Microwave-Assisted Synthesis of Nickel Oxide Nanoparticles Using Coriandrum sativum Leaf Extract and Their Structural-Magnetic Catalytic Properties
Abstract
:1. Introduction
2. Results and Discussion
Comparison of NiO Activity with Other Reported Methods
3. Materials and Methods
3.1. Materials
3.2. Preparation of Plant Extract
3.3. Synthesis of Nickel Oxide by Microwave Methods
3.4. Characterization
3.5. Antibacterial Activity
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Herranz, G.; Basletic, M.; Bibes, M.; Ranchal, R.; Hamzic, A.; Tafra, E.; Bouzehouane, K.; Jacquet, E.; Contour, J.P.; Barthelemy, A.; et al. Full oxide heterostructure combining a high-T-C diluted ferromagnet with a high-mobility conductor. Phys. Rev. B 2006, 73, 064403. [Google Scholar] [CrossRef]
- Bhushan, B. Springer Handbook of Nanotechnology; Springer: Heidelberg, Germany, 2004; pp. 1–43. [Google Scholar]
- Katelnikovas, A.; Barkauskas, J.; Ivanauskas, F.; Beganskiene, A.; Kareiva, A. Aqueous sol-gel synthesis route for the preparation of YAG: Evaluation of sol-gel process by mathematical regression model. J. Sol Gel Sci. Technol. 2007, 41, 193–201. [Google Scholar] [CrossRef]
- Prasad, D.H.; Ji, H.I.; Kim, H.R.; Son, J.W.; Kim, B.K.; Lee, H.W.; Lee, J.H. Effect of nickel nano-particle sintering on methane reforming activity of Ni-CGO cermet anodes for internal steam reforming SOFCs. Appl. Catal. B 2011, 101, 531–539. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.F.; Liu, H.R.; Yu, S.J.; Qin, Q.Z. Nanocrystalline NiO thin film anode with MgO coating for Li-ion batteries. Electrochim. Acta 2003, 48, 4253–4259. [Google Scholar] [CrossRef]
- Newnham, R.E.; Ruschau, G.R. Smart electroceramics. J. Am. Ceram. Soc. 1991, 74, 463–480. [Google Scholar] [CrossRef]
- Murray, C.B.; Norris, D.J.; Bawendi, M.G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715. [Google Scholar] [CrossRef]
- Valenzuela, M.A.; Jacobs, J.P.; Bosch, P.; Reije, S.; Zapata, B.; Brongersma, H.H. The influence of the preparation method on the surface structure of ZnAl2O4. Appl. Catal. A Gen. 1997, 148, 315–324. [Google Scholar] [CrossRef]
- Aguilar-Rios, G.; Valenzuela, M.A.; Salas, P.; Armendárisz, H.; Bosch, P.; Del Toro, G.; Silva, R.; Bertin, V.; Castillo, S.; Ramirez-Solis, A.; et al. Hydrogen interactions and catalytic properties of platinum-tin supported on zinc aluminate. Appl. Catal. A Gen. 1995, 127, 65–75. [Google Scholar] [CrossRef]
- Valenzuela, M.A.; Bosch, P.; Aguilar-Rios, P.; Montoya, G.; Schifter, I. Comparison Between Sol-Gel, Coprecipitation and Wet Mixing Synthesis of ZnAl2O4. J. Sol Gel Sci. Technol. 1997, 8, 107–110. [Google Scholar] [CrossRef]
- Zawadzki, M.; Wryzszcz, J. Hydrothermal synthesis of nanoporous zinc aluminate with high surface area. Mater. Res. Bull. 2000, 35, 109–114. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, S.; Lee, W.E. Molten salt synthesis of zinc aluminate powder. J. Eur. Ceram. Soc. 2007, 27, 3407–3412. [Google Scholar] [CrossRef]
- Dhak, D.; Pramanik, P. Particle size comparison of soft-chemically prepared transition metal (Co, Ni, Cu, Zn) aluminate spinels. J. Am. Ceram. Soc. 2006, 89, 1014–1021. [Google Scholar] [CrossRef]
- Manikandan, A.; Durka, M.; Arul Antony, S. One-Pot Flash Combustion Synthesis, Structural, Morphological and Opto-Magnetic Properties of Spinel MnxCo1−xAl2O4 (x = 0, 0.3, and 0.5) Nanocatalysts. J. Supercond. Nov. Magn. 2015, 28, 209–218. [Google Scholar] [CrossRef]
- Sadia, S.; Arifa, T.; Tayyaba, A.; Yongsheng, C. Plant Mediated Green Synthesis of CuO Nanoparticles: Comparison of Toxicity of Engineered and Plant Mediated CuO Nanoparticles towards Daphnia magna. Nanomaterials 2016, 6, 1–15. [Google Scholar]
- Ragupathi, C.; Judith Vijaya, J.; Thinesh kumar, R.; John Kennedy, L. Selective liquid phase oxidation of benzyl alcohol catalyzed by copper aluminate nanostructures. J. Mol. Struct. 2015, 1079, 182–188. [Google Scholar] [CrossRef]
- Ragupathi, C.; Judith Vijaya, J.; John Kennedy, L.; Bououdina, M. Combustion synthesis, structure, magnetic and optical properties of cobalt aluminate spinel nanocrystals. Ceram. Int. 2014, 40, 13067–13074. [Google Scholar] [CrossRef]
- Ragupathi, C.; John Kennedy, L.; Judith Vijaya, J. A new approach: Synthesis, characterization and optical studies of nano-zinc aluminate. Adv. Powder Technol. 2014, 25, 267–273. [Google Scholar] [CrossRef]
- Mohamed Basith, N.; Azhagu Raj, R.; AlSalhi, M.S.; Devanesan, S.; Askar Ali, J.; Rajasekar, S.; Sundaram, R.; Ragupathi, C. Structural, Magnetic, Optical, and Catalytic Properties of Fe3O4 Nanoparticles by the Sol-Gel Method. J. Supercond. Nov. Magn. 2016, 29, 2053–2058. [Google Scholar] [CrossRef]
- Meyer, H.; Bolarinwa, A.; Wolfram, G.; Linseisen, J. Bioavailability of Apigenin from Apiin-Rich Parsley in Humans. Ann. Nutr. Metab. 2006, 50, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Klinkaewnarong, J.; Swatsitang, E.; Masingboon, C.; Seraphin, S.; Maensiri, S. Synthesis and characterization of nanocrystalline HAp powders prepared by using Aloe vera plant extracted solution. Curr. Appl. Phys. 2010, 10, 521–525. [Google Scholar] [CrossRef]
- Sangeetha, G.; Rajeshwari, S.; Venckatesh, R. Green synthesis of zinc oxide nanoparticles by Aloe barbadensis miller leaf extract: Structure and optical properties. Mater. Res. Bull. 2011, 46, 2560–2566. [Google Scholar] [CrossRef]
- Shen, B.; Li, Y.; Wang Zh, F.; He, N.Y. Catalytic Activity of Palladium Supported on Magnetic Nanoparticles for Heck Reaction. Chin. J. Catal. 2007, 28, 509–513. [Google Scholar]
- Siamaki, A.R.; Abd El Rahman, S.K.; Abdelsayed, V.; El-Shall, M.S.; Gupton, B.F. Microwave-assisted synthesis of palladium nanoparticles supported on graphene: A highly active and recyclable catalyst for carbon–carbon cross-coupling reactions. J. Catal. 2011, 279, 1–11. [Google Scholar] [CrossRef]
- Venkatesan, K.; Rajan Babu, D.; Kavya Bai, M.P.; Supriya, R.; Vidya, R.; Madeswaran, S.; Anandan, P.; Arivanandhan, M.; Hayakawa, Y. Structural and magnetic properties of cobalt-doped iron oxide nanoparticles prepared by solution combustion method for biomedical applications. Int. J. Nanomed. 2015, 10, 189–198. [Google Scholar]
- Anandan, K.; Rajendran, V. Morphological and size effects of NiO nanoparticles via solvothermal process and their optical properties. Mater. Sci. Semicond. Process. 2011, 14, 43–47. [Google Scholar] [CrossRef]
- Ragupathi, C.; Vijaya, J.J.; John Kennedy, L.; Bououdina, M. Nanostructured copper aluminate spinels: Synthesis, structural, optical, magnetic, and catalytic properties. Mater. Sci. Semicond. Process. 2014, 24, 146–156. [Google Scholar] [CrossRef]
- Becheri, A.; Durr, M.; Nostro, P.L.; Baglioni, P. Synthesis and characterization of zinc oxide nanoparticles: Application to textiles as UV-absorbers. J. Nanopart. Res. 2008, 10, 679–689. [Google Scholar] [CrossRef]
- Singh, N.; Rashmi, A.T.; Singh, S.; Pasricha, R.; Haranath, D. High yield synthesis of intrinsic, doped and composites of nano-zinc oxide using novel combinatorial method. J. Colloid Interface Sci. 2012, 369, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Bose, P.; Ghosh, S.; Basak, S.; Naskar, M.K.I. A facile synthesis of mesoporous NiO nanosheets and their application in CO oxidation. J. Asian Ceram. Soc. 2016, 4, 1–5. [Google Scholar] [CrossRef]
- Elechiguerra, J.S.; Burt, J.L.; Morones, J.R.; Camacho-Bragado, A.; Gao, X.; Lara, H.H.; Yacaman, M.J. Interaction of silver nanoparticles with HIV-1. J. Nanobiotechnol. 2005, 3, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Mikolajska, E.; Calvino-Casilda, V.; Banares, M.A. Real-time Raman monitoring of liquid-phase cyclohexene epoxidation over alumina-supported vanadium and phosphorous catalysts. Appl. Catal. A Gen. 2012, 421/422, 164–171. [Google Scholar] [CrossRef]
- Kokkoris, M.; Trapalis, C.; Kossionides, S.; Vlastou, R.; Nsouli, B.; Grötzschel, R.; Spartalis, S.; Kordas, G.; Paradellis, T. RBS and HIRBS studies of nanostructured AgSiO2 sol-gel thin coatings. Nucl. Instrum. Methods Phys. Res. B 2002, 188, 67–72. [Google Scholar] [CrossRef]
- Stoimenov, P.; Klinger, R.; Marchin, G.; Klabunde, K. Metal Oxide Nanoparticles as Bactericidal Agents. Langmuir 2002, 18, 6679–6686. [Google Scholar] [CrossRef]
- Chaudhary, R.G.; Tanna, J.A.; Gandhare, N.V.; Rai, A.R.; Juneja, H.D. Synthesis of nickel nanoparticles: Microscopic investigation, an efficient catalyst and effective antibacterial activity. Adv. Mater. Lett. 2015, 6, 990–998. [Google Scholar] [CrossRef]
- Ali, A.A.; Athinarayanan, J.; Periasamy, V.S.; Alatiahj, K.A. Date Fruits-Assisted Synthesis and Biocompatibility Assessment of Nickel Oxide Nanoparticles Anchored onto Graphene Sheets for Biomedical Applications. Appl. Biochem. Biotechnol. 2017, 181, 725–734. [Google Scholar]
- Balamurugan, S.; Linda-Philip, A.J.; Vidya, R.S. A Versatile combustion synthesis and properties of nickel oxide (NiO) nanoparticles. J. Supercond. Nov. Magn. 2016, 29, 2207–2212. [Google Scholar] [CrossRef]
- Niasari, M.S. Host (nanocavity of zeolite-Y) guest (tetraaza[14]annulene copper(II) complexes) nanocomposite materials: Synthesis, characterization and liquid phase oxidation of benzyl alcohol. J. Mol. Catal. A 2006, 245, 192–199. [Google Scholar] [CrossRef]
- Niasari, M.S.; Bazarganipour, M.; Ganjali, M.R.; Norouzi, P. Bis(macrocyclic)dinickel (II) complexes containing phenylene bridges between 13-membered triaza dioxa macrocyclic ligands: In situ one pot template synthesis, characterization and catalytic oxidation of cyclohexene. Transit. Met. Chem. 2007, 32, 9–15. [Google Scholar] [CrossRef]
- Raghupathi, C.; Judith Vijaya, J.; Surendhar, P.; John Kennedy, L. Comparative investigation of nickel aluminate (NiAl2O4) nano and microstructures for the structural optical and catalytic properties. Polyhedron 2014, 72, 1–7. [Google Scholar] [CrossRef]
- Yvan, J.O.; Asencios Pedro, A.P.; Nascente Elisabete, M.A. Partial oxidation of methane on NiO-MgO-ZrO2catalysts. Fuel 2012, 97, 630–637. [Google Scholar]
- Musevi, S.J.; Aslani, A.; Motahari, H.; Salimi, H. Offer a novel method for size appraise of NiO nanoparticles by PL analysis: Synthesis by sonochemical method. J. Saudi Chem. Soc. 2016, 20, 245–252. [Google Scholar] [CrossRef]
- Manikandan, A.; Judith Vijaya, J.; John Kennedy, L. Comparative investigation of NiO nano- and microstructures for structural, optical and magnetic properties. Physica E 2013, 49, 117–123. [Google Scholar] [CrossRef]
- Selvam, N.C.S.; Thinesh Kumar, R.; Yogeenth, K.; John Kennedy, L.; Sekaran, G.; Judith Vijaya, J. Simple and rapid synthesis of cadmium oxide (CdO) nanospheres by a microwave-assisted combustion method. Powder Technol. 2011, 211, 250–255. [Google Scholar] [CrossRef]
- AlSalhi, M.S.; Devanesan, S.; Alfuraydi, A.A.; Vishnubalaji, R.; Munusamy, M.A.; Murugan, K.; Nicoletti, M.; Benelli, G. Green synthesis of silver nanoparticles using Pimpinella anisum seeds: Antimicrobial activity and cytotoxicity on human neonatal skin stromal cells and colon cancer cells. Int. J. Nanomed. 2016, 11, 4439–4449. [Google Scholar] [CrossRef] [PubMed]
Pathogens | Zone of Inhibition Diameter (mm) | ||||
---|---|---|---|---|---|
10 µg/mL | 20 µg/mL | 40 µg/mL | Positive Control Chloramphenicol (0.1 %) | Negative Control | |
Staphylococcus aureus | 10 ± 0.3 | 11 ± 0.9 | 13 ± 0.1 | 24 ± 0.9 | 0 |
Proteus vulgaris | 09 ± 0.1 | 10 ± 0.6 | 12 ± 0.4 | 19 ± 0.9 | 0 |
E. coli | 12 ± 0.3 | 13 ± 0.4 | 15 ± 0.6 | 25 ± 0.3 | 0 |
Pseudomonas aeruginosa | 08 ± 0.1 | 11 ± 0.3 | 13 ± 0.7 | 23 ± 0.6 | 0 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azhagu Raj, R.; AlSalhi, M.S.; Devanesan, S. Microwave-Assisted Synthesis of Nickel Oxide Nanoparticles Using Coriandrum sativum Leaf Extract and Their Structural-Magnetic Catalytic Properties. Materials 2017, 10, 460. https://doi.org/10.3390/ma10050460
Azhagu Raj R, AlSalhi MS, Devanesan S. Microwave-Assisted Synthesis of Nickel Oxide Nanoparticles Using Coriandrum sativum Leaf Extract and Their Structural-Magnetic Catalytic Properties. Materials. 2017; 10(5):460. https://doi.org/10.3390/ma10050460
Chicago/Turabian StyleAzhagu Raj, Ramakrishnan, Mohamad S. AlSalhi, and Sandhanasamy Devanesan. 2017. "Microwave-Assisted Synthesis of Nickel Oxide Nanoparticles Using Coriandrum sativum Leaf Extract and Their Structural-Magnetic Catalytic Properties" Materials 10, no. 5: 460. https://doi.org/10.3390/ma10050460
APA StyleAzhagu Raj, R., AlSalhi, M. S., & Devanesan, S. (2017). Microwave-Assisted Synthesis of Nickel Oxide Nanoparticles Using Coriandrum sativum Leaf Extract and Their Structural-Magnetic Catalytic Properties. Materials, 10(5), 460. https://doi.org/10.3390/ma10050460