Piezoelectric Energy Generators Based on Spring and Inertial Mass
Abstract
:1. Introduction
2. Materials and Methods
2.1. 0.675PMN-0.325PT Ceramics
2.2. Piezoelectric Energy Harvester with Spring-Based Shock Absorber
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Matko, V.; Brezovec, B. Improved data center energy efficiency and availability with multilayer node event processing. Energies 2018, 11, 2478. [Google Scholar] [CrossRef]
- Park, N.W.; Ahn, J.Y.; Cho, N.K.; Park, J.S.; Umar, A.; Lee, S.K. All in-plane thermoelectric properties of atomic layer deposition-grown Al2O3/ZnO superlattice film in the temperature range from 300 to 500 K. Sci. Adv. Mater. 2017, 9, 1296–1301. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, J.H.; Kim, J. A review of piezoelectric energy harvesting based on vibration. Int. J. Precis. Eng. Manuf. 2011, 12, 1129–1141. [Google Scholar] [CrossRef]
- Ji, J.J.; Koh, J.H. Sintering temperature effects on the dielectric and piezoelectric properties of the Cu doped (1−x)Na0.5K0.5NbO3−xBiScO3 ceramics. J. Nanoelectron. Optoelectron. 2017, 12, 1196–1198. [Google Scholar] [CrossRef]
- Mohammadzaheri, M.; AlQallaf, A. Nanopositioning systems with piezoelectric actuators, current state and future perspective. Sci. Adv. Mater. 2017, 9, 1071–1080. [Google Scholar] [CrossRef]
- Li, Z.; Saadatnia, Z.; Yang, Z.; Naguib, H. A hybrid piezoelectric-triboelectric generator for low-frequency and broad-bandwidth energy harvesting. Energy Convers. Manag. 2018, 174, 188–197. [Google Scholar] [CrossRef]
- Zuo, C.; Min, H.; Wei, L.; Kai, C. Trust-aware and low energy consumption security topology protocol of wireless sensor network. J. Sens. 2015, 2015, 1–10. [Google Scholar] [CrossRef]
- Matko, V.; Milanović, M. Temperature-compensated Capacitance-frequency converter with high resolution. Sens. Actuators A Phys. 2014, 220, 262–269. [Google Scholar] [CrossRef]
- Singh, B.; Devi, R. Parameterized comparison of carbon nano tube piezoresisitive nano pressure sensor. Sens. Lett. 2017, 15, 676–681. [Google Scholar] [CrossRef]
- Chai, T.; Li, Z.; Qin, J. Application of piezoelectric ultrasonic sensor in the monitoring of concrete structure strain. J. Nanoelectron. Optoelectron. 2017, 12, 1093–1097. [Google Scholar] [CrossRef]
- Grzybek, D.; Micek, P. Piezoelectric beam generator based on MFC as a self-powered vibration sensor. Sens. Actuator A Phys. 2017, 267, 417–423. [Google Scholar] [CrossRef]
- Erturk, A.; Inman, D.J. A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. J. Vib. Acoust. 2008, 130, 041002. [Google Scholar] [CrossRef]
- Newnham, R.E.; Bowen, L.J.; Klicker, K.A.; Cross, L.E. Composite piezoelectric transducers. Mater. Des. 1980, 2, 93–106. [Google Scholar] [CrossRef]
- Turkmen, A.C.; Celik, C. Energy harvesting with the piezoelectric material integrated shoe. Energy 2018, 150, 556–564. [Google Scholar] [CrossRef]
- Lu, Q.; Liu, L.; Scarpa, F.; Leng, J.; Liu, Y. A novel composite multi-layer piezoelectric energy harvester. Compos. Struct. 2018, 201, 121–130. [Google Scholar] [CrossRef]
- Shin, D.J.; Jeong, S.J.; Koh, J.H. A comparative research on maximized output power between disc type and multilayered type piezoelectric energy harvesters. Sci. Adv. Mater. 2017, 9, 1223–1227. [Google Scholar] [CrossRef]
- Majumder, M.; Biswas, I.; Roy, P.; Chakraborty, K.; Devi, P.S.; Bandopadhyay, N.R. Piezoelectric behaviour of flexible ZnO-paper nanocomposite. Sens. Lett. 2017, 15, 531–535. [Google Scholar] [CrossRef]
- Ippili, S.; Jella, V.; Kim, J.; Hong, S.; Yoon, S.G. Enhanced piezoelectric output performance via control of dielectrics in Fe2+-incorporated MAPbI3 perovskite thin films: Flexible piezoelectric generators. Nano Energy 2018, 49, 247–256. [Google Scholar] [CrossRef]
- Hashim, A.; Habeeb, M.A.; Hadi, A.; Jebur, Q.M.; Hadi, W. Fabrication of novel (PVA-PEG-CMC-Fe3O4) magnetic nanocomposites for piezoelectric applications. Sens. Lett. 2017, 15, 998–1002. [Google Scholar] [CrossRef]
- Li, Z.; Zuo, L.; Kuang, J.; Luhrs, G. Energy-harvesting shock absorber with a mechanical motion rectifier. Smart Mater. Struct. 2013, 22, 025008. [Google Scholar] [CrossRef]
- Ebrahimia, B.; Khameseea, M.B.; Golnaraghib, M.F. Design and modeling of a magnetic shock absorber based on eddy current damping effect. J. Sound Vib. 2008, 315, 875–889. [Google Scholar] [CrossRef]
- Cho, K.H.; Kim, S.B.; Yi, Y.S.; Koh, J.H. Storing piezoelectric energy from the shock absorber. J. Nanoelectron. Optoelectron. 2017, 12, 1219–1222. [Google Scholar] [CrossRef]
- Snowdon, J.C. Vibration and Shock in Damped Mechanical Systems; Wiley: New York, NY, USA, 1968; pp. 333–365. [Google Scholar]
- Newnham, R.E.; Ruschau, G.R. Smart electroceramics. J. Am. Ceram. Soc. 1991, 74, 463–480. [Google Scholar] [CrossRef]
- Ahn, J.H.; Shin, D.J.; Koh, J.H. Comparative study on the thikckness dependent output energy for (Bi, Sc)O3-(Pb, Ti)O3 multilayerd structure. Ceram. Int. 2017, 43, 643–648. [Google Scholar] [CrossRef]
- Stein Aaron, L.F.; Hofmann, H.F. Autonomous wideband piezoelectric energy harvesting utilizing a resonant inverter. IEEE Trans. Power Electron. 2017, 32, 6178–6187. [Google Scholar] [CrossRef]
- Kutnjak, Z.; Petzelt, J.; Blinc, R. The giant electromechanical response in ferroelectric relaxors as a critical phenomenon. Nature 2006, 441, 956–959. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Luo, H.; Wang, P.; Xu, G. Growth, characterization and properties of relaxor ferroelectric PMN-PT single crystals. Ferroelectrics 1999, 229, 207–216. [Google Scholar] [CrossRef]
- Moses Jayasing, E.; Prabhakaran, K.; Sooraj, R.; Durgaprasad, C.; Sharma, S.C. Synthesis of pyrochlore free PMN-PT powder by partial oxalate process route. Ceram. Int. 2009, 35, 591–596. [Google Scholar] [CrossRef]
- Shin, D.J.; Ahn, J.H.; Seo, C.E.; Cho, K.H.; Jeong, S.J.; Lee, S.H.; Koh, J.H. Comparative study on the single and double layered (Bi, Sc)O3-(Pb, Ti)O3 energy harvesters. Sci. Adv. Mater. 2017, 9, 1228–1230. [Google Scholar] [CrossRef]
- Berlincourt, D.A.; Cmolik, C.; Jaffe, H. Piezoelectric properties of polycrystalline lead titanate zirconate compositions. Proc. IRE 1960, 48, 220–229. [Google Scholar] [CrossRef]
- Zhang, N.; Yokota, H.; Glazer, A.M.; Ren, Z.; Keen, D.A.; Keeble, D.S.; Thomas, P.A.; Ye, Z.G. The missing boundary in the phase diagram of PbZr1−xTixO3. Nat. Commun. 2014, 5, 5231. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.J.; Koh, J.H. Comparative study on storing energy for (Ba, Zr)TiO3 and CuO-(Ba, Zr)TiO3 ceramics for piezoelectric energy harvesting applications. Ceram. Int. 2017, 43, 649–654. [Google Scholar] [CrossRef]
- Rudge, A.; Davey, J.; Raistrick, I.; Gottesfeld, S. Conducting polymers as active materials in electrochemical capacitors. J. Power Sources 1994, 47, 89–107. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, S.; Kim, J.; Cho, K.-H.; Ko, Y.-H.; Lee, S.-K.; Koh, J.-h. Piezoelectric Energy Generators Based on Spring and Inertial Mass. Materials 2018, 11, 2163. https://doi.org/10.3390/ma11112163
Yoon S, Kim J, Cho K-H, Ko Y-H, Lee S-K, Koh J-h. Piezoelectric Energy Generators Based on Spring and Inertial Mass. Materials. 2018; 11(11):2163. https://doi.org/10.3390/ma11112163
Chicago/Turabian StyleYoon, Sanghyun, Jinhwan Kim, Kyung-Ho Cho, Young-Ho Ko, Sang-Kwon Lee, and Jung-hyuk Koh. 2018. "Piezoelectric Energy Generators Based on Spring and Inertial Mass" Materials 11, no. 11: 2163. https://doi.org/10.3390/ma11112163
APA StyleYoon, S., Kim, J., Cho, K.-H., Ko, Y.-H., Lee, S.-K., & Koh, J.-h. (2018). Piezoelectric Energy Generators Based on Spring and Inertial Mass. Materials, 11(11), 2163. https://doi.org/10.3390/ma11112163