Effects of Si Content and Ca Addition on Thermal Conductivity of As-Cast Mg–Si Alloys
Abstract
:1. Introduction
2. Experimental Procedures
3. Results and Discussion
3.1. Microstructure and Thermal Conductivity of Mg–Si Binary Alloys
3.2. Modification Effect of Ca on Mg-4Si Alloy and Its Effect on Thermal Conductivity
4. Conclusions
- (1)
- The TC of Mg–Si binary alloys with different Si content is systematically studied for the first time. When the Si content increases, the TC of Mg–Si binary alloys decreases gradually, but there is a slight increase at the eutectic composition, which originates from the formation of a small amount of primary Mg2Si phase that reduces the amount of eutectic Mg2Si phase.
- (2)
- The TC of the as-cast Mg-1%Si alloy is 124.7 W/(m·K). The TC of the Mg-1%Si binary alloy is lower than that of the Mg-1%Zn binary alloy, but it is better than the Mg-0.9%Al binary alloy. It is mainly because of the lower solid solubility of Si in Mg, and the formation of more phase interfaces than in the Zn case.
- (3)
- The addition of Ca has an obvious modification effect on Mg2Si phase. With the addition of Ca, the morphology of primary Mg2Si phase changes from coarse dendritic to small polygonal particles, and the distribution of the eutectic Mg2Si phase becomes discontinuous.
- (4)
- With the increment of Ca content, the TC of Mg–4Si–yCa alloys decreases gradually. When the Ca content is 0.8 wt.%, the TC of the alloy is obviously improved. This is due to the formation of the CaMgSi phase, which consumes the Ca and Si elements in the α–Mg matrix and releases the lattice distortion of the matrix. When further increasing the Ca content, the excess Ca element solves into the α–Mg matrix, which causes the TC of the alloy to decrease again.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fang, X.G.; Lü, S.L.; Zhao, L.; Wang, J.; Liu, L.F.; Wu, S.S. Microstructure and mechanical properties of a novel Mg-RE-Zn-Y alloy fabricated by rheo-squeeze casting. Mater. Des. 2016, 94, 353–359. [Google Scholar] [CrossRef]
- Fang, X.G.; Wu, S.S.; Lü, S.L.; Wang, J.; Yang, X. Microstructure evolution and mechanical properties of quasicrystal-reinforced Mg-Zn-Y alloy subjected to ultrasonic vibration. Mater. Sci. Eng. A 2017, 679, 372–378. [Google Scholar] [CrossRef]
- Yang, X.; Wu, S.S.; Lü, S.L.; Hao, L.Y.; Fang, X.G. Effects of Ni levels on microstructure and mechanical properties of Mg-Ni-Y alloy reinforced with LPSO structure. J. Alloys Compd. 2017, 726, 276–283. [Google Scholar] [CrossRef]
- Terry, T. Thermal Conductivity: Theory, Properties, and Applications; Plenum Press: New York, NY, USA, 2004; pp. 3–9. [Google Scholar]
- Ho, C.Y.; Powell, R.W.; Liley, P.E. Thermal conductivity of the elements: A comprehensive review. J. Phys. Chem. Ref. Data 1974, 3, 11–18. [Google Scholar]
- Ying, T.; Zheng, M.Y.; Li, Z.T.; Qiao, X.G.; Xu, S.W. Thermal conductivity of as-cast and as-extruded binary Mg–Zn alloys. J. Alloys Compd. 2015, 621, 250–255. [Google Scholar] [CrossRef]
- Ying, T.; Zheng, M.Y.; Li, Z.T.; Qiao, X.G. Thermal conductivity of as-cast and as-extruded binary Mg–Al alloys. J. Alloys Compd. 2014, 608, 19–24. [Google Scholar] [CrossRef]
- Zhong, L.P.; Peng, J.; Sun, S.; Wang, Y.J.; Lu, Y.; Pan, F.S. Microstructure and thermal conductivity of as-cast and as-solutionized Mg–Rare Earth binary alloys. J. Mater. Sci. Technol. 2017, 33, 1240–1248. [Google Scholar] [CrossRef]
- Peng, J.; Zhong, L.P.; Wang, Y.J.; Yang, J.; Lu, Y.; Pan, F.S. Effect of Ce addition on thermal conductivity of Mg-2Zn-1Mn alloy. J. Alloys Compd. 2015, 639, 556–562. [Google Scholar] [CrossRef]
- Yuan, J.W.; Zhang, K.; Zhang, X.H.; Li, X.G.; Li, T.; Li, Y.J.; Ma, M.L.; Shi, G.L. Thermal characteristics of Mg-Zn-Mn alloys with high specific strength and high thermal conductivity. J. Alloys Compd. 2013, 578, 32–36. [Google Scholar] [CrossRef]
- Li, B.C.; Hou, L.G.; Wu, R.Z.; Zhang, J.H.; Li, X.L.; Zhang, M.L.; Dong, A.P.; Sun, B.D. Microstructure and thermal conductivity of Mg-2Zn-Zr alloy. J. Alloys Compd. 2017, 722, 772–777. [Google Scholar] [CrossRef]
- Rudajevová, A.; Stanek, M.; Lukac, P. Determination of thermal diffusivity and thermal conductivity of Mg-Al alloys. Mater. Sci. Eng. A 2003, 341, 152–157. [Google Scholar] [CrossRef]
- Rzychońa, T.; Kiełbusb, A. The Influence of rare earth, strontium and calcium on the thermal diffusivity of Mg-Al alloys. Defect Diffus. Forum 2011, 312, 824–829. [Google Scholar] [CrossRef]
- Wang, C.M.; Cui, Z.M.; Liu, H.M.; Chen, Y.G.; Ding, W.C.; Xiao, S.F. Electrical and thermal conductivity in Mg–5Sn Alloy at different aging status. Mater. Des. 2015, 84, 48–52. [Google Scholar] [CrossRef]
- Wang, C.M.; Chen, Y.G.; Xiao, S.F.; Ding, W.C.; Liu, X. Thermal conductivity and mechanical properties of as-cast Mg-3Zn-(0.5∼3.5)Sn alloys. Rare Met. Mater. Eng. 2013, 42, 2019–2022. [Google Scholar]
- Cong, M.Q.; Li, Z.Q.; Liu, J.S.; Yan, M.Y.; Chen, K.; Sun, Y.D.; Huang, M.; Wang, C.; Ding, B.P.; Wang, S.L. Effect of Ca on the microstructure and tensile properties of Mg–Zn–Si alloys at ambient and elevated temperature. J. Alloys Compd. 2012, 539, 168–173. [Google Scholar] [CrossRef]
- Chen, K.; Li, Z.Q.; Liu, J.S.; Yang, J.N.; Sun, Y.D.; Bian, S.G. The effect of Ba addition on microstructure of in situ synthesized Mg2Si/Mg–Zn–Si composites. J. Alloys Compd. 2009, 487, 293–297. [Google Scholar] [CrossRef]
- Yang, M.B.; Pan, F.S.; Shen, J.; Bai, L. Comparison of Sb and Sr on modification and refinement of Mg2Si phase in AZ61-0.7Si magnesium alloy. Trans. Nonferrous Met. Soc. China 2009, 19, 287–292. [Google Scholar] [CrossRef]
- Mills, K.C. Recommended Values of Thermophysical Properties for Selected Commercial Alloys; Woodhead Publishing Ltd.: Cambridge, UK, 2002; pp. 1–18. [Google Scholar]
- Touloukian, Y.S. Specific Heat: Metallic Elements and Alloys; IFI/Plenum Press: New York, NY, USA, 1970; pp. 50–300. [Google Scholar]
- Rudajevová, A.; Lukač, P. Comparison of the thermal properties of AM20 and AS21 magnesium alloys. Mater. Sci. Eng. A 2005, 397, 16–21. [Google Scholar] [CrossRef]
- Callister, D.W.; Rethwisch, D.G. Materials Science and Engineering an Introduction; Wiley: New York, NY, USA, 2000; pp. 674–676. [Google Scholar]
- LaBotz, R.J.; Mason, D.R. The thermal conductivities of Mg2Si and Mg2Ge. J. Electrochem. Soc. 1963, 110, 121–126. [Google Scholar] [CrossRef]
- Yuan, G.Y.; Liu, M.P.; Ding, W.J.; Akihisa, I. Microstructure and mechanical properties of Mg-Zn-Si-based alloys. Mater. Sci. Eng. A 2003, 357, 314–320. [Google Scholar]
- Lotfpour, M.; Emamy, M.; Dehghanian, C. Ca addition effects on the microstructure, tensile and corrosion properties of Mg matrix alloy containing 8 wt.% Mg2Si. J. Mater. Eng. Perform. 2018, 27, 411–422. [Google Scholar] [CrossRef]
Alloys | Density (g/cm3) | Cp (J/g·K) |
---|---|---|
Mg-1Si | 1.757 | 1.023 |
Mg-1.38Si | 1.758 | 1.022 |
Mg-2Si | 1.760 | 1.020 |
Mg-3Si | 1.761 | 1.017 |
Mg-4Si | 1.767 | 1.014 |
Alloys | Density (g/cm3) | Cp (J/g·K) |
---|---|---|
Mg-4Si-0.2Ca | 1.765 | 1.015 |
Mg-4Si-0.4Ca | 1.761 | 1.014 |
Mg-4Si-0.6Ca | 1.763 | 1.013 |
Mg-4Si-0.8Ca | 1.763 | 1.012 |
Mg-4Si-1.0Ca | 1.756 | 1.011 |
Alloy | Mg–1Si | Mg–1.38Si | Mg–2Si | Mg–3Si | Mg–4Si |
---|---|---|---|---|---|
Volume Fraction (%) | 30.72 | 29.59 | 37.97 | 40.70 | 46.50 |
Ca Content (wt.%) | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 |
Volume Fraction (%) | 46.49 | 41.41 | 31.61 | 26.46 | 35.88 | 32.65 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Guo, T.; Wu, S.; Lü, S.; Yang, X.; Guo, W. Effects of Si Content and Ca Addition on Thermal Conductivity of As-Cast Mg–Si Alloys. Materials 2018, 11, 2376. https://doi.org/10.3390/ma11122376
Zhou X, Guo T, Wu S, Lü S, Yang X, Guo W. Effects of Si Content and Ca Addition on Thermal Conductivity of As-Cast Mg–Si Alloys. Materials. 2018; 11(12):2376. https://doi.org/10.3390/ma11122376
Chicago/Turabian StyleZhou, Xiong, Tian Guo, Shusen Wu, Shulin Lü, Xiong Yang, and Wei Guo. 2018. "Effects of Si Content and Ca Addition on Thermal Conductivity of As-Cast Mg–Si Alloys" Materials 11, no. 12: 2376. https://doi.org/10.3390/ma11122376
APA StyleZhou, X., Guo, T., Wu, S., Lü, S., Yang, X., & Guo, W. (2018). Effects of Si Content and Ca Addition on Thermal Conductivity of As-Cast Mg–Si Alloys. Materials, 11(12), 2376. https://doi.org/10.3390/ma11122376