The Mechanical Strength of Si Foams in the Mushy Zone during Solidification of Al–Si Alloys
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
Recoveries of Foams
4. Conclusions
- (1)
- The mechanical strength of Si foams in the mushy zone was estimated to maximize the efficiency of separating Si from the Al–Si alloy using a novel centrifuge.
- (2)
- The estimated mechanical strength of Si foams during centrifugation in the temperature range of 850–993 K was in the range of 62–81 kPa, which is about two orders of magnitude lower than the mechanical strength of the foam at RT (1.3–3.8 MPa).
- (3)
- To maximize the separating efficiency of Si from an Al-30% Si alloy, the optimal RS must exert a centrifugal stress in the range of 62–81 kPa.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Johnston, M.D.; Khajavi, L.; Li, M.; Sokhanvaran, S.; Barati, M. High-temperature refining of metallurgical-grade silicon: A review. JOM 2012, 64, 935–945. [Google Scholar] [CrossRef]
- Kim, K.; Shin, J.; Park, D. Separation of pure silicon from Al–Si alloy melts. Mater. Sci. Forum 2014, 783–786, 186–191. [Google Scholar] [CrossRef]
- Huang, F.; Chen, R.; Guo, J.; Ding, H.; Su, Y.; Yang, J.; Fu, H. Feasibility of directional solidification of silicon ingot by electromagnetic casting. Mater. Sci. Semicond. Process. 2012, 15, 380–385. [Google Scholar] [CrossRef]
- Cho, J.-Y.; Kim, K.-Y. Structure and compressive strength of silicon open-cell foam obtained by a centrifugal separation method. Met. Mater. Int. 2013, 19, 361–365. [Google Scholar] [CrossRef]
- Ganesan, S.; Chan, C.L.; Poirier, D.R. Permeability for flow parallel to primary dendrite arms. Mater. Sci. Eng. A 1992, 151, 97–105. [Google Scholar] [CrossRef]
- Vivès, C. Effects of forced electromagnetic vibrations during the solidification of aluminum alloys: Part I. Solidification in the presence of crossed alternating electric fields and stationary magnetic fields. Metall. Mater. Trans. B 1996, 27, 445–455. [Google Scholar] [CrossRef]
- Vivès, C. Effects of forced electromagnetic vibrations during the solidification of aluminum alloys: Part II. Solidification in the presence of colinear variable and stationary magnetic fields. Metall. Mater. Trans. B 1996, 27, 457–464. [Google Scholar] [CrossRef]
- Zuo, X.; Zhao, C.; Zhang, L.; Wang, E. Influence of growth rate and magnetic field on microstructure and properties of directionally solidified Ag-Cu eutectic alloy. Materials 2016, 9, 569. [Google Scholar] [CrossRef]
- Zhang, Y.; Cheng, X.; Zhong, H.; Xu, Z.; Li, L.; Gong, Y.; Miao, X.; Song, C.; Zhai, Q. Comparative study on the grain refinement of Al–Si alloy solidified under the impact of pulsed electric current and travelling magnetic field. Metals 2016, 6, 170. [Google Scholar] [CrossRef]
- RG, H. Fundamentals of Particle Technology; Midland Information Technology and Publishing: Leicestershire, UK, 2002. [Google Scholar]
- Cho, J.Y.; Kang, B.H.; Kim, K.Y. Extraction of pure Si from an Al–Si alloy melt during solidification by centrifugal force. Korean J. Met. Mater. 2011, 49, 874–881. [Google Scholar]
- Kim, K.Y.; Jeon, J.B.; Shin, J.S. Centrifugal separation of primary silicon crystal in solvent refining of silicon using al-30% Si alloy. Cryst. Res. Technol. 2014, 49, 761–767. [Google Scholar] [CrossRef]
- Yang, Y.; Song, B.; Yang, Z.; Song, G.; Cai, Z.; Guo, Z. The refining mechanism of super gravity on the solidification structure of Al-Cu alloys. Materials 2016, 9, 1001. [Google Scholar] [CrossRef]
- Kim, S.W.; Im, U.H.; Cha, H.C.; Kim, S.H.; Jang, J.E.; Kim, K.Y. Removal of primary iron rich phase from aluminum-silicon melt by centrifugal separation. Ch. Foundry 2013, 10, 112–117. [Google Scholar]
- Cho, J.; Kang, B.; Kim, K. Centrifugal separation of primary silicon during solidification in Al–Si alloy for solar silicon feedstock. Mater. Sci. Forum 2012, 706–709, 819–822. [Google Scholar] [CrossRef]
- Morita, K.; Miki, T. Thermodynamics of solar-grade-silicon refining. Intermetallics 2003, 11, 1111–1117. [Google Scholar] [CrossRef]
- Martorano, M.A.; Neto, J.B.F.; Oliveira, T.S.; Tsubaki, T.O. Refining of metallurgical silicon by directional solidification. Mater. Sci. Eng. B 2011, 176, 217–226. [Google Scholar] [CrossRef]
- Yoshikawa, T.; Morita, K. Refining of silicon during its solidification from a Si–Al melt. J. Cryst. Growth 2009, 311, 776–779. [Google Scholar] [CrossRef]
- Yoshikawa, T.; Arimura, K.; Morita, K. Boron removal by titanium addition in solidification refining of silicon with Si–Al melt. Metall. Mater. Trans. B 2005, 36, 837–842. [Google Scholar] [CrossRef]
- Yoshikawa, T.; Morita, K. Removal of B from Si by solidification refining with Si–Al melts. Metall. Mater. Trans. B 2005, 36, 731–736. [Google Scholar] [CrossRef]
- Visnovec, K.; Variawa, C.; Utigard, T.; Mitrašinović, A. Elimination of impurities from the surface of silicon using hydrochloric and nitric acid. Mater. Sci. Semicond. Process. 2013, 16, 106–110. [Google Scholar] [CrossRef]
- Khalifa, M.; Atyaoui, M.; Hajji, M.; Ouertani, R.; Ezzaouia, H. Purification of metallurgical-grade silicon powder via chemical attack by hydrofluoric and nitric acids followed by thermal treatment. Mater. Sci. Semicond. Process. 2013, 16, 1742–1746. [Google Scholar] [CrossRef]
- Zhang, L.; Tan, Y.; Li, J.; Liu, Y.; Wang, D. Study of boron removal from molten silicon by slag refining under atmosphere. Mater. Sci. Semicond. Process. 2013, 16, 1645–1649. [Google Scholar] [CrossRef]
- Hong, J.; Ma, D.; Wang, J.; Wang, F.; Sun, B.; Dong, A.; Li, F.; Bührig-Polaczek, A. Freckle defect formation near the casting interfaces of directionally solidified superalloys. Materials 2016, 9, 929. [Google Scholar] [CrossRef]
- Kindlimann, L.E.; Ansell, G.S. Dispersion strengthening austenitic stainless steels by nitriding. Metall. Mater. Trans. B 1970, 1, 507–515. [Google Scholar] [CrossRef]
- Friedl, O.; Motz, C.; Peterlik, H.; Puchegger, S.; Reger, N.; Pippan, R. Experimental investigation of mechanical properties of metallic hollow sphere structures. Metall. Mater. Trans. B 2008, 39, 135–146. [Google Scholar] [CrossRef]
- Koch, S.; Abad, M.D.; Renhart, S.; Antrekowitsch, H.; Hosemann, P. A high temperature nanoindentation study of Al-Cu wrought alloy. Mater. Sci. Eng. A 2015, 644, 218–224. [Google Scholar] [CrossRef]
- Zheng, K.; Lukovic, M.; De Schutter, G.; Ye, G.; Taerwe, L. Elastic modulus of the alkali-silica reaction rim in a simplified calcium-alkali-silicate system determined by nano-indentation. Materials 2016, 9, 787. [Google Scholar] [CrossRef]
- Abramoff, M.D.; Magalhães, P.J.; Ram, S.J. Image processing with ImageJ. Biophoton. Int. 2004, 11, 36–42. [Google Scholar]
- Nishida, Y.; Ohira, G. Modelling of infiltration of molten metal in fibrous preform by centrifugal force. Acta Mater. 1999, 47, 841–852. [Google Scholar] [CrossRef]
- Poirire, D.; Geiger, G. Transport Phenomena in Materials Processing; TMS: Warrendale, PA, USA, 1994. [Google Scholar]
- Hayashi, M. High temperature strength of heat resisting cast aluminum alloy AC8A. J. Jap. Found. Soc. 1986, 58, 473–478. [Google Scholar]
- Cao, J.; Lu, J.; Jiang, L.; Wang, Z. Sinterability, microstructure and compressive strength of porous glass-ceramics from metallurgical silicon slag and waste glass. Ceram. Int. 2016, 42, 10079–10084. [Google Scholar] [CrossRef]
- Ji, S.; Gu, Q.; Xia, B. Porosity dependence of mechanical properties of solid materials. J. Mater. Sci. 2006, 41, 1757–1768. [Google Scholar] [CrossRef]
- Ashby, M.F.; Evans, A.G.; Fleck, N.A.; Gibson, L.J.; Hutchinson, J.W.; Wadley, H.N.G. Metal Foams; Butterworth & Heinemann: Woburn, UK, 2000. [Google Scholar]
RS (rpm) | Al (wt %) | Si (wt %) |
---|---|---|
300 | 52.4 | 46.9 |
400 | 41.4 | 58.2 |
500 | 37.6 | 62.1 |
600 | 36.4 | 63.2 |
700 | 31.7 | 67.6 |
800 | 26.6 | 72.6 |
Properties | RS (rpm) | ||||||
---|---|---|---|---|---|---|---|
300 | 400 | 500 | 600 | 700 | 800 | ||
Peak stress(MPa) | 23.3 ± 2.44 | 9.7 ± 2.32 | 5.9 ± 3.54 | 5.3 ± 3.46 | 3.7 ± 1.77 | 1.3 ± 0.67 | |
Porosity | Open pore | 0.16 | 0.46 | 0.64 | 0.76 | 0.77 | 0.7 |
Closed pore | 0.25 | 0.10 | 0.04 | 0.02 | 0.01 | 0.03 | |
Average size of pore (m2) × 103 | 3.16 ± 7.80 | 6.55 ± 3.23 | 1.30 ± 2.95 | 1.94 ± 2.35 | 1.69 ± 2.40 | 1.28 ±2.09 | |
Aspect ratio of pores | 2.17 ± 1.00 | 2.2 ± 0.93 | 2.12 ± 0.92 | 2.24 ± 0.98 | 2.36 ± 1.02 | 2.35 ± 1.21 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, J.T.; Youn, J.W.; Seo, S.Y.; Kim, K.Y.; Kim, S.J. The Mechanical Strength of Si Foams in the Mushy Zone during Solidification of Al–Si Alloys. Materials 2017, 10, 337. https://doi.org/10.3390/ma10040337
Lim JT, Youn JW, Seo SY, Kim KY, Kim SJ. The Mechanical Strength of Si Foams in the Mushy Zone during Solidification of Al–Si Alloys. Materials. 2017; 10(4):337. https://doi.org/10.3390/ma10040337
Chicago/Turabian StyleLim, Jeon Taik, Ji Won Youn, Seok Yong Seo, Ki Young Kim, and Suk Jun Kim. 2017. "The Mechanical Strength of Si Foams in the Mushy Zone during Solidification of Al–Si Alloys" Materials 10, no. 4: 337. https://doi.org/10.3390/ma10040337
APA StyleLim, J. T., Youn, J. W., Seo, S. Y., Kim, K. Y., & Kim, S. J. (2017). The Mechanical Strength of Si Foams in the Mushy Zone during Solidification of Al–Si Alloys. Materials, 10(4), 337. https://doi.org/10.3390/ma10040337