Gamma Irradiation-Induced Preparation of Graphene–Ni Nanocomposites with Efficient Electromagnetic Wave Absorption
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of RGO–Ni Materials
2.3. Characterizations
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wu, F.; Xie, A.M.; Sun, M.X.; Wang, Y.; Wang, M.Y. Reduced graphene oxide (RGO) modified spongelike polypyrrole (PPy) aerogel for excellent electromagnetic absorption. J. Mater. Chem. A 2015, 3, 14358–14369. [Google Scholar] [CrossRef]
- Ding, X.; Huang, Y.; Li, S.P.; Wang, J.G. Preparation and electromagnetic wave absorption properties of FeNi3 nanoalloys generated on graphene-polyaniline nanosheets. RSC. Adv. 2016, 6, 31440–31447. [Google Scholar] [CrossRef]
- Sun, X.D.; Ma, G.Y.; Lv, X.L.; Sui, M.X.; Li, H.B.; Wu, F.; Wang, J.J. Controllable Fabrication of Fe3O4/ZnO Core-Shell Nanocomposites and Their Electromagnetic Wave Absorption Performance in the 2–18 GHz Frequency Range. Materials 2018, 11, 780. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.L.; Feng, J.; Zong, Y.; Miao, H.; Hu, X.Y.; Bai, J.T.; Li, X.H. Hydrophobic graphene nanosheets decorated by monodispersed superparamagnetic Fe3O4 nanocrystals as synergistic electromagnetic wave absorbers. J. Mater. Chem. C 2015, 3, 4452–4463. [Google Scholar] [CrossRef]
- Batrakov, K.; Kuzhir, P.; Maksimenko, S.; Volynets, N.; Voronovich, S.; Paddubskaya, A.; Valusis, G.; Kaplas, T.; Svirko, Y.; Lambin, P. Enhanced microwave-to-terahertz absorption in graphene. Appl. Phys. Lett. 2016, 108, 123101. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, Y.J.; Li, H.; Dugnani, R.; Du, Q.; UrRehman, H.; Kang, H.M.; Liu, H.Z. Facile synthesis of three-dimensional lightweight nitrogen-doped graphene aerogel with excellent electromagnetic wave absorption properties. J. Mater. Sci. 2018, 53, 4067–4077. [Google Scholar] [CrossRef]
- Zhao, T.K.; Jin, W.B.; Ji, X.L.; Gao, J.J.; Xiong, C.Y.; Dang, A.L.; Li, H.; Li, T.H.; Shang, S.M.; Zhou, Z.F. Preparation and electromagnetic wave absorbing properties of 3D graphene/pine needle-like iron nano-acicular whisker composites. RSC Adv. 2017, 7, 16196–16203. [Google Scholar] [CrossRef]
- Yuan, H.R.; Yan, F.; Li, C.Y.; Zhu, C.L.; Zhang, X.T.; Chen, Y.J. Nickel Nanoparticle Encapsulated in Few-Layer Nitrogen-Doped Graphene Supported by Nitrogen-Doped Graphite Sheets as a High-Performance Electromagnetic Wave Absorbing Material. ACS Appl. Mater. Interfaces 2018, 10, 1399–1407. [Google Scholar] [CrossRef] [PubMed]
- Long, Q.; Xu, Z.Q.; Xiao, H.H.; Xie, K.N. A facile synthesis of a cobalt nanoparticle-graphene nanocomposite with high-performance and triple-band electromagnetic wave absorption properties. RSC Adv. 2018, 8, 1210–1217. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, X.M.; Zhang, W.Z.; Luo, C.Y.; Li, J.H. Synthesis of ferromagnetic sandwich FeCo@graphene@PPy and enhanced electromagnetic wave absorption properties. J. Magn. Magn. Mater. 2017, 443, 358–365. [Google Scholar] [CrossRef]
- Ding, X.; Huang, Y.; Wang, J.G. Synthesis of FeNi3 nanocrystals encapsulated in carbon nanospheres/reduced graphene oxide as a light weight electromagnetic wave absorbent. RSC Adv. 2015, 5, 64878–64885. [Google Scholar] [CrossRef]
- Li, J.S.; Duan, Y.; Lu, W.B.; Chou, T.W. Polyaniline-stabilized electromagnetic wave absorption composites of reduced graphene oxide on magnetic carbon nanotube film. Nanotechnology 2018, 29, 155201. [Google Scholar] [CrossRef] [PubMed]
- Letellier, M.; Macutkevic, J.; Kuzhir, P.; Banys, J.; Fierro, V.; Celzard, A. Electromagnetic properties of model vitreous carbon foams. Carbon 2017, 122, 217–227. [Google Scholar] [CrossRef]
- Yan, F.; Guo, D.; Zhang, S.; Li, C.Y.; Zhu, C.L.; Zhang, X.T.; Chen, Y.J. An ultra-small NiFe2O4 hollow particle/graphene hybrid: Fabrication and electromagnetic wave absorption property. Nanoscale 2018, 10, 2697–2703. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Qiu, J.H.; Zhu, K.J.; Che, Y.C.; Zhang, Y.; Zhang, J.M.; Li, H.; Wang, F.; Wang, Z.Z. Enhanced electromagnetic wave absorption properties of polyaniline-coated Fe3O4/reduced graphene oxide nanocomposites. J. Mater. Sci. 2014, 25, 3664–3673. [Google Scholar] [CrossRef]
- Li, J.; Zhang, D.; Qi, H.; Wang, G.M.; Tang, J.M.; Tian, G.; Liu, A.H.; Yue, H.J.; Yu, Y.; Feng, S.H. Economical synthesis of composites of FeNi alloy nanoparticles evenly dispersed in two-dimensional reduced graphene oxide as thin and effective electromagnetic wave absorbers. R. Soc. Chem. Adv. 2018, 8, 8393–8401. [Google Scholar] [CrossRef]
- Tian, Z.S.; Dai, J.; Li, J.T.; Zhu, G.Y.; Lu, J.F.; Xu, C.X.; Wang, Y.Y.; Shi, Z.L. Tailored Fabrication of alpha-Fe2O3 Nanocrystals/Reduced Graphene Oxide Nanocomposites with Excellent Electromagnetic Absorption Property. J. Nanosci. Nanotechnol. 2016, 16, 12590–12601. [Google Scholar] [CrossRef]
- Long, Y.T.; Xie, J.L.; Li, H.; Liu, Z.R.; Xie, Y.H. Solvothermal synthesis, electromagnetic and electrochemical properties of jellylike cylinder graphene-Mn3O4 composite with highly coupled effect. J. Solid State Chem. 2017, 256, 256–265. [Google Scholar] [CrossRef]
- Singh, A.K.; Kumar, A.; Haldar, K.K.; Gupta, V.; Singh, K. Lightweight reduced graphene oxide-Fe3O4 nanoparticle composite in the quest for an excellent electromagnetic interference shielding material. Nanotechnology 2018, 29, 245203. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Zhao, X.M.; Xu, J.F.; Luo, Y.Y.; Chen, D.Q.; Chen, G.H. The synergistic effect of a graphene nanoplate/Fe3O4@BaTiO3 hybrid and MWCNTs on enhancing broadband electromagnetic interference shielding performance. RSC Adv. 2018, 8, 2065–2071. [Google Scholar] [CrossRef]
- He, J.Z.; Wang, X.X.; Zhang, Y.L.; Cao, M.S. Small magnetic nanoparticles decorating reduced graphene oxides to tune the electromagnetic attenuation capacity. J. Mater. Chem. C 2016, 4, 7130–7140. [Google Scholar] [CrossRef]
- Chen, T.T.; Deng, F.; Zhu, J.; Chen, C.F.; Sun, G.B.; Ma, S.L.; Yang, X.J. Hexagonal and cubic Ni nanocrystals grown on graphene: Phase-controlled synthesis, characterization and their enhanced microwave absorption properties. J. Mater. Chem. 2012, 22, 15190–15197. [Google Scholar] [CrossRef]
- Cao, Y.; Su, Q.M.; Che, R.C.; Du, G.H.; Xu, B.S. One-step chemical vapor synthesis of Ni/graphene nanocomposites with excellent electromagnetic and electrocatalytic properties. Synth. Met. 2012, 162, 968–973. [Google Scholar] [CrossRef]
- Wang, S.J.; Zhang, Y.W.; Ma, H.L.; Zhang, Q.L.; Xu, W.G.; Peng, J.; Li, J.Q.; Yu, Z.Z.; Zhai, M.L. Ionic-liquid-assisted facile synthesis of silver nanoparticle-reduced graphene oxide hybrids by gamma irradiation. Carbon 2013, 55, 245–252. [Google Scholar] [CrossRef]
- Zhang, Q.L.; Zhang, Y.W.; Gao, Z.H.; Ma, H.L.; Wang, S.J.; Peng, J.; Li, J.Q.; Zhai, M.L. A facile synthesis of platinum nanoparticle decorated graphene by one-step gamma-ray induced reduction for high rate supercapacitors. J. Mater. Chem. C 2013, 1, 321–328. [Google Scholar] [CrossRef]
- Ma, H.L.; Zhang, L.; Zhang, Y.W.; Wang, S.J.; Sun, C.; Yu, H.Y.; Zeng, X.M.; Zhai, M.L. Radiation preparation of graphene/carbon nanotubes hybrid fillers for mechanical reinforcement of poly(vinyl alcohol) films. Radiat. Phys. Chem. 2016, 118, 21–26. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Ma, H.L.; Zhang, Q.L.; Peng, J.; Li, J.Q.; Zhai, M.L.; Yu, Z.Z. Facile synthesis of well-dispersed graphene by gamma-ray induced reduction of graphene oxide. J. Mater. Chem. 2012, 22, 13064–13069. [Google Scholar] [CrossRef]
- Zhang, N.; Huang, Y.; Liu, P.B.; Ding, X.; Zong, M.; Wang, M.Y. Synthesis of magnetical nanoparticles decorated with reduced graphene oxide as an efficient broad band EM wave absorber. J. Alloys Compd. 2017, 692, 639–646. [Google Scholar] [CrossRef]
- Zhu, Z.T.; Sun, X.; Li, G.X.; Xue, H.R.; Guo, H.; Fan, X.L.; Pan, X.C.; He, J.P. Microwave-assisted synthesis of graphene-Ni composites with enhanced microwave absorption properties in Ku-band. J. Magn. Magn. Mater. 2015, 377, 95–103. [Google Scholar] [CrossRef]
- Zhao, H.T.; Li, Z.G.; Zhang, N.; Du, Y.C.; Li, S.W.; Shao, L.; Gao, D.Y.; Han, X.J.; Xu, P. Gamma-irradiation induced one-step synthesis of electromagnetic functionalized reduced graphene oxide-Ni nanocomposites. RSC Adv. 2014, 4, 30467–30470. [Google Scholar] [CrossRef]
- Huang, Y.; Ding, X.; Li, S.P.; Zhang, N.; Wang, J.G. Magnetic reduced graphene oxide nanocomposite as an effective electromagnetic wave absorber and its absorbing mechanism. Ceram. Int. 2016, 42, 17116–17122. [Google Scholar] [CrossRef]
- Shi, L.L.; Zhao, Y.; Li, Y.; Han, X.; Zhang, T. Octahedron Fe3O4 particles supported on 3D MWCNT/graphene foam: In-situ method and application as a comprehensive microwave absorption material. Appl. Surf. Sci. 2017, 416, 329–337. [Google Scholar] [CrossRef]






© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Ma, H.-L.; Cao, K.; Wang, L.; Zeng, X.; Zhang, X.; He, L.; Liu, P.; Wang, Z.; Zhai, M. Gamma Irradiation-Induced Preparation of Graphene–Ni Nanocomposites with Efficient Electromagnetic Wave Absorption. Materials 2018, 11, 2145. https://doi.org/10.3390/ma11112145
Zhang Y, Ma H-L, Cao K, Wang L, Zeng X, Zhang X, He L, Liu P, Wang Z, Zhai M. Gamma Irradiation-Induced Preparation of Graphene–Ni Nanocomposites with Efficient Electromagnetic Wave Absorption. Materials. 2018; 11(11):2145. https://doi.org/10.3390/ma11112145
Chicago/Turabian StyleZhang, Youwei, Hui-Ling Ma, Ke Cao, Liancai Wang, Xinmiao Zeng, Xiuqin Zhang, Lihua He, Pinggui Liu, Zhiyong Wang, and Maolin Zhai. 2018. "Gamma Irradiation-Induced Preparation of Graphene–Ni Nanocomposites with Efficient Electromagnetic Wave Absorption" Materials 11, no. 11: 2145. https://doi.org/10.3390/ma11112145
APA StyleZhang, Y., Ma, H.-L., Cao, K., Wang, L., Zeng, X., Zhang, X., He, L., Liu, P., Wang, Z., & Zhai, M. (2018). Gamma Irradiation-Induced Preparation of Graphene–Ni Nanocomposites with Efficient Electromagnetic Wave Absorption. Materials, 11(11), 2145. https://doi.org/10.3390/ma11112145
