Soc. 2012, 22, 1350–1355. [Google Scholar] [CrossRef]
- Premkumar, M.; Himabindu, V.S.; Banumathy, S.; Bhattacharjee, A.; Singh, A.K. Effect of mode of deformation by rolling on texture evolution and yield locus anisotropy in a multifunctional beta titanium alloy. Mater. Sci. Eng. A 2012, 552, 15–23. [Google Scholar] [CrossRef]
- Gurao, N.P.; Sethuraman, S.; Suwas, S. Evolution of texture and microstructure in commercially pure titanium with change in strain path during rolling. Metall. Mater. Trans. A 2013, 44A, 1497–1507. [Google Scholar] [CrossRef]
- Ye, X.X.; Yang, Y.Y.; Song, G.L.; Tang, G.Y. Enhancement of ductility, weakening of anisotropy behavior and local recrystallization in cold-rolled Ti-6Al-4V alloy strips by high-density electropulsing treatment. Appl. Phys. A-Mater. Sci. Process. 2014, 117, 2251–2264. [Google Scholar] [CrossRef]
- To, S.; Zhu, Y.H.; Lee, W.B.; Liu, X.M.; Jiang, Y.B. Effects of Current Density on Elongation of an Electropulsing Treated Zn-Al Based Alloy. Mater. Trans. 2009, 50, 2772–2777. [Google Scholar] [CrossRef]
- Li, C.; Zhang, K.F.; Jiang, S.S.; Zhao, Z.P. Pulse current auxiliary bulging and deformation mechanism of AZ31 magnesium alloy. Mater. Des. 2012, 34, 170–178. [Google Scholar] [CrossRef]
- Jin, W.; Fan, J.; Zhang, H.; Liu, Y.; Dong, H.; Xu, B. Influence of Electropulsing Treatment on Microstructure Evolution and Properties of ZK60 Alloy Sheets. Rare Met. Mater. Eng. 2016, 45, 2677–2682. [Google Scholar]
- Bao, W.K.; Chu, X.R.; Lin, S.X.; Gao, J. Experimental investigation on formability and microstructure of AZ31B alloy in electropulse-assisted incremental forming. Mater. Des. 2015, 87, 632–639. [Google Scholar] [CrossRef]
- Bao, W.; Chu, X.; Lin, S.; Gao, J. Electro-plastic effect on tensile deformation behaviour and microstructural mechanism of AZ31B alloy. Mater. Sci. Technol. 2016, 33, 836–845. [Google Scholar] [CrossRef]
- Li, X.; Wang, F.; Li, X.; Tang, G.; Zhu, J. Improvement of formability of Mg-3Al-1Zn alloy strip by electroplastic-differential speed rolling. Mater. Sci. Eng. A-Str. 2014, 618, 500–504. [Google Scholar] [CrossRef]
- Kuang, J.; Li, X.; Zhang, R.; Ye, Y.; Luo, A.A.; Tang, G. Enhanced rollability of Mg-3Al-1Zn alloy by pulsed electric current: A comparative study. Mater. Des. 2016, 100, 204–216. [Google Scholar] [CrossRef]
- Kuang, J.; Du, X.; Li, X.; Yang, Y.; Luo, A.A.; Tang, G. Athermal influence of pulsed electric current on the twinning behavior of Mg-3Al-1Zn alloy during rolling. Scr. Mater. 2016, 114, 151–155. [Google Scholar] [CrossRef]
- Kuang, J.; Li, X.; Ye, X.; Tang, J.; Liu, H.; Wang, J.; Tang, G. Microstructure and texture evolution of magnesium alloys during electropulse treatment. Metall. Mater. Trans. A 2015, 46A, 1789–1804. [Google Scholar] [CrossRef]
- Basu, I.; Al-Samman, T. Twin recrystallization mechanisms in magnesium-rare earth alloys. Acta Mater. 2015, 96, 111–132. [Google Scholar] [CrossRef]
- Guan, L.; Tang, G.Y.; Chu, P.K.; Jiang, Y.B. Enhancement of ductility in Mg-3Al-1Zn alloy with tilted basal texture by electropulsing. J. Mater. Res. 2009, 24, 3674–3679. [Google Scholar] [CrossRef]
- Chun, X.U.; Ya-Nan, L.I.; Rao, X.H. Effect of electropulsing rolling on mechanical properties and microstructure of AZ31 magnesium alloy. Trans. Nonferrous Met. Soc. 2014, 24, 3777–3784. [Google Scholar]
- Chu, X.R.; Lin, S.X.; Yue, Z.M.; Gao, J.; Zhang, C.S. Research of initial dynamic recrystallisation for AZ31 alloy with pulse current. Mater. Sci. Technol. 2015, 31, 1601–1606. [Google Scholar] [CrossRef]
- Lu, W.J.; Qin, R.S. Stability of martensite with pulsed electric current in dual-phase steels. Mater. Sci. Eng. A 2016, 677, 252–258. [Google Scholar] [CrossRef]
- Tang, Y.; Hosoi, A.; Morita, Y.; Ju, Y. Restoration of fatigue damage in stainless steel by high-density electric current. Int. J. Fatigue 2013, 56, 69–74. [Google Scholar] [CrossRef]
- Lesiuk, G.; Zimniak, Z.; Wiśniewski, W.; Correia, J.A.F.O. Fatigue lifetime improvement in AISI 304 stainless steel due to high-density electropulsing. Procedia Struct. Integr. 2017, 5, 928–934. [Google Scholar] [CrossRef]
- Long, X.; Guo, X.N.; Shen, Y.F.; He, G.H.; Zhou, B.L. Influence of High-density single electeopulse on corrosion behavior of H62 Brass. Mater. Prot. 2001, 34, 1–3. [Google Scholar]
- Xiao, S.H.; Han, E.H.; Guo, J.D. Effect of high current density electropulsing on the corrosion resistance of X70 pipeline steel. Chin. J. Mater. Res. 2006, 20, 1–4. [Google Scholar]
- Wang, S.N.; Tang, G.Y.; Xu, Z.H.; Guan, L. High Energy Electric Pulse Treatment on Corrosion Performance of Magnesium Alloys. Rare Met. Mater. Eng. 2010, 39, 1997–2002. [Google Scholar]
- Lu, L.; Shen, Y.; Chen, X.; Qian, L.; Lu, K. Ultrahigh strength and high electrical conductivity in copper. Science 2004, 304, 422–426. [Google Scholar] [CrossRef] [PubMed]
- Randle, V. Twinning-related grain boundary engineering. Acta Mater. 2004, 52, 4067–4081. [Google Scholar] [CrossRef]
- Konkova, T.; Valeev, I.; Mironov, S.; Korznikov, A.; Korznikova, G.; Myshlyaev, M.M.; Semiatin, S.L. Microstructure response of cryogenically-rolled Cu-30Zn brass to electric-current pulsing. J. Alloys Compd. 2016, 659, 184–192. [Google Scholar] [CrossRef] [Green Version]
- Ye, X.X.; Li, X.P.; Song, G.L.; Tang, G.Y. Effect of recovering damage and improving microstructure in the titanium alloy strip under high-energy electropulses. J. Alloys Compd. 2014, 616, 173–183. [Google Scholar] [CrossRef]
- Yu, T.; Deng, D.; Wang, G.; Zhang, H. Crack healing in SUS304 stainless steel by electropulsing treatment. J. Clean. Prod. 2016, 113, 989–994. [Google Scholar] [CrossRef]
- Zhou, Y.; Guo, J.; Gao, M.; He, G. Crack healing in a steel by using electropulsing technique. Mater. Lett. 2004, 58, 1732–1736. [Google Scholar] [CrossRef]
- Hosoi, A.; Kishi, T.; Ju, Y. Healing of Fatigue Crack by High-Density Electropulsing in Austenitic Stainless Steel Treated with the Surface-Activated Pre-Coating. Materials 2013, 6, 4213–4225. [Google Scholar] [CrossRef] [PubMed]
- Hosoi, A.; Nagahama, T.; Ju, Y. Fatigue crack healing by a controlled high density electric current field. Mater. Sci. Eng. A 2012, 533, 38–42. [Google Scholar] [CrossRef]
- Qiao, S.R.; Li, Y.L.; Li, Y.; Zhang, C.Y. Damage Healing of Aluminum Alloys by D. C. Electropulsing and Evaluation by Resistance. Rare Met. Mater. Eng. 2009, 38, 570–573. [Google Scholar]
- Guan, L.; Tang, G.Y.; Chu, P.K. Recent advances and challenges in electroplastic manufacturing processing of metals. J. Mater. Res. 2010, 25, 1215–1224. [Google Scholar] [CrossRef]
- Zhou, Y.Z.; Qin, R.S.; Xiao, S.H. Reversing effect of electropulsing on damage of 1045 steel. J. Mater. Res. 2000, 15, 1056–1061. [Google Scholar] [CrossRef]
- Zhu, R.F.; Tang, G.Y. The improved plasticity of NiTi alloy via electropulsing in rolling. Mater. Sci. Technol. 2017, 33, 546–551. [Google Scholar] [CrossRef]
- Liu, K.; Dong, X.; Xie, H.; Peng, F. Effect of pulsed current on the deformation behavior of AZ31B magnesium alloy. Mater. Sci. Eng. A 2015, 623, 97–103. [Google Scholar] [CrossRef]
- Xie, H.Y.; Wang, Q.; Liu, K.; Peng, F.; Dong, X.H.; Wang, J.F. Investigation of influence of direct-current pulses on spring back during V-bending of AZ31B magnesium alloy sheet. J. Mater. Process. Technol. 2015, 219, 321–327. [Google Scholar] [CrossRef]
- Xie, H.Y.; Wang, Q.; Peng, F.; Liu, K.; Dong, X.H.; Wang, J.F. Electroplastic effect in AZ31B magnesium alloy sheet through uniaxial tensile tests. Trans. Nonferrous Met. Soc. 2015, 25, 2686–2692. [Google Scholar] [CrossRef]
- Hu, G.L.; Zhu, Y.H.; Tang, G.Y.; Shek, C.H.; Liu, J.A. Effect of Electropulsing on Recrystallization and Mechanical Properties of Silicon Steel Strips. J. Mater. Sci. Technol. 2011, 27, 1034–1038. [Google Scholar] [CrossRef]
- Ye, X.X.; Kuang, J.; Li, X.P.; Tang, G.Y. Microstructure;properties and temperature evolution of electro-pulsing treated functionally graded Ti-6Al-4V alloy strip. J. Alloys Compd. 2014, 599, 1–9. [Google Scholar] [CrossRef]
- Liu, Z.; Deng, X.; Wang, Y. Effects of electric current pulse on the dynamics of dynamic recrystallization in 2091 Al-Li alloy. Chin. J. Mater. Res. 2001, 15, 358–366. [Google Scholar]
- Xiao, S.H.; Guo, J.D.; Li, S.X. The effect of electropulsing on dislocation structures in [233] coplanar double-slip-oriented fatigued copper single crystals. Philos. Mag. Lett. 2002, 82, 617–622. [Google Scholar] [CrossRef]
- Song, H.; Wang, Z.J. Effect of electropulsing on dislocation mobility of titanium sheet. Trans. Nonferrous Met. Soc. 2012, 22, 1599–1605. [Google Scholar] [CrossRef]
- Gan, J.A.; Berndt, C.C. Nanocomposite coatings: Thermal spray processing;microstructure and performance. Int. Mater. Rev. 2015, 60, 195–244. [Google Scholar] [CrossRef]
- Zhang, D.; To, S.; Zhu, Y.H.; Wang, H.; Tang, G.Y. Static Electropulsing-Induced Microstructural Changes and Their Effect on the Ultra-Precision Machining of Cold-Rolled AZ91 Alloy. Metall. Mater. Trans. A 2012, 43, 1341–1346. [Google Scholar] [CrossRef]
- Liao, H.M.; Tang, G.Y.; Jiang, Y.B.; Xu, Q.; Sun, S.D.; Liu, J.N. Effect of thermo-electropulsing rolling on mechanical properties and microstructure of AZ31 magnesium alloy. Mater. Sci. Eng. A 2011, 529, 138–142. [Google Scholar] [CrossRef]
- Wu, G.; Chan, K.C.; Zhu, L.; Sun, L.; Lu, J. Dual-phase nanostructuring as a route to high-strength magnesium alloys. Nature 2017, 545, 80. [Google Scholar] [CrossRef] [PubMed]
- Lou, Y.; Wu, H. Improving machinability of titanium alloy by electro-pulsing treatment in ultra-precision machining. Int. J. Adv. Manuf. Technol. 2017, 93, 2299–2304. [Google Scholar] [CrossRef]
- Kim, M.J.; Lee, K.; Oh, K.H.; Choi, I.S.; Yu, H.H.; Hong, S.T.; Han, H.N. Electric current-induced annealing during uniaxial tension of aluminum alloy. Scr. Mater. 2014, 75, 58–61. [Google Scholar] [CrossRef]
- Sanchez Egea, A.J.; Gonzalez Rojas, H.A.; Celentano, D.J.; Antonio Travieso-Rodriguez, J.; Lluma i Fuentes, J. Electroplasticity-assisted bottom bending process. J. Mater. Process. Technol. 2014, 214, 2261–2267. [Google Scholar] [CrossRef]
- Sanchez Egea, A.J.; Gonzalez Rojas, H.A.; Montilla Montana, C.A.; Kallewaard Echeverri, V. Effect of electroplastic cutting on the manufacturing process and surface properties. J. Mater. Process. Technol. 2015, 222, 327–334. [Google Scholar] [CrossRef]
- Miao, D.; Zhao, H.; Li, A.; Shang, S. A novel rapid electropulsing treatment on AZO thin ceramic films. Ceram. Int. 2015, 41, 8235–8240. [Google Scholar] [CrossRef]
- Wang, H.B.; Song, G.L.; Tang, G.Y. Evolution of surface mechanical properties and microstructure of Ti-6Al-4V alloy induced by electropulsing-assisted ultrasonic surface rolling process. J. Alloys Compd. 2016, 681, 146–156. [Google Scholar] [CrossRef]
- Wang, H.B.; Song, G.L.; Tang, G.Y. Effect of electropulsing on surface mechanical properties and microstructure of AISI 304 stainless steel during ultrasonic surface rolling process. Mater. Sci. Eng. A 2016, 662, 456–467. [Google Scholar] [CrossRef]
- Ye, X.; Tse, Z.T.H.; Tang, G.; Li, X.; Song, G. Effect of electropulsing treatment on microstructure and mechanical properties of cold-rolled pure titanium strips. J. Mater. Process. Technol. 2015, 222, 27–32. [Google Scholar] [CrossRef]
- Vinogradov, A.; Lazarev, S.G.; Mozgovoi, A.L.; Hashimoto, S. Surface treatment of metals by high-power electric current pulses. Philos. Mag. Lett. 2004, 84, 575–585. [Google Scholar] [CrossRef]
- Vinogradov, A.; Lazarev, S.G.; Mozgovoi, A.L.; Gornostai-Polskii, S.A.; Okumura, R.; Hashimoto, S. Surface amorphization in conductors by using skin effect: Model and experiment. J. Appl. Phys. 2007, 101. [Google Scholar] [CrossRef]
Sample State | Ultimate Tensile Strength (MPa) | Yield Strength (MPa) | Tensile Elongation (%) | Ref. | |
---|---|---|---|---|---|
TA15 sheet | cold-rolled | 1175 | - | 7.2 | [62] |
electropulsed | 1100 | - | 13.9 | ||
increase by (%) | −6 | - | +93 | ||
TC4 sheet | annealed | 1033 | 936 | 15.6 | [63] |
electropulsed | 947 | 750 | 23.18 | ||
increase by (%) | −8.3 | −19.8 | +48.6 | ||
TA1-A CP-Ti sheet | annealed | 300 | 210 | 40 | [98] |
electropulsed | 400 | 300 | 31.5 | ||
increase by (%) | +33 | +43 | −21 |
Sample State | Peak Current Density (A/mm2) | Ultimate Tensile Strength (MPa) | Tensile Elongation (%) | Ref. | |
---|---|---|---|---|---|
ZA22 sheet | non-EPT | - | 298 | 4.5 | [86] |
EPT | 8.13 | 272 | 6.4 | ||
12.32 | 300 | 8.5 | |||
15.75 | 260 * | 5.5 | |||
21.21 | 275 | 6.4 |
Sample State | Hardness (HV) | Ultimate Tensile Strength (MPa) | Yield Strength (MPa) | Tensile Elongation (%) | Refs. | |
---|---|---|---|---|---|---|
ZK60 sheet | cold rolled | 848 | 210 | — | 15.7 | [67,104] |
Electropulsed | 728 | 320 | — | 30 | ||
increase by% | −14.15 | +52.4 | — | +91 | ||
AZ91 strip | cold rolled | — | 330 | 245 | 16.2 | [87] |
Electropulsed | — | 362~370 | 270 | 27.6~28.4 | ||
increase by% | — | +11~12 | +10 | +70~75 | ||
AZ31 strip | cold rolled | — | 315 * | 280 * | 10 | [112,113] |
Electropulsed | — | 295~262 * | 265~185 * | 29~43 | ||
increase by% | — | −6~18 | −5~34 * | +190~330 |
Sample State | Ultimate Tensile Strength (MPa) | Yield Strength (MPa) | Tensile Elongation (%) | Vickers Hardness (HV) | Ref. | |
---|---|---|---|---|---|---|
TRIP sheet | hot rolled | 700 * | 570 * | 23 * | 230 * | [58] |
electropulsed | 630 * | 480 * | 26 * | 180 * | ||
increase by (%) | −0 | −15.79 | +13.04 | −21.74 | ||
Low-carbon steel sheet | annealed | 580 | — | 40 | 179 | [77] |
electropulsed | 1040 | — | 45 | 325 | ||
increase by (%) | +79 | — | +13 | +82 | ||
DP600 sheet | cold rolled | 1034.25 | 773.26 | 3.31 | 301 ± 8 | [115] |
electropulsed | 1126.33 | 1074.66 | 3.12 | 364 ± 12 | ||
increase by (%) | +8.90 | +38.98 | −5.74 | +20.9 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheng, Y.; Hua, Y.; Wang, X.; Zhao, X.; Chen, L.; Zhou, H.; Wang, J.; Berndt, C.C.; Li, W. Application of High-Density Electropulsing to Improve the Performance of Metallic Materials: Mechanisms, Microstructure and Properties. Materials 2018, 11, 185. https://doi.org/10.3390/ma11020185
Sheng Y, Hua Y, Wang X, Zhao X, Chen L, Zhou H, Wang J, Berndt CC, Li W. Application of High-Density Electropulsing to Improve the Performance of Metallic Materials: Mechanisms, Microstructure and Properties. Materials. 2018; 11(2):185. https://doi.org/10.3390/ma11020185
Chicago/Turabian StyleSheng, Yinying, Youlu Hua, Xiaojian Wang, Xueyang Zhao, Lianxi Chen, Hanyu Zhou, James Wang, Christopher C. Berndt, and Wei Li. 2018. "Application of High-Density Electropulsing to Improve the Performance of Metallic Materials: Mechanisms, Microstructure and Properties" Materials 11, no. 2: 185. https://doi.org/10.3390/ma11020185
APA StyleSheng, Y., Hua, Y., Wang, X., Zhao, X., Chen, L., Zhou, H., Wang, J., Berndt, C. C., & Li, W. (2018). Application of High-Density Electropulsing to Improve the Performance of Metallic Materials: Mechanisms, Microstructure and Properties. Materials, 11(2), 185. https://doi.org/10.3390/ma11020185