Preparation and Characterization of Soybean Oil-Based Polyurethanes for Digital Doming Applications
Abstract
:1. Introduction
2. Results and Discussion
2.1. Selection of Fossil Polyol
2.2. Catalyst and Loading Selection
2.3. Selection of Diisocyanate
2.4. Formulations of Bio-Based Polyurethane
3. Experimental
3.1. Materials and Methods
3.2. Characterization Techniques
3.3. Digital Doming Polyurethane Synthesis
3.4. Bio-PU Synthesis and Determination of Bio-Carbon Percentage
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Li, Y.; Luo, X.; Hu, S. Bio-Based Polyols and Polyurethanes; Springer: Cham/Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK, 2015. [Google Scholar]
- Wicks, Z.W.; Jones, F.N.; Pappas, S.P. Organic Coatings Science and Technology, 2nd ed.; Wiley Interscience: Hoboken, NJ, USA, 1999; p. 180. [Google Scholar] [CrossRef]
- Stoy, D.; Freitag, W.; Beuschel, G. Resins for Coatings: Chemistry, Properties and Applications; Hanser Publishers: Munich, Germany, 1996; p. 458. [Google Scholar] [CrossRef]
- Chien, Y.-C.; Chuang, W.-T.; Jeng, U.-S.; Hsu, S.-H. Preparation, Characterization, and Mechanism for Biodegradable and Biocompatible Polyurethane Shape Memory Elastomers. ACS Appl. Mater. Interfaces 2017, 9, 5419–5429. [Google Scholar] [CrossRef] [PubMed]
- Akindoyo, J.O.; Beg, M.D.H.; Ghazali, S.; Islam, M.R.; Jeyaratnama, N.; Yuvaraj, A.R. Polyurethane types, synthesis and applications—A review. RSC Adv. 2016, 6, 114453–114482. [Google Scholar] [CrossRef]
- Silva, A.L.; Bordado, J.C. Recent Developments in Polyurethane Catalysis: Catalytic Mechanisms Review. Catal. Rev. 2004, 46, 31–51. [Google Scholar] [CrossRef]
- Blank, W.J.; He, Z.A.; Hessell, E.T. Catalysis of the isocyanate-hydroxyl reaction by non-tin catalysts. Prog. Org. Coat. 1999, 35, 19–29. [Google Scholar] [CrossRef]
- Sardon, H.; Pascual, A.; Mecerreyes, D.; Taton, D.; Cramail, H.; Hedrick, J.L. Synthesis of Polyurethanes Using Organocatalysis: A Perspective. Macromolecules 2015, 48, 3153–3165. [Google Scholar] [CrossRef]
- Website of ECHA. Available online: https://echa.europa.eu (accessed on 10 October 2016).
- Rosenfield, B.P. Raising product appeal through doming. Screen Print. 2003, 93, 36–39. [Google Scholar]
- Zhang, C.; Garrison, T.F.; Madbouly, S.A.; Kessler, M.R. Recent advances in vegetable oil-based polymers and their composites. Prog. Polym. Sci. 2017, 71, 91–143. [Google Scholar] [CrossRef]
- Ferdosian, F.; Pan, Z.; Gao, G.; Zhao, B. Bio-Based Adhesives and Evaluation for Wood Composites Application. Polymers 2017, 9, 70. [Google Scholar] [CrossRef]
- Petrovic, Z.S. Polyurethanes from Vegetable Oils. Polym. Rev. 2008, 48, 109–155. [Google Scholar] [CrossRef]
- Petrovic, Z.S.; Zhang, W.; Zlatanic, A.; Lava, C.C.; Ilavsky, M. Effect of OH/NCO molar ratio on properties of soy-based polyurethane networks. J. Polym. Environ. 2002, 10, 5–12. [Google Scholar] [CrossRef]
- Zhan, C.; Kessler, M.R. Bio-based Polyurethane Foam Made from Compatible Blends of Vegetable-Oil-based Polyol and Petroleum-based Polyol. ACS Sustain. Chem. Eng. 2015, 3, 743–749. [Google Scholar] [CrossRef]
- Allauddin, S.; Somisetti, V.; Ravinder, T.; Bvsk, R.; Narayan, R.; Raju, K.V.S.N. One-pot synthesis and physicochemical properties of high functionality soy polyols and their polyurethane-Urea coatings. Ind. Crops Prod. 2016, 85, 361–371. [Google Scholar] [CrossRef]
- Marcovich, N.E.; Kuranska, M.; Prociak, A.; Malewska, E.; Kulpa, K. Open cell semi-rigid polyurethane foams synthesized using palm oil-based bio-polyol. Ind. Crops Prod. 2017, 102, 88–96. [Google Scholar] [CrossRef]
- Bloise, M.E.; Carbone, L.; Colafemmina, G.; D’Accolti, L.; Mazzetto, S.E.; Vasapollo, G.; Mele, G. First Example of a Lipophilic Porphyrin-Cardanol Hybrid Embedded in a Cardanol Based Micellar Nanodispersion. Molecules 2012, 12, 12252–12261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dentuto, P.L.; Catucci, L.; Cosma, P.; Fini, P.; Agostiano, A.; D’Accolti, L.; Trevithick-Sutton, C.C.; Foote, C.S. Effect of cyclodextrins on the physicochemical properties of chlorophyll a in aqueous solution. J. Phys. Chem. B 2005, 109, 1313–1317. [Google Scholar] [CrossRef] [PubMed]
- Iannone, F.; Casiello, M.; Monopoli, A.; Cotugno, P.; Sportelli, M.C.; Picca, R.A.; Cioffi, N.; Dell’Anna, M.M.; Nacci, A. Ionic liquids/ZnO nanoparticles as recyclable catalyst for polycarbonate depolymerization. J. Mol. Catal. A Chem. 2017, 426, 107–116. [Google Scholar] [CrossRef]
- Annese, C.; D’Accolti, L.; Giambastiani, G.; Mangone, A.; Milella, A.; Tuci, G.; Fusco, C. Tunable Epoxidation of Single-Walled Carbon Nanotubes by Isolated Methyl (trifluoromethyl) dioxirane. Eur. J. Org. Chem. 2014, 1666–1671. [Google Scholar] [CrossRef]
- Annese, C.; D’Accolti, L.; Filardi, R.; Tommasi, I.; Fusco, C. Oxidative cleavage of lactams in water using dioxiranes: An expedient and environmentally-safe route to ω-nitro acids. Tetrahedron Lett. 2013, 54, 515–517. [Google Scholar] [CrossRef]
- Annese, C.; D’Accolti, L.; Fusco, C.; Curci, R. Selective Hydroxylation of Methane by Dioxiranes under Mild Conditions. Org. Lett. 2011, 13, 2142–2144. [Google Scholar] [CrossRef] [PubMed]
- Pantone, V.; Annese, C.; Fusco, C.; Fini, P.; Nacci, A.; Russo, A.; D’Accolti, L. One-Pot Conversion of Epoxidized Soybean Oil (ESO) into Soy-Based Polyurethanes by MoCl2O2 Catalysis. Molecules 2017, 22, 333–346. [Google Scholar] [CrossRef] [PubMed]
- Botrie, A.; Deng, Y.; Foucher, D.; Cooke, J. Silylated Polyurethane Moisture Cured Doming Resins. Patent US20060251902 A1, 9 May 2005. [Google Scholar]
- Khan, M.A.; Reynolds, N.; Williams, G.; Kendall, K.N. Processing of thermoset prepregs for high-volume applications and their numerical analysis using superimposed finite elements. Compos. Struct. 2015, 131, 917–926. [Google Scholar] [CrossRef]
- Antunes, A.; Henriques, A.; Lima, F.; Ferra, J.; Jorge Martins, J.; Carvalho, L.; Magalhales, F.D. Postformable and Self-Healing Finish Foil Based on Polyurethane Impregnated Paper. Ind. Eng. Chem. Res. 2016, 55, 12376–12386. [Google Scholar] [CrossRef]
- Dörr, D.; Schirmaier, F.J.; Henning, F.; Kärger, L. A viscoelastic approach for modeling bending behavior in finite element forming simulation of continuously fiber reinforced composites. Compos. Part A Appl. Sci. Manuf. 2017, 94, 113–123. [Google Scholar] [CrossRef]
- HyeLin, K.; YoungHee, L.; JungSoo, K.; ChaCheol, P.; Hyun, P.; HoHwan, C.; HanDo, K. Preparation and properties of crosslinkable waterborne polyurethane and polyurethane-acrylic hybrid emulsions and their crosslinked polymers. J. Polym. Res. 2016, 23, 240–251. [Google Scholar] [CrossRef]
- Alves, P.; Coelho, J.F.J.; Haack, J.; Rota, A.; Bruinink, A.; Gil, M.H. Surface modification and characterization of thermoplastic polyurethane. Eur. Polym. J. 2009, 45, 1412–1419. [Google Scholar] [CrossRef]
- Several International Agency Audit the Bio Composition: USDA (United States Department of Agriculture), DIN CERTCO (Germany). Available online: https://www.vincotte.com/home (accessed on 3 September 2015).
- Christman, D.L.; Merkl, B.A. Trimerization Catalysts and Organomercury Compounds as Co-Cat Alysts for the Preparation of NonCellular Polyurethane Elastomers. U.S. Patent 4,438,248, 20 March 1984. [Google Scholar]
- Rolph, M.S.; Markowska, A.L.J.; Warriner, C.N.; O’Reilly, R.K. Blocked isocyanates: From analytical and experimental considerations to non-polyurethane applications. Polym. Chem. 2016, 7, 7351–7364. [Google Scholar] [CrossRef]
- Lozada, Z.; Suppes, G.J.; Tu, Y.-C.; Hsieh, F.-H. Soy-Based Polyols from Oxirane Ring Opening by Alcoholysis Reaction. J. Appl. Polym. Sci. 2009, 113, 2552–2560. [Google Scholar] [CrossRef]
- Myers, N. Impact of curing conditions on the appearance of sealant before and after artificial weathering. In Science and Technology of Building Seals, Sealants, Glazing, and Waterproofing; ASTM Interbational: West Conshohocken, PA, USA, 1992; pp. 9–21. [Google Scholar] [CrossRef]
- ASTM D445-17a, Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (and Calculation of Dynamic Viscosity); ASTM International: West Conshohocken, PA, USA, 2017. [CrossRef]
- EN ISO 1675: Standard Test Method for Density. Available online: https://www.iso.org/standard/6290.html (accessed on 15 December 2016).
- EN ISO 661: Standard Method for Iodine Number. Available online: https://www.iso.org/standard/38145.html (accessed on 5 September 2016).
- ASTM D1652-11e1: Standard Test Method for Epoxy Content of Epoxy Resins; ASTM International: West Conshohocken, PA, USA, 2011. [CrossRef]
- ASTM D4274-16: Standard Test Methods for Testing Polyurethane Raw Materials: Determination of Hydroxyl Numbers of Polyols; ASTM International: West Conshohocken, PA, USA, 2016. [CrossRef]
Run | Polyol | Mn (g/mol) | n. OH (mgKOH/g) | IPDI Prep (g) | PU Products | Tg b (°C) | WCA c (°) | d (kg/dm3) |
---|---|---|---|---|---|---|---|---|
1 | Domes Resin | - | 398 | 20.5 | PU_MD | 59 | 77 | 1.01 |
2 | Alcupol C5710 | 290 | 565 | 33.6 | PU_C5710/T12 | 50 | 71 | 1.06 |
3 | Alcupol R3810 | 440 | 380 | 22.2 | PU_R3810/T12 | 45 | 79 | 1.06 |
4 | Alcupol R2510 | 670 | 240 | 14.6 | PU_R2510/T12 | 2 | 78 | 1.12 |
5 | Alcupol R1610 | 1050 | 155 | 9.3 | PU_R1610/T12 | −27 | 79 | 1.49 |
6 | Alcupol C3531 | 4800 | 35 | 2.1 | PU_C3531/T12 | −62 | 83 | 1.38 |
Run | Diisocyanate (g) | Product | Tg (°C) b | WCA (°) c | d (kg/dm3) |
---|---|---|---|---|---|
1 | pure IPDI (17) | PU_3810/K22/IPDI | 68 | 79 | 1.11 |
2 | H12MDI (19.7) | PU_3810/K22/H12MDI | 65 | 77 | 1.06 |
3 | HMDI (12.6) | PU_3810/K22/HMDI | 19 | 72 | 0.77 |
Polyols Mixture g | Diisocyanate H12MDI (g) | Kat-22 (g) (10% w/w) | % of Bio-C b | Bio-PU Products | Tg c (°C) | WCA d (°) | d (kg/dm3) | |
---|---|---|---|---|---|---|---|---|
Alcupol R3810 | Bio-Polyol | |||||||
20.2 | 4 | 19.8 | 2.42 | 11 | BIOPU_11 | 73 | 90 | 1.06 |
9.6 | 4 | 10.2 | 1.36 | 19 | BIOPU_19 | 62 | 75 | 1.05 |
9.2 | 6 | 10.4 | 1.52 | 25 | BIOPU_25 | 49 | 76 | 1.06 |
8 | 8 | 11.3 | 1.68 | 31 | BIOPU_31 | 48 | 82 | 1.08 |
Domes resin | IPDI prep | PhHg decanoate | 0 | PU_MD e | 59 | 77 | 1.01 |
Commercial Name | n. OH (mgKOH/g) | Density (kg/dm3) | Viscosity (cP) |
---|---|---|---|
Alcupol C5710 | 570 | 1.05 | 700 |
Alcupol R3810 | 380 | 1.03 | 350 |
Alcupol R2510 | 250 | 1.02 | 260 |
Alcupol R1610 | 160 | 1.02 | 250 |
Alcupol C3531 | 35 | 1.05 | 800 |
Alcupol C2831 | 28 | 1.06 | 1100 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pantone, V.; Laurenza, A.G.; Annese, C.; Comparelli, R.; Fracassi, F.; Fini, P.; Nacci, A.; Russo, A.; Fusco, C.; D’Accolti, L. Preparation and Characterization of Soybean Oil-Based Polyurethanes for Digital Doming Applications. Materials 2017, 10, 848. https://doi.org/10.3390/ma10080848
Pantone V, Laurenza AG, Annese C, Comparelli R, Fracassi F, Fini P, Nacci A, Russo A, Fusco C, D’Accolti L. Preparation and Characterization of Soybean Oil-Based Polyurethanes for Digital Doming Applications. Materials. 2017; 10(8):848. https://doi.org/10.3390/ma10080848
Chicago/Turabian StylePantone, Vincenzo, Amelita Grazia Laurenza, Cosimo Annese, Roberto Comparelli, Francesco Fracassi, Paola Fini, Angelo Nacci, Antonella Russo, Caterina Fusco, and Lucia D’Accolti. 2017. "Preparation and Characterization of Soybean Oil-Based Polyurethanes for Digital Doming Applications" Materials 10, no. 8: 848. https://doi.org/10.3390/ma10080848
APA StylePantone, V., Laurenza, A. G., Annese, C., Comparelli, R., Fracassi, F., Fini, P., Nacci, A., Russo, A., Fusco, C., & D’Accolti, L. (2017). Preparation and Characterization of Soybean Oil-Based Polyurethanes for Digital Doming Applications. Materials, 10(8), 848. https://doi.org/10.3390/ma10080848