Deposition of Zinc–Cerium Coatings from Deep Eutectic Ionic Liquids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Ionic Liquid and Dissolution of the Salts
2.2. Electrochemical Characterization
2.3. Hull Cell Test
2.4. Corrosion Resistance and Coating Behaviour
2.5. Structure and Chemical Composition of the Coatings
3. Results and Discussion
3.1. Cyclic Voltammetry (CV) Study of the Ionic Liquid with Zn, Ce, and Zn–Ce Salts
3.2. Characterization of Hull Cell Samples
3.3. Corrosion Resistance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Conde, A.; Arenas, M.A.; de Damborenea, J.J. Electrodeposition of Zn–Ni coatings as Cd replacement for corrosion protection of high strength steel. Corros. Sci. 2011, 53, 1489–1497. [Google Scholar] [CrossRef] [Green Version]
- Baldwin, K.R.; Smith, C.J.E. Advances in replacements for cadmium plating in aerospace applications. Trans. Inst. Met. Finish. 1996, 74, 202–209. [Google Scholar] [CrossRef]
- Ramanauskas, R.; Quintana, P.; Maldonado, L.; Pomés, R.; Pech-Canul, M.A. Corrosion resistance and microstructure of electrodeposited Zn and Zn alloy coatings. Surf. Coat. Technol. 1997, 92, 16–21. [Google Scholar] [CrossRef]
- Ramanauskas, R.; Juškenas, R.; Kaliničenko, A.; Garfias-Mesias, L.F. Microstructure and corrosion resistance of electrodeposited zinc alloy coatings. J. Solid State Electrochem. 2004, 8, 416–421. [Google Scholar] [CrossRef]
- Panossian, Z.; Mariaca, L.; Morcillo, M.; Flores, S.; Rocha, J.; Peña, J.J.; Herrera, F.; Corvo, F.; Sanchez, M.; Rincon, O.T.; et al. Steel cathodic protection afforded by zinc, aluminium and zinc/aluminium alloy coatings in the atmosphere. Surf. Coat. Technol. 2005, 190, 244–248. [Google Scholar] [CrossRef] [Green Version]
- Boshkov, N.; Petrov, K.; Kovacheva, D.; Vitkova, S.; Nemska, S. Influence of the alloying component on the protective ability of some zinc galvanic coatings. Electrochim. Acta 2005, 51, 77–84. [Google Scholar] [CrossRef]
- Marín-Sánchez, M.; Ocón, P.; Conde, A.; García, I. Electrodeposition of Zn-Mn coatings on steel from 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide ionic liquid. Surf. Coat. Technol. 2014, 258, 871–877. [Google Scholar] [CrossRef] [Green Version]
- Garcia, J.R.; do Lago, D.C.B.; Cesar, D.V.; Senna, L.F. Pulsed cobalt-rich Zn–Co alloy coatings produced from citrate baths. Surf. Coat. Technol. 2016, 306, 462–472. [Google Scholar] [CrossRef]
- Nayana, K.O.; Venkatesha, T.V.; Chandrappa, K.G. Influence of additive on nanocrystalline, bright Zn–Fe alloy electrodeposition and its properties. Surf. Coat. Technol. 2013, 235, 461–468. [Google Scholar] [CrossRef]
- Koç, E.; Kannan, M.B.; Ünal, M.; Candan, E. Influence of zinc on the microstructure, mechanical properties and in vitro corrosion behavior of magnesium–zinc binary alloys. J. Alloys Compd. 2015, 648, 291–296. [Google Scholar] [CrossRef]
- Mostaed, E.; Sikora-Jasinska, M.; Mostaed, A.; Loffredo, S.; Demir, A.G.; Previtali, B.; Mantovani, D.; Beanland, R.; Vedani, M. Novel Zn-based alloys for biodegradable stent applications: Design, development and in vitro degradation. J. Mech. Behav. Biomed. Mater. 2016, 60, 581–602. [Google Scholar] [CrossRef] [PubMed]
- De Vreese, P.; Skoczylas, A.; Matthijs, E.; Fransaer, J.; Binnemans, K. Electrodeposition of copper–zinc alloys from an ionic liquid-like choline acetate electrolyte. Electrochim. Acta 2013, 108, 788–794. [Google Scholar] [CrossRef]
- De Damborenea, J.; Conde, A.; Arenas, M.A. Corrosion inhibition with rare earth metal compounds in aqueous solutions. In Rare Earth-Based Corrosion Inhibitors; Forsyth, M., Hinton, B., Eds.; Woodhead Publishing: Sawston, UK, 2014; pp. 84–116. [Google Scholar]
- Willbold, E.; Gu, X.; Albert, D.; Kalla, K.; Bobe, K.; Brauneis, M.; Janning, C.; Nellesen, J.; Czayka, W.; Tillmann, W.; et al. Effect of the addition of low rare earth elements (lanthanum, neodymium, cerium) on the biodegradation and biocompatibility of magnesium. Acta Biomater. 2015, 11, 554–562. [Google Scholar] [CrossRef] [PubMed]
- Aramaki, K. Preparation of self-healing protective films on a zinc electrode treated in a cerium(III) nitrate solution and modified with sodium phosphate and cerium(III) nitrate. Corros. Sci. 2004, 46, 1565–1579. [Google Scholar] [CrossRef]
- Arenas, M.A.; García, I.; de Damborenea, J. X-ray photoelectron spectroscopy study of the corrosion behaviour of galvanised steel implanted with rare earths. Corros. Sci. 2004, 46, 1033–1049. [Google Scholar] [CrossRef] [Green Version]
- Naderi, R.; Fedel, M.; Deflorian, F.; Poelman, M.; Olivier, M. Synergistic effect of clay nanoparticles and cerium component on the corrosion behavior of eco-friendly silane sol–gel layer applied on pure aluminum. Surf. Coat. Technol. 2013, 224, 93–100. [Google Scholar] [CrossRef]
- Staudt, T.; Lykhach, Y.; Hammer, L.; Schneider, M.A.; Matolín, V.; Libuda, J. A route to continuous ultra-thin cerium oxide films on Cu(1 1 1). Surf. Sci. 2009, 603, 3382–3388. [Google Scholar] [CrossRef]
- Creus, J.; Brezault, F.; Rebere, C.; Gadouleau, M. Synthesis and characterisation of thin cerium oxide coatings elaborated by cathodic electrolytic deposition on steel substrate. Surf. Coat. Technol. 2006, 200, 4636–4645. [Google Scholar] [CrossRef]
- Hamlaoui, Y.; Pedraza, F.; Remazeilles, C.; Cohendoz, S.; Rébéré, C.; Tifouti, L.; Creus, J. Cathodic electrodeposition of cerium-based oxides on carbon steel from concentrated cerium nitrate solutions. Part I. Electrochemical and analytical characterisation. Mater. Chem. Phys. 2009, 113, 650–657. [Google Scholar] [CrossRef]
- Yang, L.; Pang, X.; Fox-Rabinovich, G.; Veldhuis, S.; Zhitomirsky, I. Electrodeposition of cerium oxide films and composites. Surf. Coat. Technol. 2011, 206, 1–7. [Google Scholar] [CrossRef]
- Kulp, E.A.; Limmer, S.J.; Bohannan, E.W.; Switzer, J.A. Electrodeposition of nanometer-thick ceria films by oxidation of cerium(III)-acetate. Solid State Ionics 2007, 178, 749–757. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, Y.; Du, X.; Chen, Y.; Zhang, Z.; Zhang, J. Influences of the main anodic electroplating parameters on cerium oxide films. Applied Surf. Sci. 2014, 305, 330–336. [Google Scholar] [CrossRef]
- Balasubramanian, M.; Melendres, C.A.; Mansour, A.N. An X-ray absorption study of the local structure of cerium in electrochemically deposited thin films. Thin Solid Films 1999, 347, 178–183. [Google Scholar] [CrossRef]
- Guergova, D.; Stoyanova, E.; Stoychev, D.; Avramova, I.; Stefanov, P. Self-healing effect of ceria electrodeposited thin films on stainless steel in aggressive 0.5 mol/L NaCl aqueous solution. J. Rare Earths 2015, 33, 1212–1227. [Google Scholar] [CrossRef]
- Zhou, Y.; Switzer, J.A. Growth of cerium(IV) oxide films by the electrochemical generation of base method. J. Alloys Compd. 1996, 237, 1–5. [Google Scholar] [CrossRef]
- Lair, V.; Sirieix-Plenet, J.; Gaillon, L.; Rizzi, C.; Ringuedé, A. Mixtures of room temperature ionic liquid/ethanol solutions as electrolytic media for cerium oxide thin layer electrodeposition. Electrochim. Acta 2010, 56, 784–789. [Google Scholar] [CrossRef]
- Wang, L.; Tang, L.; Huang, G.; Huang, W.-Q.; Peng, J. Preparation of amorphous rare-earth films of Ni–Re–P (Re=Ce, Nd) by electrodeposition from an aqueous bath. Surf. Coat. Technol. 2005, 192, 208–212. [Google Scholar] [CrossRef]
- Djukic, M.B.; Zeravcic, V.S.; Bakic, G.; Sedmak, A.; Rajicic, B. Hydrogen Embrittlement of Low Carbon Structural Steel. Procedia Mater. Sci. 2014, 3, 1167–1172. [Google Scholar] [CrossRef] [Green Version]
- Yang, P.; Zhao, Y.; Su, C.; Yang, K.; Yan, B.; An, M. Electrodeposition of Cu–Li alloy from room temperature ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate. Electrochim. Acta 2013, 88, 203–207. [Google Scholar] [CrossRef]
- Leong, T.-I.; Hsieh, Y.-T.; Sun, I.W. Electrochemistry of tin in the 1-ethyl-3-methylimidazolium dicyanamide room temperature ionic liquid. Electrochim. Acta 2011, 56, 3941–3946. [Google Scholar] [CrossRef]
- Lisenkov, A.; Zheludkevich, M.L.; Ferreira, M.G.S. Active protective Al–Ce alloy coating electrodeposited from ionic liquid. Electrochem. Commun. 2010, 12, 729–732. [Google Scholar] [CrossRef]
- Hatchett, D.W.; Droessler, J.; Kinyanjui, J.M.; Martinez, B.; Czerwinski, K.R. The direct dissolution of Ce2(CO3)3 and electrochemical deposition of Ce species using ionic liquid trimethyl-n-butylammonium bis(trifluoromethanesulfonyl)imide containing bis(trifluoromethanesulfonyl)imide. Electrochim. Acta 2013, 89, 144–151. [Google Scholar] [CrossRef]
- Keskin, S.; Kayrak-Talay, D.; Akman, U.; Hortaçsu, Ö. A review of ionic liquids towards supercritical fluid applications. J. Supercrit. Fluids 2007, 43, 150–180. [Google Scholar] [CrossRef]
- Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 2003. [Google Scholar] [CrossRef]
- Dai, Y.; van Spronsen, J.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y.H. Natural deep eutectic solvents as new potential media for green technology. Anal. Chim. Acta 2013, 766, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Bezold, F.; Weinberger, M.E.; Minceva, M. Assessing solute partitioning in deep eutectic solvent-based biphasic systems using the predictive thermodynamic model COSMO-RS. Fluid Phase Equilib. 2017, 437, 23–33. [Google Scholar] [CrossRef]
- Abbott, A.P.; Boothby, D.; Capper, G.; Davies, D.L.; Rasheed, R.K. Deep eutectic solvents formed between choline chloride and carboxylic acids: Versatile alternatives to ionic liquids. J. Am. Chem. Soc. 2004, 126, 9142–9147. [Google Scholar] [CrossRef] [PubMed]
- Radošević, K.; Cvjetko Bubalo, M.; Gaurina Srček, V.; Grgas, D.; Landeka Dragičević, T.; Radojčić Redovniković, I. Evaluation of toxicity and biodegradability of choline chloride based deep eutectic solvents. Ecotoxicol. Environ. Saf. 2015, 112, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Abbott, A.P.; Capper, G.; McKenzie, K.J.; Ryder, K.S. Electrodeposition of zinc-tin alloys from deep eutectic solvents based on choline chloride. J. Electroanal. Chem. 2007, 599, 288–294. [Google Scholar] [CrossRef]
- Abbott, A.P.; El Ttaib, K.; Ryder, K.S.; Smith, E.L. Electrodeposition of nickel using eutectic based ionic liquids. Trans. Inst. Met. Finish. 2008, 86, 234–240. [Google Scholar] [CrossRef] [Green Version]
- Abbott, A.P.; Griffith, J.; Nandhra, S.; O’Connor, C.; Postlethwaite, S.; Ryder, K.S.; Smith, E.L. Sustained electroless deposition of metallic silver from a choline chloride-based ionic liquid. Surf. Coat. Technol. 2008, 202, 2033–2039. [Google Scholar] [CrossRef]
- Abbott, A.P.; El Ttaib, K.; Frisch, G.; McKenzie, K.J.; Ryder, K.S. Electrodeposition of copper composites from deep eutectic solvents based on choline chloride. Phys. Chem. Chem. Phys. 2009, 11, 4269–4277. [Google Scholar] [CrossRef] [PubMed]
- Fashu, S.; Gu, C.-d.; Zhang, J.-l.; Huang, M.-l.; Wang, X.-l.; Tu, J.-p. Effect of EDTA and NH4Cl additives on electrodeposition of Zn–Ni films from choline chloride-based ionic liquid. Trans. Nonferr. Met. Soc. China 2015, 25, 2054–2064. [Google Scholar] [CrossRef]
- Ibrahim, S.; Bakkar, A.; Ahmed, E.; Selim, A. Effect of additives and current mode on zinc electrodeposition from deep eutectic ionic liquids. Electrochim. Acta 2016, 191, 724–732. [Google Scholar] [CrossRef]
- Gabe, D.R.; Wilcox, G.D. The Hull Cell. Trans. IMF 1993, 71, 71–73. [Google Scholar] [CrossRef]
- Matlosz, M.; Creton, C.; Clerc, C.; Landolt, D. Secondary Current Distribution in a Hull Cell: Boundary Element and Finite Element Simulation and Experimental Verification. J. Electrochem. Soc. 1987, 134, 3015–3021. [Google Scholar] [CrossRef]
- Haerens, K.; Matthijs, E.; Binnemans, K.; Van der Bruggen, B. Electrochemical decomposition of choline chloride based ionic liquid analogues. Green Chem. 2009, 11, 1357–1365. [Google Scholar] [CrossRef]
- Yue, D.; Jia, Y.; Yao, Y.; Sun, J.; Jing, Y. Structure and electrochemical behavior of ionic liquid analogue based on choline chloride and urea. Electrochim. Acta 2012, 65, 30–36. [Google Scholar] [CrossRef]
- Yang, H.; Reddy, R.G. Electrochemical deposition of zinc from zinc oxide in 2:1 urea/choline chloride ionic liquid. Electrochim. Acta 2014, 147, 513–519. [Google Scholar] [CrossRef]
- Liu, P.; Du, Y.; Yang, Q.; Tong, Y.; Hope, G.A. Induced codeposition of Sm-Co amorphous films in urea melt and their magnetism. J. Electrochem. Soc. 2006, 153, C57–C62. [Google Scholar] [CrossRef]
- Sánchez-Amaya, J.M.; Blanco, G.; Garcia-Garcia, F.J.; Bethencourt, M.; Botana, F.J. XPS and AES analyses of cerium conversion coatings generated on AA5083 by thermal activation. Surf. Coat. Technol. 2012, 213, 105–116. [Google Scholar] [CrossRef]
- Uhart, A.; Ledeuil, J.B.; Gonbeau, D.; Dupin, J.C.; Bonino, J.P.; Ansart, F.; Esteban, J. An Auger and XPS survey of cerium active corrosion protection for AA2024-T3 aluminum alloy. Appl. Surf. Sci. 2016, 390, 751–759. [Google Scholar] [CrossRef] [Green Version]
- Lakshmi, R.V.; Aruna, S.T.; Anandan, C.; Bera, P.; Sampath, S. EIS and XPS studies on the self-healing properties of Ce-modified silica-alumina hybrid coatings: Evidence for Ce(III) migration. Surf. Coat. Technol. 2017, 309, 363–370. [Google Scholar] [CrossRef]
- Lin, Y.-F.; Sun, I.W. Electrodeposition of zinc from a Lewis acidic zinc chloride-1-ethyl-3-methylimidazolium chloride molten salt. Electrochim. Acta 1999, 44, 2771–2777. [Google Scholar] [CrossRef]
- Chen, P.-Y.; Hussey, C.L. The electrodeposition of Mn and Zn–Mn alloys from the room-temperature tri-1-butylmethylammonium bis((trifluoromethane)sulfonyl)imide ionic liquid. Electrochim. Acta 2007, 52, 1857–1864. [Google Scholar] [CrossRef]
- Al-Esary, H. Influence of Additives on Electrodeposition of Metals from Deep Eutectic Solvents. Ph.D. Thesis, University of Leicester, Leicester, UK, 2017. [Google Scholar]
- Guessoum, K.; Veys-Renaux, D.; Rocca, E.; Belhamel, K. Corrosion behaviour of zinc–cerium alloys: Role of intermetallic phases. Corros. Sci. 2011, 53, 1639–1645. [Google Scholar] [CrossRef]
- Veys-Renaux, D.; Guessoum, K.; Rocca, E.; David, N.; Belhamel, K. New zinc–rare earth alloys: Influence of intermetallic compounds on the corrosion resistance. Corros. Sci. 2013, 77, 342–349. [Google Scholar] [CrossRef]
- Youssef, K.M.S.; Koch, C.C.; Fedkiw, P.S. Improved corrosion behavior of nanocrystalline zinc produced by pulse-current electrodeposition. Corros. Sci. 2004, 46, 51–64. [Google Scholar] [CrossRef]
- Gharahcheshmeh, M.H.; Sohi, M.H. Study of the corrosion behavior of zinc and Zn–Co alloy electrodeposits obtained from alkaline bath using direct current. Mater. Chem. Phys. 2009, 117, 414–421. [Google Scholar] [CrossRef]
- Aramaki, K. Preparation of chromate-free, self-healing polymer films containing sodium silicate on zinc pretreated in a cerium(III) nitrate solution for preventing zinc corrosion at scratches in 0.5 M NaCl. Corros. Sci. 2002, 44, 1375–1389. [Google Scholar] [CrossRef]
- Yoo, J.D.; Ogle, K.; Volovitch, P. The effect of synthetic zinc corrosion products on corrosion of electrogalvanized steel: I. Cathodic reactivity under zinc corrosion products. Corros. Sci. 2014, 81, 11–20. [Google Scholar] [CrossRef]
- Scholes, F.H.; Soste, C.; Hughes, A.E.; Hardin, S.G.; Curtis, P.R. The role of hydrogen peroxide in the deposition of cerium-based conversion coatings. Appl. Surf. Sci. 2006, 253, 1770–1780. [Google Scholar] [CrossRef]
- Aramaki, K. Self-healing mechanism of an organosiloxane polymer film containing sodium silicate and cerium(III) nitrate for corrosion of scratched zinc surface in 0.5 M NaCl. Corros. Sci. 2002, 44, 1621–1632. [Google Scholar] [CrossRef]
Color | Zone | Measure | Zn (at. %) | Ce (at. %) | O (at. %) | Distance (cm) | Current Density (A/dm2) |
---|---|---|---|---|---|---|---|
Dark grey | I | 1 | 82.76 | 1.01 | 16.24 | 0.1 | 2.59 |
2 | 83.93 | 0.97 | 15.10 | 0.5 | 1.67 | ||
3 | 81.59 | 1.24 | 17.17 | 0.7 | 1.48 | ||
4 | 78.82 | 1.27 | 19.91 | 0.9 | 1.33 | ||
5 | 81.56 | 1.83 | 16.61 | 1.1 | 1.22 | ||
Dark Blue | II-a | 6 | 35.60 | 10.21 | 54.18 | 1.3 | 1.13 |
7 | 34.11 | 9.11 | 56.78 | 1.6 | 1.01 | ||
8 | 38.49 | 6.79 | 54.72 | 1.9 | 0.91 | ||
9 | 38.95 | 7.63 | 53.42 | 2.2 | 0.83 | ||
10 | 34.81 | 7.76 | 57.43 | 2.5 | 0.75 | ||
II-b | 11 | 41.03 | 8.89 | 50.08 | 2.7 | 0.71 | |
12 | 42.64 | 8.62 | 48.74 | 3.3 | 0.60 | ||
13 | 60.69 | 5.36 | 33.94 | 3.9 | 0.50 | ||
14 | 68.71 | 5.61 | 25.67 | 4.5 | 0.42 | ||
15 | 76.71 | 4.14 | 19.14 | 5 | 0.36 | ||
Light Grey | III-a | 16 | 89.76 | 0.52 | 9.72 | 5.1 | 0.35 |
17 | 91.09 | 0.29 | 8.63 | 5.7 | 0.28 | ||
18 | 90.61 | 0.43 | 8.96 | 6.3 | 0.23 | ||
19 | 86.71 | 0.89 | 12.40 | 6.9 | 0.18 | ||
20 | 91.87 | 0.56 | 7.56 | 7.5 | 0.13 | ||
III-b | 21 | 90.83 | 0.00 | 9.17 | 8.1 | 0.08 | |
22 | 94.03 | 0.00 | 5.97 | 8.7 | 0.04 | ||
23 | 92.38 | 0.00 | 7.62 | 9.3 | 0.01 |
Coating | Zone | OCP (V) | icorr (A/cm2) | Ecorr (V) |
---|---|---|---|---|
Zn | General | −0.98 | 2.29 × 10−5 | −0.98 |
Zn/Ce2O3–CeO2 | I-Dark Grey | −0.99 | 1.67 × 10−5 | −0.99 |
II a-Dark Blue | −0.94 | 1.78 × 10−5 | −0.93 | |
II b-Dark Blue | −0.93 | 2.50 × 10−5 | −0.93 | |
III a-Light Grey | −1.02 | 1.62 × 10−5 | −1.02 | |
III b-Light Grey | −0.92 | 1.78 × 10−5 | −0.92 |
Coating | Current Density (A/dm2) | Zn (at. %) | Ce (at. %) | O (at. %) |
---|---|---|---|---|
Zn | 1.13 | 44.04 ± 2.29 | - | 55.96 ± 2.29 |
Zn/Ce2O3–CeO2 | 38.42 ± 3.36 | 3.28 ± 0.60 | 58.30 ± 3.26 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marín-Sánchez, M.; Gracia-Escosa, E.; Conde, A.; Palacio, C.; García, I. Deposition of Zinc–Cerium Coatings from Deep Eutectic Ionic Liquids. Materials 2018, 11, 2035. https://doi.org/10.3390/ma11102035
Marín-Sánchez M, Gracia-Escosa E, Conde A, Palacio C, García I. Deposition of Zinc–Cerium Coatings from Deep Eutectic Ionic Liquids. Materials. 2018; 11(10):2035. https://doi.org/10.3390/ma11102035
Chicago/Turabian StyleMarín-Sánchez, Miguel, Elena Gracia-Escosa, Ana Conde, Carlos Palacio, and Ignacio García. 2018. "Deposition of Zinc–Cerium Coatings from Deep Eutectic Ionic Liquids" Materials 11, no. 10: 2035. https://doi.org/10.3390/ma11102035
APA StyleMarín-Sánchez, M., Gracia-Escosa, E., Conde, A., Palacio, C., & García, I. (2018). Deposition of Zinc–Cerium Coatings from Deep Eutectic Ionic Liquids. Materials, 11(10), 2035. https://doi.org/10.3390/ma11102035