Next Article in Journal
Bioactive Glass-Ceramic Scaffolds from Novel ‘Inorganic Gel Casting’ and Sinter-Crystallization
Next Article in Special Issue
Electrodeposited Porous Mn1.5Co1.5O4/Ni Composite Electrodes for High-Voltage Asymmetric Supercapacitors
Previous Article in Journal
Amorphous InGaMgO Ultraviolet Photo-TFT with Ultrahigh Photosensitivity and Extremely Large Responsivity
Previous Article in Special Issue
Deep Eutectic Solvent Synthesis of LiMnPO4/C Nanorods as a Cathode Material for Lithium Ion Batteries
Open AccessArticle

Coaxial MoS2@Carbon Hybrid Fibers: A Low-Cost Anode Material for High-Performance Li-Ion Batteries

1
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Lab of Graphene (NPU), Xi’an 710072, China
2
Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA
*
Authors to whom correspondence should be addressed.
Academic Editor: Haolin Tang
Materials 2017, 10(2), 174; https://doi.org/10.3390/ma10020174
Received: 13 January 2017 / Revised: 6 February 2017 / Accepted: 10 February 2017 / Published: 13 February 2017
(This article belongs to the Special Issue Materials for Electrochemical Capacitors and Batteries)
A low-cost bio-mass-derived carbon substrate has been employed to synthesize MoS2@carbon composites through a hydrothermal method. Carbon fibers derived from natural cotton provide a three-dimensional and open framework for the uniform growth of MoS2 nanosheets, thus hierarchically constructing coaxial architecture. The unique structure could synergistically benefit fast Li-ion and electron transport from the conductive carbon scaffold and porous MoS2 nanostructures. As a result, the MoS2@carbon composites—when serving as anodes for Li-ion batteries—exhibit a high reversible specific capacity of 820 mAh·g−1, high-rate capability (457 mAh·g−1 at 2 A·g−1), and excellent cycling stability. The use of bio-mass-derived carbon makes the MoS2@carbon composites low-cost and promising anode materials for high-performance Li-ion batteries. View Full-Text
Keywords: MoS2; composite; anode; low cost; Li-ion battery MoS2; composite; anode; low cost; Li-ion battery
Show Figures

Figure 1

MDPI and ACS Style

Zhou, R.; Wang, J.-G.; Liu, H.; Liu, H.; Jin, D.; Liu, X.; Shen, C.; Xie, K.; Wei, B. Coaxial MoS2@Carbon Hybrid Fibers: A Low-Cost Anode Material for High-Performance Li-Ion Batteries. Materials 2017, 10, 174. https://doi.org/10.3390/ma10020174

AMA Style

Zhou R, Wang J-G, Liu H, Liu H, Jin D, Liu X, Shen C, Xie K, Wei B. Coaxial MoS2@Carbon Hybrid Fibers: A Low-Cost Anode Material for High-Performance Li-Ion Batteries. Materials. 2017; 10(2):174. https://doi.org/10.3390/ma10020174

Chicago/Turabian Style

Zhou, Rui; Wang, Jian-Gan; Liu, Hongzhen; Liu, Huanyan; Jin, Dandan; Liu, Xingrui; Shen, Chao; Xie, Keyu; Wei, Bingqing. 2017. "Coaxial MoS2@Carbon Hybrid Fibers: A Low-Cost Anode Material for High-Performance Li-Ion Batteries" Materials 10, no. 2: 174. https://doi.org/10.3390/ma10020174

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop