Gamma Irradiation-Induced Preparation of Graphene–Ni Nanocomposites with Efficient Electromagnetic Wave Absorption
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of RGO–Ni Materials
2.3. Characterizations
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wu, F.; Xie, A.M.; Sun, M.X.; Wang, Y.; Wang, M.Y. Reduced graphene oxide (RGO) modified spongelike polypyrrole (PPy) aerogel for excellent electromagnetic absorption. J. Mater. Chem. A 2015, 3, 14358–14369. [Google Scholar] [CrossRef]
- Ding, X.; Huang, Y.; Li, S.P.; Wang, J.G. Preparation and electromagnetic wave absorption properties of FeNi3 nanoalloys generated on graphene-polyaniline nanosheets. RSC. Adv. 2016, 6, 31440–31447. [Google Scholar] [CrossRef]
- Sun, X.D.; Ma, G.Y.; Lv, X.L.; Sui, M.X.; Li, H.B.; Wu, F.; Wang, J.J. Controllable Fabrication of Fe3O4/ZnO Core-Shell Nanocomposites and Their Electromagnetic Wave Absorption Performance in the 2–18 GHz Frequency Range. Materials 2018, 11, 780. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.L.; Feng, J.; Zong, Y.; Miao, H.; Hu, X.Y.; Bai, J.T.; Li, X.H. Hydrophobic graphene nanosheets decorated by monodispersed superparamagnetic Fe3O4 nanocrystals as synergistic electromagnetic wave absorbers. J. Mater. Chem. C 2015, 3, 4452–4463. [Google Scholar] [CrossRef]
- Batrakov, K.; Kuzhir, P.; Maksimenko, S.; Volynets, N.; Voronovich, S.; Paddubskaya, A.; Valusis, G.; Kaplas, T.; Svirko, Y.; Lambin, P. Enhanced microwave-to-terahertz absorption in graphene. Appl. Phys. Lett. 2016, 108, 123101. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, Y.J.; Li, H.; Dugnani, R.; Du, Q.; UrRehman, H.; Kang, H.M.; Liu, H.Z. Facile synthesis of three-dimensional lightweight nitrogen-doped graphene aerogel with excellent electromagnetic wave absorption properties. J. Mater. Sci. 2018, 53, 4067–4077. [Google Scholar] [CrossRef]
- Zhao, T.K.; Jin, W.B.; Ji, X.L.; Gao, J.J.; Xiong, C.Y.; Dang, A.L.; Li, H.; Li, T.H.; Shang, S.M.; Zhou, Z.F. Preparation and electromagnetic wave absorbing properties of 3D graphene/pine needle-like iron nano-acicular whisker composites. RSC Adv. 2017, 7, 16196–16203. [Google Scholar] [CrossRef] [Green Version]
- Yuan, H.R.; Yan, F.; Li, C.Y.; Zhu, C.L.; Zhang, X.T.; Chen, Y.J. Nickel Nanoparticle Encapsulated in Few-Layer Nitrogen-Doped Graphene Supported by Nitrogen-Doped Graphite Sheets as a High-Performance Electromagnetic Wave Absorbing Material. ACS Appl. Mater. Interfaces 2018, 10, 1399–1407. [Google Scholar] [CrossRef] [PubMed]
- Long, Q.; Xu, Z.Q.; Xiao, H.H.; Xie, K.N. A facile synthesis of a cobalt nanoparticle-graphene nanocomposite with high-performance and triple-band electromagnetic wave absorption properties. RSC Adv. 2018, 8, 1210–1217. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, X.M.; Zhang, W.Z.; Luo, C.Y.; Li, J.H. Synthesis of ferromagnetic sandwich FeCo@graphene@PPy and enhanced electromagnetic wave absorption properties. J. Magn. Magn. Mater. 2017, 443, 358–365. [Google Scholar] [CrossRef]
- Ding, X.; Huang, Y.; Wang, J.G. Synthesis of FeNi3 nanocrystals encapsulated in carbon nanospheres/reduced graphene oxide as a light weight electromagnetic wave absorbent. RSC Adv. 2015, 5, 64878–64885. [Google Scholar] [CrossRef]
- Li, J.S.; Duan, Y.; Lu, W.B.; Chou, T.W. Polyaniline-stabilized electromagnetic wave absorption composites of reduced graphene oxide on magnetic carbon nanotube film. Nanotechnology 2018, 29, 155201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Letellier, M.; Macutkevic, J.; Kuzhir, P.; Banys, J.; Fierro, V.; Celzard, A. Electromagnetic properties of model vitreous carbon foams. Carbon 2017, 122, 217–227. [Google Scholar] [CrossRef]
- Yan, F.; Guo, D.; Zhang, S.; Li, C.Y.; Zhu, C.L.; Zhang, X.T.; Chen, Y.J. An ultra-small NiFe2O4 hollow particle/graphene hybrid: Fabrication and electromagnetic wave absorption property. Nanoscale 2018, 10, 2697–2703. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Qiu, J.H.; Zhu, K.J.; Che, Y.C.; Zhang, Y.; Zhang, J.M.; Li, H.; Wang, F.; Wang, Z.Z. Enhanced electromagnetic wave absorption properties of polyaniline-coated Fe3O4/reduced graphene oxide nanocomposites. J. Mater. Sci. 2014, 25, 3664–3673. [Google Scholar] [CrossRef]
- Li, J.; Zhang, D.; Qi, H.; Wang, G.M.; Tang, J.M.; Tian, G.; Liu, A.H.; Yue, H.J.; Yu, Y.; Feng, S.H. Economical synthesis of composites of FeNi alloy nanoparticles evenly dispersed in two-dimensional reduced graphene oxide as thin and effective electromagnetic wave absorbers. R. Soc. Chem. Adv. 2018, 8, 8393–8401. [Google Scholar] [CrossRef]
- Tian, Z.S.; Dai, J.; Li, J.T.; Zhu, G.Y.; Lu, J.F.; Xu, C.X.; Wang, Y.Y.; Shi, Z.L. Tailored Fabrication of alpha-Fe2O3 Nanocrystals/Reduced Graphene Oxide Nanocomposites with Excellent Electromagnetic Absorption Property. J. Nanosci. Nanotechnol. 2016, 16, 12590–12601. [Google Scholar] [CrossRef]
- Long, Y.T.; Xie, J.L.; Li, H.; Liu, Z.R.; Xie, Y.H. Solvothermal synthesis, electromagnetic and electrochemical properties of jellylike cylinder graphene-Mn3O4 composite with highly coupled effect. J. Solid State Chem. 2017, 256, 256–265. [Google Scholar] [CrossRef]
- Singh, A.K.; Kumar, A.; Haldar, K.K.; Gupta, V.; Singh, K. Lightweight reduced graphene oxide-Fe3O4 nanoparticle composite in the quest for an excellent electromagnetic interference shielding material. Nanotechnology 2018, 29, 245203. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Zhao, X.M.; Xu, J.F.; Luo, Y.Y.; Chen, D.Q.; Chen, G.H. The synergistic effect of a graphene nanoplate/Fe3O4@BaTiO3 hybrid and MWCNTs on enhancing broadband electromagnetic interference shielding performance. RSC Adv. 2018, 8, 2065–2071. [Google Scholar] [CrossRef]
- He, J.Z.; Wang, X.X.; Zhang, Y.L.; Cao, M.S. Small magnetic nanoparticles decorating reduced graphene oxides to tune the electromagnetic attenuation capacity. J. Mater. Chem. C 2016, 4, 7130–7140. [Google Scholar] [CrossRef]
- Chen, T.T.; Deng, F.; Zhu, J.; Chen, C.F.; Sun, G.B.; Ma, S.L.; Yang, X.J. Hexagonal and cubic Ni nanocrystals grown on graphene: Phase-controlled synthesis, characterization and their enhanced microwave absorption properties. J. Mater. Chem. 2012, 22, 15190–15197. [Google Scholar] [CrossRef]
- Cao, Y.; Su, Q.M.; Che, R.C.; Du, G.H.; Xu, B.S. One-step chemical vapor synthesis of Ni/graphene nanocomposites with excellent electromagnetic and electrocatalytic properties. Synth. Met. 2012, 162, 968–973. [Google Scholar] [CrossRef]
- Wang, S.J.; Zhang, Y.W.; Ma, H.L.; Zhang, Q.L.; Xu, W.G.; Peng, J.; Li, J.Q.; Yu, Z.Z.; Zhai, M.L. Ionic-liquid-assisted facile synthesis of silver nanoparticle-reduced graphene oxide hybrids by gamma irradiation. Carbon 2013, 55, 245–252. [Google Scholar] [CrossRef]
- Zhang, Q.L.; Zhang, Y.W.; Gao, Z.H.; Ma, H.L.; Wang, S.J.; Peng, J.; Li, J.Q.; Zhai, M.L. A facile synthesis of platinum nanoparticle decorated graphene by one-step gamma-ray induced reduction for high rate supercapacitors. J. Mater. Chem. C 2013, 1, 321–328. [Google Scholar] [CrossRef]
- Ma, H.L.; Zhang, L.; Zhang, Y.W.; Wang, S.J.; Sun, C.; Yu, H.Y.; Zeng, X.M.; Zhai, M.L. Radiation preparation of graphene/carbon nanotubes hybrid fillers for mechanical reinforcement of poly(vinyl alcohol) films. Radiat. Phys. Chem. 2016, 118, 21–26. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Ma, H.L.; Zhang, Q.L.; Peng, J.; Li, J.Q.; Zhai, M.L.; Yu, Z.Z. Facile synthesis of well-dispersed graphene by gamma-ray induced reduction of graphene oxide. J. Mater. Chem. 2012, 22, 13064–13069. [Google Scholar] [CrossRef]
- Zhang, N.; Huang, Y.; Liu, P.B.; Ding, X.; Zong, M.; Wang, M.Y. Synthesis of magnetical nanoparticles decorated with reduced graphene oxide as an efficient broad band EM wave absorber. J. Alloys Compd. 2017, 692, 639–646. [Google Scholar] [CrossRef]
- Zhu, Z.T.; Sun, X.; Li, G.X.; Xue, H.R.; Guo, H.; Fan, X.L.; Pan, X.C.; He, J.P. Microwave-assisted synthesis of graphene-Ni composites with enhanced microwave absorption properties in Ku-band. J. Magn. Magn. Mater. 2015, 377, 95–103. [Google Scholar] [CrossRef]
- Zhao, H.T.; Li, Z.G.; Zhang, N.; Du, Y.C.; Li, S.W.; Shao, L.; Gao, D.Y.; Han, X.J.; Xu, P. Gamma-irradiation induced one-step synthesis of electromagnetic functionalized reduced graphene oxide-Ni nanocomposites. RSC Adv. 2014, 4, 30467–30470. [Google Scholar] [CrossRef]
- Huang, Y.; Ding, X.; Li, S.P.; Zhang, N.; Wang, J.G. Magnetic reduced graphene oxide nanocomposite as an effective electromagnetic wave absorber and its absorbing mechanism. Ceram. Int. 2016, 42, 17116–17122. [Google Scholar] [CrossRef]
- Shi, L.L.; Zhao, Y.; Li, Y.; Han, X.; Zhang, T. Octahedron Fe3O4 particles supported on 3D MWCNT/graphene foam: In-situ method and application as a comprehensive microwave absorption material. Appl. Surf. Sci. 2017, 416, 329–337. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Ma, H.-L.; Cao, K.; Wang, L.; Zeng, X.; Zhang, X.; He, L.; Liu, P.; Wang, Z.; Zhai, M. Gamma Irradiation-Induced Preparation of Graphene–Ni Nanocomposites with Efficient Electromagnetic Wave Absorption. Materials 2018, 11, 2145. https://doi.org/10.3390/ma11112145
Zhang Y, Ma H-L, Cao K, Wang L, Zeng X, Zhang X, He L, Liu P, Wang Z, Zhai M. Gamma Irradiation-Induced Preparation of Graphene–Ni Nanocomposites with Efficient Electromagnetic Wave Absorption. Materials. 2018; 11(11):2145. https://doi.org/10.3390/ma11112145
Chicago/Turabian StyleZhang, Youwei, Hui-Ling Ma, Ke Cao, Liancai Wang, Xinmiao Zeng, Xiuqin Zhang, Lihua He, Pinggui Liu, Zhiyong Wang, and Maolin Zhai. 2018. "Gamma Irradiation-Induced Preparation of Graphene–Ni Nanocomposites with Efficient Electromagnetic Wave Absorption" Materials 11, no. 11: 2145. https://doi.org/10.3390/ma11112145
APA StyleZhang, Y., Ma, H. -L., Cao, K., Wang, L., Zeng, X., Zhang, X., He, L., Liu, P., Wang, Z., & Zhai, M. (2018). Gamma Irradiation-Induced Preparation of Graphene–Ni Nanocomposites with Efficient Electromagnetic Wave Absorption. Materials, 11(11), 2145. https://doi.org/10.3390/ma11112145