Influence of Luting Materials on the Retention of Cemented Implant-Supported Crowns: An In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Test Bodies
2.2. Cobalt–Chromium Crowns and Luting Materials
2.3. Artificial Aging after Hydro- and Hydrothermal Stress
2.4. Retention Force Measurement
2.5. Statistics
3. Results
3.1. Primary Analysis
3.2. Comparison of Retention Forces at T1, T2, and T3
3.3. Comparison of Retention Forces at T1, T2, and T3 for Luting Materials Independent of the Storage Conditions
3.4. Comparisons of Retention Forces at T1, T2, and T3 for Storage Conditions Independent of Luting Materials
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pommer, B.; Valkova, V.; Ubaidha Maheen, C.; Furhauser, L.; Rausch-Fan, X.; Seeman, R. Scientific interests of 21st century clinical oral implant research: Topical trend analysis. Clin. Implant. Dent. Relat. Res. 2016, 18, 850–856. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.Q.; Dai, R.; Cao, C.Y.; Fang, H.; Han, M.; Li, Q.L. One-time versus repeated abutment connection for platform-switched implant: A systematic review and meta-analysis. PLoS ONE 2017, 12, 0186385. [Google Scholar] [CrossRef] [PubMed]
- Yeung, S.C. Biological basis for soft tissue management in implant dentistry. Aust. Dent. J. 2008, 53 (Suppl. 1), S39–S42. [Google Scholar] [CrossRef] [PubMed]
- Pesce, P.; Canullo, L.; Grusovin, M.G.; de Bruyn, H.; Cosyn, J.; Pera, P. Systematic review of some prosthetic risk factors for periimplantitis. J. Prosthet. Dent. 2015, 114, 346–350. [Google Scholar] [CrossRef] [PubMed]
- Cooper, L.F.; Stanford, C.; Feine, J.; McGuire, M. Prospective assessment of CAD/CAM zirconia abutment and lithium disilicate crown restorations: 2.4 year results. J. Prosthet. Dent. 2016, 116, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Modi, R.; Mittal, R.; Kohli, S.; Singh, A.; Sefa, I. Screw versus cement retained prosthesis: A review. Int. J. Adv. Health Sci. 2014, 1, 26–32. [Google Scholar]
- Wittneben, J.G.; Millen, C.; Bragger, U. Clinical performance of screw-versus cement-retained fixed implant-supported reconstructions—A systematic review. Int. J. Oral Maxillofac. Implants 2014, 29, 84–98. [Google Scholar] [CrossRef] [PubMed]
- Esposito, M.; Bressan, E.; Grusovin, M.G.; D’Avenia, F.; Neumann, K.; Sbricoli, L.; Luongo, G. Do repeated changes of abutments have any influence on the stability of peri-implant tissues? One-year post-loading results from a multicentre randomised controlled trial. Eur. J. Oral Implantol. 2017, 10, 57–72. [Google Scholar] [PubMed]
- Charyeva, O.; Altynbekov, K.; Zhartybaev, R.; Sabdanaliev, A. Long-term dental implant success and survival—A clinical study after an observation period up to 6 years. Swed. Dent. J. 2012, 36, 1–6. [Google Scholar] [PubMed]
- Sakka, S.; Baroudi, K.; Nassani, M.Z. Factors associated with early and late failure of dental implants. J. Investig. Clin. Dent. 2012, 3, 258–261. [Google Scholar] [CrossRef] [PubMed]
- Bishti, S.; Tuna, T.; Agrawal, G.; Pich, A.; Wolfart, S. Modified glass ionomer cement with “remove on demand” properties: An in vitro study. Dent. J. 2017, 5, 9. [Google Scholar] [CrossRef] [PubMed]
- Schierano, G.; Manzella, C.; Menicucci, G.; Parrotta, A.; Zanetti, E.M.; Audenino, A.L. In vitro standardization of two different removal devices in cemented implant prosthesis. Clin. Oral Implants Res. 2016, 27, 1026–1030. [Google Scholar] [CrossRef] [PubMed]
- Christensen, R.M. Exploration of ductile, brittle failure characteristics through a two-parameter yield/failure criterion. Mater. Sci. Eng. A 2005, 394, 417–424. [Google Scholar] [CrossRef]
- Abrahamsson, I.; Berglundh, T.; Glantz, P.; Lindhe, J. The mucosal attachment at different abutments. An experimental study in dogs. J. Clin. Periodontol. 1998, 25, 721–727. [Google Scholar] [CrossRef] [PubMed]
- Mehl, C.; Harder, S.; Wolfart, M.; Kern, M.; Wolfart, S. Retrievability of implant-retained crowns following cementation. Clin. Oral Implants Res. 2008, 19, 1304–13011. [Google Scholar] [CrossRef] [PubMed]
- Sahu, N.; Lakshmi, N.; Azhagarasan, N.S.; Agnihotri, Y.; Rajan, M.; Hariharan, R. Comparison of the effect of implant abutment surface modifications on retention of implant-supported restoration with a polymer based cement. J. Clin. Diagn. Res. 2014, 8, 239–242. [Google Scholar] [PubMed]
- Rodiger, M.; Rinke, S.; Ehret-Kleinau, F.; Pohlmeyer, F.; Lange, K.; Burgers, R.; Gersdorff, N. Evaluation of removal forces of implant-supported zirconia copings depending on abutment geometry, luting agent and cleaning method during re-cementation. J. Adv. Prosthodont. 2014, 6, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Chaar, M.S.; Att, W.; Strub, J.R. Prosthetic outcome of cement-retained implant-supported fixed dental restorations: A systematic review. J. Oral Rehabil. 2011, 38, 697–711. [Google Scholar] [CrossRef] [PubMed]
- Galvan, G.; Kois, J.C.; Chaiyabutr, Y.; Kois, D. Cemented implant restoration: A technique for minimizing adverse biologic consequences. J. Prosthet. Dent. 2015, 114, 482–485. [Google Scholar] [CrossRef] [PubMed]
- Rosentritt, M.; Schneider-Feyrer, S.; Behr, M.; Preis, V. In vitro shock absorption tests on implant-supported crowns: Influence of crown materials and luting agents. Int. J. Oral Maxillofac. Implants 2018, 33, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Lang, N.P.; Pjetursson, B.E.; Tan, K.; Bragger, U.; Egger, M.; Zwahlen, M. A systematic review of the survival and complication rates of fixed partial dentures (FPDs) after an observation period of at least 5 years. II. Combined tooth–implant-supported FPDs. Clin. Oral Implants Res. 2004, 15, 643–653. [Google Scholar] [CrossRef] [PubMed]
- Sheets, J.L.; Wilcox, C.; Wilwerding, T. Cement selection for cement-retained crown technique with dental implants. J. Prosthodont. Off. J. Am. Coll. Prosthodont. 2008, 17, 92–96. [Google Scholar] [CrossRef] [PubMed]
- Amorfini, L.; Storelli, S.; Mosca, D.; Scanferla, M.; Romeo, E. Comparison of cemented vs. screw-retained, customized computer-aided design/computer-assisted manufacture zirconia abutments for esthetically located single-tooth implants: A 10-year randomized prospective study. Int. J. Prosthodont. 2018, 31, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Hebel, K.S.; Gajjar, R.C. Cement-retained versus screw-retained implant restorations: Achieving optimal occlusion and esthetics in implant dentistry. J. Prosthet. Dent. 1997, 77, 28–35. [Google Scholar] [CrossRef]
- Farzin, M.; Torabi, K.; Ahangari, A.H.; Derafshi, R. Effect of abutment modification and cement type on retention of cement-retained implant supported crowns. J. Dent. 2014, 11, 256–262. [Google Scholar]
- Nissan, J.; Snir, D.; Rosner, O.; Kolerman, R.; Chaushu, L.; Chaushu, G. Reliability of retrievable cemented implant-supported prostheses. J. Prosthet. Dent. 2016, 115, 587–591. [Google Scholar] [CrossRef] [PubMed]
- Kunt, G.E.; Ceylan, G.; Yilmaz, N.; Kücük, B.E. Luting agent effectiveness on implant crown retention. Int. J. Oral Implantol. Clin. Res. 2011, 2, 7–11. [Google Scholar] [CrossRef]
- Shadid, R.; Sadaqa, N. A comparison between screw- and cement-retained implant prostheses. A literature review. J. Oral Implantol. 2012, 38, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Bresciano, M.; Schierano, G.; Manzella, C.; Screti, A.; Bignardi, C.; Preti, G. Retention of luting agents on implant abutments of different height and taper. Clin. Oral Implants Res. 2005, 16, 594–598. [Google Scholar] [CrossRef] [PubMed]
- Mundt, T.; Heinemann, F.; Golecki, G.; Schwahn, C.; Biffar, R. Retention force of secondary crowns to copings after temporary cementation: The effect of crown material and luting agent. Biomed. Tech. Biomed. Eng. 2010, 55, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Breeding, L.C.; Dixon, D.L.; Bogacki, M.T.; Tietge, J.D. Use of luting agents with an implant system: Part I. J. Prosthet. Dent. 1992, 68, 737–741. [Google Scholar] [CrossRef]
- Heinemann, F.; Mundt, T.; Biffar, R. Retrospective evaluation of temporary cemented, tooth and implant supported fixed partial dentures. J. Cranio-Maxillo-Facial Surg. 2006, 34 (Suppl. 2), 86–90. [Google Scholar] [CrossRef]
- Wolfart, M.; Wolfart, S.; Kern, M. Retention forces and seating discrepancies of implant-retained castings after cementation. Int. J. Oral Maxillofac. Implants 2006, 21, 519–525. [Google Scholar] [PubMed]
- Läkamp, J.; Läkamp, M.; Meyer, U.; Boisserée, W.; Grunert, I.; Schupp, W. Funktionelle Implantologie, 1st ed.; Quintessenz Verlag: Berlin, Germany, 2016; pp. 1–35. ISBN 978-3-8687-312-8. [Google Scholar]
- Lewis, S.G.; Llamas, D.; Avera, S. The UCLA abutment: A four-year review. J. Prosthet. Dent. 1992, 67, 509–515. [Google Scholar] [CrossRef]
- Bernal, G.; Okamura, M.; Munoz, C. The effects of abutment taper, length and cement type on resistance to dislodgement of cement-retained, implant-supported restorations. J. Prosthodont. 2003, 12, 111–115. [Google Scholar] [CrossRef]
- Cho, H.-W.; Dong, J.-K.; Jin, T.-H.; Oh, S.-C.; Lee, H.-H.; Lee, J.-W. A study on the fracture strength of implant-supported restorations using milled ceramic abutments and all-ceramic crowns. Int. J. Prosthodont. 2002, 15, 9–13. [Google Scholar] [PubMed]
- Gehrke, S.A. Importance of crown height ratios in dental implants on the fracture strength of different connection designs: An in vitro study. Clin. Implant Dent. Relat. Res. 2015, 17, 790–797. [Google Scholar] [CrossRef] [PubMed]
- Geringer, A.; Diebels, S.; Nothdurft, F.P. Influence of superstructure geometry on the mechanical behavior of zirconia implant abutments: A finite element analysis. Biomed. Tech. Biomed. Eng. 2014, 59, 501–506. [Google Scholar] [CrossRef] [PubMed]
- Canullo, L.; Penarrocha-Oltra, D.; Soldini, C.; Mazzocco, F.; Penarrocha, M.; Covani, U. Microbiological assessment of the implant-abutment interface in different connections: Cross-sectional study after 5 years of functional loading. Clin. Oral Implants Res. 2015, 26, 426–434. [Google Scholar] [CrossRef] [PubMed]
- Jivraj, S.A.; Kim, T.H.; Donovan, T.E. Selection of luting agents, part 1. J. Calif. Dent. Assoc. 2006, 34, 149–160. [Google Scholar] [PubMed]
- Alvarez-Arenal, A.; Gonzalez-Gonzalez, I.; deLlanos-Lanchares, H.; Brizuela-Velasco, A.; Ellacuria-Echebarria, J. The selection criteria of temporary or permanent luting agents in implant-supported prostheses: In vitro study. J. Adv. Prosthodont. 2016, 8, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Ramp, L.; Lin, C.; Liu, P. Comparison of 7 luting protocols and their effect on the retention and marginal leakage of a cemented-retained dental implant restoration. Int. J. Oral Maxillofac. Implants 2006, 21, 587–592. [Google Scholar] [PubMed]
- Michalakis, K.; Pissiotis, A.; Kang, K.; Hirayama, H.; Garefis, P.; Petridis, H. The effect of thermal cycling and air abrasion on cement failure loads of 4 provisional luting agents used for the cementation of implant-supported fixed partial dentures. Int. J. Oral Maxillofac. Implants 2007, 22, 569–574. [Google Scholar] [PubMed]
- Dudley, J.; Richards, L.; Abbott, J. Retention of cast crown copings cemented to implant abutments. Aust. Dent. J. 2008, 53, 332–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Safari, S.; Hosseini Ghavam, F.; Amini, P.; Yaghmaei, K. Effects of abutment diameter, luting agent type, and re-cementation on the retention of implant-supported CAD/CAM metal copings over short abutments. J. Adv. Prosthodont. 2018, 10, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kilicarslan, M.; Ozkan, P. Evaluation of retention of cemented laser-sintered crowns on unmodified straight narrow implant abutments. Int. J. Oral Maxillofac. Implants 2013, 28, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Korsch, M.; Obst, U.; Walther, W. Cement-associated peri-implantitis: A retrospective clinical observational study of fixed implant-supported restorations using a methacrylate cement. Clin. Oral Implants Res. 2014, 25, 797–802. [Google Scholar] [CrossRef] [PubMed]
- Nejatidanesh, F.; Savabi, O.; Jabbari, E. Effect of surface treatment on the retention of implant-supported zirconia restorations over short abutments. J. Prosthet. Dent. 2014, 112, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Nematollahi, F.; Beyabanaki, E.; Alikhasi, M. Cement selection for cement-retained implant-supported prostheses: A literature review. J. Prosthodont. 2016, 25, 599–606. [Google Scholar] [CrossRef] [PubMed]
Material | Type | Chemical Composition a | Application | Manufacturer |
---|---|---|---|---|
RelyX TempBond NE | temporary eugenol-free cement | P: zinc oxide L: white mineral Oil (Petroleum) | paste/paste | 3M Oral Care, Seefeld, Germany |
Meron | permanent glass ionomer cement | P: fluoraluminosilicate glass L: polyacrylic acid | capsule | VOCO, Cuxhaven, Germany |
Harvard Cement | permanent zinc phosphate cement | P: zinc oxide, magnesia L: phosphoric acid | powder/liquid | Hoffmann Dental, Hoppegarten, Germany |
Fuji I | permanent glass ionomer cement | P: fluoroaluminosilicate glass L: polyacrylic acid | powder/liquid | GJ, Tokyo, Japan |
Fuji II | permanent resin-modified glass ionomer cement | P: fluoroaluminosilicate glass L: methacrylated polyacrylic acid | paste/paste syringe | GJ, Tokyo, Japan |
Fuji Plus | permanent resin-modified glass ionomer cement | P: fluoraluminosilicate glass L: methacrylated polyacrylic acid | capsule | GJ, Tokyo, Japan |
Bifix Temp | temporary composite-based cement | B: triethylene glycol dimethacrylate C: benzolperoxid | paste/paste | VOCO, Cuxhaven, Germany |
Ketac Cem Plus | permanent resin-modified glass ionomer cement | P: fluoroaluminosilicate glass L: methacrylated polyacrylic acid | paste/paste syringe | 3M Oral Care, Seefeld, Germany |
Retention Measurement Time-Point | Mean Difference | Standard Error | p-Value | |
---|---|---|---|---|
T1 | T2 | 401.455 | 7.768 | <0.001 |
T1 | T3 | 461.429 | 7.559 | <0.001 |
T2 | T3 | 59.974 | 4.077 | <0.001 |
Covariable | Regression Coefficient | Standard Error | T | p-Value | Lower 95%-CI | Upper 95%-CI |
---|---|---|---|---|---|---|
(Intercept) | 726.98 | 33.14 | 21.94 | <0.001 | 661.37 | 792.59 |
RelyX Temp Bond NE | −462.24 | 44.18 | −10.46 | <0.001 | −549.72 | −374.75 |
Meron | 263.04 | 44.18 | 5.95 | <0.001 | 175.56 | 350.53 |
Fuji I | 213.52 | 44.18 | 4.83 | <0.001 | 126.03 | 301.00 |
Fuji II | 101.09 | 44.18 | 2.29 | 0.024 | 13.61 | 188.58 |
Fuji Plus | −68.49 | 44.18 | −1.55 | 0.124 | −155.98 | 18.99 |
Bifix Temp | −313.95 | 44.18 | −7.11 | 0.001 | −401.44 | −226.47 |
Ketac Cem Plus | −4.12 | 44.18 | −0.09 | 0.926 | −91.60 | 83.37 |
Hydrothermal Stress | −150.82 | 22.09 | −6.83 | <0.001 | −194.56 | −107.07 |
Covariable | Regression Coefficient | Standard Error | T | p-Value | Lower 95%-CI | Upper 95%-CI |
---|---|---|---|---|---|---|
(Intercept) | 285.62 | 12.13 | 23.55 | <0.001 | 261.60 | 309.63 |
RelyX Temp Bond NE | −218.62 | 16.17 | −13.52 | <0.001 | −250.54 | −186.59 |
Meron | −47.57 | 16.17 | −2.94 | 0.004 | −79.59 | −15.55 |
Fuji I | −12.59 | 16.17 | −0.78 | 0.438 | −44.62 | 19.43 |
Fuji II | −10.90 | 16.17 | −0.67 | 0.502 | −42.92 | 21.12 |
Fuji Plus | −28.16 | 16.17 | −1.74 | 0.084 | −60.19 | 3.86 |
Bifix Temp | −84.71 | 16.17 | −5.24 | <0.001 | −116.73 | −52.69 |
Ketac Cem Plus | −34.25 | 16.17 | −2.12 | 0.036 | −66.28 | −2.23 |
Hydrothermal Stress | −29.59 | 8.09 | −3.66 | <0.001 | −45.60 | −13.58 |
Covariable | Regression Coefficient | Standard Error | T | p-Value | Lower 95%-CI | Upper 95%-CI |
---|---|---|---|---|---|---|
(Intercept) | 204.36 | 8.47 | 24.12 | <0.001 | 187.59 | 221.14 |
RelyX Temp Bond NE | −149.63 | 11.30 | −13.25 | <0.001 | −172.00 | −127.26 |
Meron | −11.95 | 11.30 | −1.06 | 0.293 | −34.32 | 10.43 |
Fuji I | −3.17 | 11.30 | −0.28 | 0.779 | −25.54 | 19.20 |
Fuji II | −5.30 | 11.30 | −0.47 | 0.640 | −27.67 | 17.07 |
Fuji Plus | 2.04 | 11.30 | 0.18 | 0.857 | −20.33 | 24.41 |
Bifix Temp | −29.62 | 11.30 | −2.62 | 0.010 | −51.99 | −7.25 |
Ketac Cem Plus | −34.57 | 11.30 | −3.06 | 0.003 | −56.94 | −12.20 |
Hydrothermal Stress | −38.18 | 5.65 | −6.76 | <0.001 | −49.37 | −27.00 |
Retention Measurement Time-Point | Minimum | 1st Quartile | Median | Mean Value | SD | 3rd Quartile | Maximum |
---|---|---|---|---|---|---|---|
T1 | 119.70 | 410.40 | 619.20 | 617.70 | 273.65 | 852.20 | 1148.00 |
T2 | 27.28 | 190.00 | 226.70 | 216.20 | 81.67 | 259.20 | 399.30 |
T3 | 10.45 | 132.30 | 162.80 | 156.20 | 59.83 | 198.60 | 279.40 |
Luting Material | T1 | ||||||
---|---|---|---|---|---|---|---|
Minimum | 1st Quartile | Median | Mean Value | SD | 3rd Quartile | Maximum | |
RelyX Temp Bond NE | 119.70 | 155.60 | 191.70 | 189.30 | 47.47 | 224.39 | 280.90 |
Meron | 615.20 | 848.30 | 902.30 | 914.60 | 130.90 | 973.90 | 1148.00 |
Fuji I | 702.30 | 800.50 | 863.60 | 865.10 | 87.44 | 936.20 | 987.90 |
Harvard | 459.10 | 575.90 | 615.80 | 651.60 | 129.90 | 711.30 | 919.00 |
Fuji II | 593.30 | 636.60 | 740.10 | 752.70 | 135.13 | 829.50 | 991.70 |
Fuji Plus | 492.50 | 528.40 | 588.50 | 583.10 | 62.66 | 617.80 | 698.20 |
Bifix Temp | 158.30 | 204.00 | 334.50 | 337.60 | 137.92 | 466.40 | 538.30 |
Ketac Cem Plus | 310.00 | 370.80 | 642.20 | 647.50 | 295.46 | 899.80 | 1024.00 |
Luting Material | T2 | ||||||
---|---|---|---|---|---|---|---|
Minimum | 1st Quartile | Median | Mean Value | SD | 3rd Quartile | Maximum | |
RelyX Temp Bond NE | 27.28 | 38.89 | 49.09 | 52.21 | 19.11 | 65.85 | 98.55 |
Meron | 172.90 | 190.90 | 213.60 | 223.30 | 36.64 | 253.90 | 295.50 |
Fuji I | 192.30 | 232.20 | 251.40 | 258.20 | 44.51 | 292.50 | 338.30 |
Harvard | 206.70 | 225.70 | 258.10 | 270.80 | 46.68 | 308.70 | 340.30 |
Fuji II | 203.20 | 231.50 | 242.40 | 259.90 | 46.07 | 272.00 | 370.60 |
Fuji Plus | 159.40 | 209.10 | 249.20 | 242.70 | 42.93 | 265.10 | 325.30 |
Bifix Temp | 99.47 | 137.70 | 205.00 | 186.10 | 53.69 | 214.70 | 275.90 |
Ketac Cem Plus | 128.90 | 180.00 | 229.10 | 236.60 | 75.84 | 255.30 | 399.30 |
Luting Material | T3 | ||||||
---|---|---|---|---|---|---|---|
Minimum | 1st Quartile | Median | Mean Value | SD | 3rd Quartile | Maximum | |
RelyX Temp Bond NE | 10.45 | 22.63 | 30.98 | 35.64 | 19.15 | 47.93 | 66.78 |
Meron | 131.90 | 142.40 | 179.30 | 173.30 | 31.27 | 190.10 | 244.50 |
Fuji I | 91.93 | 129.40 | 165.30 | 182.10 | 61.05 | 237.30 | 279.40 |
Harvard | 140.20 | 153.50 | 185.30 | 185.30 | 30.48 | 211.60 | 234.00 |
Fuji II | 131.20 | 154.80 | 178.80 | 180.00 | 34.37 | 207.50 | 231.70 |
Fuji Plus | 132.80 | 164.90 | 188.60 | 187.30 | 31.77 | 209.10 | 244.20 |
Bifix Temp | 92.92 | 102.40 | 158.90 | 155.70 | 48.12 | 194.60 | 232.40 |
Ketac Cem Plus | 116.20 | 132.10 | 150.60 | 150.70 | 26.52 | 164.10 | 204.10 |
Storage Condition | T1 | ||||||
---|---|---|---|---|---|---|---|
Minimum | 1st Quartile | Median | Mean Value | SD | 3rd Quartile | Maximum | |
Hydrostress | 128.60 | 494.90 | 788.40 | 693.10 | 263.76 | 899.80 | 1086.00 |
Hydrothermal stress | 119.70 | 302.70 | 590.80 | 542.30 | 264.25 | 699.10 | 1148.00 |
Storage Condition | T2 | ||||||
---|---|---|---|---|---|---|---|
Minimum | 1st Quartile | Median | Mean Value | SD | 3rd Quartile | Maximum | |
Hydrostress | 47.93 | 214.30 | 241.30 | 231.00 | 75.11 | 265.50 | 399.30 |
Hydrothermal stress | 27.28 | 162.80 | 205.00 | 201.40 | 85.78 | 251.20 | 370.60 |
Storage Condition | T3 | ||||||
---|---|---|---|---|---|---|---|
Minimum | 1st Quartile | Median | Mean Value | SD | 3rd Quartile | Maximum | |
Hydrostress | 29.16 | 155.90 | 191.40 | 175.30 | 58.05 | 214.00 | 267.50 |
Hydrothermal stress | 10.45 | 116.80 | 142.90 | 137.20 | 55.74 | 167.60 | 279.40 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naumova, E.A.; Roth, F.; Geis, B.; Baulig, C.; Arnold, W.H.; Piwowarczyk, A. Influence of Luting Materials on the Retention of Cemented Implant-Supported Crowns: An In Vitro Study. Materials 2018, 11, 1853. https://doi.org/10.3390/ma11101853
Naumova EA, Roth F, Geis B, Baulig C, Arnold WH, Piwowarczyk A. Influence of Luting Materials on the Retention of Cemented Implant-Supported Crowns: An In Vitro Study. Materials. 2018; 11(10):1853. https://doi.org/10.3390/ma11101853
Chicago/Turabian StyleNaumova, Ella A., Felix Roth, Berit Geis, Christine Baulig, Wolfgang H. Arnold, and Andree Piwowarczyk. 2018. "Influence of Luting Materials on the Retention of Cemented Implant-Supported Crowns: An In Vitro Study" Materials 11, no. 10: 1853. https://doi.org/10.3390/ma11101853
APA StyleNaumova, E. A., Roth, F., Geis, B., Baulig, C., Arnold, W. H., & Piwowarczyk, A. (2018). Influence of Luting Materials on the Retention of Cemented Implant-Supported Crowns: An In Vitro Study. Materials, 11(10), 1853. https://doi.org/10.3390/ma11101853