Preparation, Characterization and Thermo-Chromic Properties of EVA/VO2 Laminate Films for Smart Window Applications and Energy Efficiency in Building
Abstract
:1. Introduction
2. Results and Discussion
2.1. Crystal Structures of VO2
2.2. Morphology
2.3. Thermal Behaviors
2.4. Thermo-Chromic Behaviors
2.5. Structure-Properties of EVA/VO2 Composites
3. Materials and Methods
3.1. Materials
3.2. Synthesis of VO2
3.3. Preparation of EVA and EVA/VO2 Films
3.3.1. Melt Mixing Process
3.3.2. Solution Mixing Process
3.4. Characterizations
3.4.1. Thermal Analysis
3.4.2. Testing of the EVA Based Films
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Pérez-Lombard, L.; Ortiz, J.; Pout, C. A review on buildings energy consumption information. Energy Build. 2008, 40, 394–398. [Google Scholar] [CrossRef]
- Miyazaki, H.; Kusumoto, N.; Sasaki, S.; Sakamoto, N.; Wakiya, N.; Suzuki, H. Thermochromic tungsten doped VO2-SiO2 nano-particle synthesized by chemical solution deposition technique. J. Ceram. Soc. Jpn. 2009, 117, 970–972. [Google Scholar] [CrossRef]
- Miyazaki, H.; Yoshida, K.; Sasaki, S.; Sakamoto, N.; Wakiya, N.; Suzuki, H.; Ota, T. Fabrication of transition temperature controlled W-doped VO2 nano particles by aqueous solution. J. Ceram. Soc. Jpn. 2011, 119, 522–524. [Google Scholar] [CrossRef]
- Wang, N.; Liu, S.; Zeng, X.T.; Magdassi, S.; Long, Y. Mg/W-codoped vanadium dioxide thin films with enhanced visible transmittance and low phase transition temperature. J. Mater. Chem. C 2015, 3, 6771–6777. [Google Scholar] [CrossRef]
- Wang, S.; Liu, M.; Kong, L.; Long, Y.; Jiang, X. Recent progress in VO2 smart coatings: Strategies to improve the thermochromics properties. Prog. Mater. Sci. 2016, 81, 1–54. [Google Scholar] [CrossRef]
- Takahashi, I.; Hibino, M.; Kudo, T. Thermochromic properties of double-doped VO2 thin films prepared by a wet coating method using polyvanadate-based sols containing W and Mo or W and Ti. Jpn. J. Appl. Phys. 2001, 40, 1391–1395. [Google Scholar] [CrossRef]
- Burkhardt, W.; Christmann, T.; Meyer, B.K.; Niessner, W.; Schalch, D.; Scharmann, A. W- and F-doped VO2 films studied by photoelectron spectrometry. Thin Solid Films 1999, 345, 229–235. [Google Scholar] [CrossRef]
- Barreca, D.; Depero, L.E.; Franzato, E.; Rizzi, G.A.; Sangaletti, L.; Tondello, E.; Vettori, U. Vanadyl precursors used to modify the properties of vanadium oxide thin films obtained by chemical vapor deposition. J. Electrochem. Soc. 1999, 146, 551–558. [Google Scholar] [CrossRef]
- Guinneton, F.; Sauques, L.; Valmalette, J.C.; Cros, F.; Gavarri, J.R. Optimized infrared switching properties in thermochromic vanadium dioxide thin films: Role of deposition process and microstructure. Thin Solid Films 2004, 446, 287–295. [Google Scholar] [CrossRef]
- Kang, L.T.; Gao, Y.F.; Luo, H.J. A novel solution process for the synthesis of VO2 thin films with excellent thermochromic properties. ACS Appl. Mater. Interface 2009, 1, 2211–2218. [Google Scholar] [CrossRef] [PubMed]
- Kalagi, S.S.; Dalavi, D.S.; Pawar, R.C.; Tarwal, N.L.; Mali, S.S.; Patil, P.S. Polymer assisted deposition of electrochromic tungsten oxide thin films. J. Alloys Compd. 2010, 493, 335–339. [Google Scholar] [CrossRef]
- Peng, Z.; Jiang, W.; Liu, H. Synthesis and electrical properties of tungsten-doped vanadium dioxide nanopowders by thermolysis. J. Phys. Chem. C 2007, 111, 1119–1122. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Zhang, X.; Deng, Y.; Zhong, Y.; Huang, C.; Liu, X.; Liu, X.; Mo, S. Influence of different additives on the synthesis of VO2 polymorphs. Ceram. Int. 2013, 39, 8363–8376. [Google Scholar] [CrossRef]
- Zhou, J.; Gao, Y.; Liu, X.; Chen, Z.; Dai, L.; Cao, C.; Luo, H.; Kanahira, M.; Sun, C.; Yan, L. Mg-doped VO2 nanoparticles: Hydrothermal synthesis, enhanced visible transmittance and decreased metal-insulator transition temperature. Phys. Chem. Chem. Phys. 2013, 15, 7505–7511. [Google Scholar] [CrossRef] [PubMed]
- Lv, W.; Huang, D.; Chen, Y.; Qiu, Q.; Luo, Z. Synthesis and characterization of Mo–W co-doped VO2(R) nano-powders by the microwave-assisted hydrothermal method. Ceram. Int. 2014, 40, 12661–12668. [Google Scholar] [CrossRef]
- Popuri, S.R.; Miclau, M.; Artemenko, A.; Labrugere, C.; Villesuzanne, A.; Pollet, M. Rapid hydrothermal synthesis of VO2(B) and its conversion to thermochromic VO2(M1). Inorg. Chem. 2013, 52, 4780–4785. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Cheng, J.; Zhang, J.; Yang, X. Simple and facile synthesis W-doped VO2(M) powder based on hydrothermal Pathway. Int. J. Electrochem. 2015, 10, 6014–6019. [Google Scholar]
- Chen, L.; Huang, C.; Xu, G.; Miao, L.; Shi, J.; Zhou, J.; Xiao, X. Synthesis of thermochromic W-Doped VO2 (M/R) nanopowders by a simple solution-based process. J. Nanomater. 2012, 2012. [Google Scholar] [CrossRef]
- Shi, J.; Zhou, S.; You, B.; Wu, L. Preparation and thermochromic property of tunsten-doped vanadium dioxide particle. Sol. Energy Mater. Sol. Cells 2007, 91, 1856–1862. [Google Scholar] [CrossRef]
- Suzuki, H.; Yamaguchi, K.; Miyazaki, H. Fabrication of thermochromic composite using monodispersed VO2 coated SiO2 nanoparticles prepared by modified chemical solution deposition. Compos. Sci. Technol. 2007, 67, 3487–3490. [Google Scholar] [CrossRef]
- Valmalette, J.C.; Gavarri, J.R. High efficiency thermochromic VO2(R) resulting from the irreversible transformation of VO2(B). Mater. Sci. Eng. B 1998, 54, 168–173. [Google Scholar] [CrossRef]
- Ji, S.; Zhang, F.; Jin, P. Preparation of high performance pure single phase VO2 nanopowder by hydrothermally reducing the V2O5 gel. Sol. Energy Mater. Sol. Cells 2011, 95, 3520–3526. [Google Scholar] [CrossRef]
- Ji, S.; Zhao, Y.; Zhang, F.; Jin, P. Direct formation of single crystal VO2(R) nanorods by one-step hydrothermal treatment. J. Cryst. Growth 2010, 312, 282–286. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Zhang, X.; Mo, S.; Wu, W.; Niu, F.; Zhong, Y.; Liu, X.; Huang, C.; Liu, X. Direct preparation and formation mechanism of belt-like doped VO2(M) with rectangular cross sections by one-step hydrothermal route and their phase transition and optical switching properties. J. Alloys Compd. 2013, 570, 104–113. [Google Scholar] [CrossRef]
- Cao, C.; Gao, Y.; Luo, H. Pure single-crystal rutile vanadium dioxide powders: Synthesis, mechanism and phase-transformation property. J. Phys. Chem. 2008, 112, 18810–18814. [Google Scholar] [CrossRef]
- Zhang, S.; Shang, B.; Yang, J.; Yan, W.; Wei, S.; Xie, Y. From VO2(B) to VO2(A) nanobelts: First hydrothermal transformation, spectroscopic study and first principles calculation. Phys. Chem. 2011, 13, 15873–15881. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Zhang, H.; Chai, H.; Sun, Y.; Yang, T.; Cheng, H.; Chen, L.; Miao, L.; Xu, G. A cost-effective process to prepare VO2(M) powder and films with superior thermochromic properties. Mater. Res. Bull. 2014, 51, 6–12. [Google Scholar] [CrossRef]
- Whittaker, L.; Wu, T.; Patridge, J.; Sambandamurthy, G.; Banerjee, S. Distinctive finite size effects on the phase diagram and metal–insulator transitions of tungsten-doped vanadium (IV) oxide. J. Mater. Chem. 2011, 21, 5580–5592. [Google Scholar] [CrossRef]
- Suchorski, Y.; Rihko-Struckmann, L.; Klose, F.; Ye, Y.; Alandjiyska, M.; Sundmacher, K.; Weiss, H. Evolution of oxidation states in vanadium-based catalysts under conventional XPS conditions. Appl. Surf. Sci. 2005, 249, 231–237. [Google Scholar] [CrossRef]
- Zhang, J.M.; Zhang, Y.; Xu, K.W.; Ji, V. General compliance transformation relation and applications for anisotropic cubic metals. Mater. Lett. 2008, 62, 1328–1332. [Google Scholar] [CrossRef]
- Popuri, S.R.; Artemenko, A.; Labrugere, C.; Miclau, M.; Villesuzanne, A.; Pollet, M. VO2(A): Reinvestigation of crystal structure, phase transition and crystal growth mechanisms. J. Solid State Chem. 2014, 213, 79–86. [Google Scholar] [CrossRef]
- Oka, Y.; Ohtani, T.; Yamamoto, N.; Takada, T. Phase Transition and Electrical Properties of VO2 (A). Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi 1989, 97, 1134–1137. [Google Scholar] [CrossRef]
- Li, M.; Kong, F.; Li, L.; Zhang, Y.; Chen, L.; Yan, W.; Li, G. Synthesis, field-emission and electric properties of metastable phase VO2(A) ultra-long nanobelts. Dalton Trans. 2011, 40, 10961–10965. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Cao, X.; Kamyshny, A.; Law, J.W.; Magdassi, S.; Long, Y. VO2/Si–Al gel nanocomposite thermochromic smart foils: Largely enhanced luminous transmittance and solar modulation. J. Colloid Interface Sci. 2014, 427, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Cai, Y.; Hu, X.; Long, Y. VO2/hydrogel hybrid nanothermochromic material with ultra-high solar modulation and luminous transmission. J. Mater. Chem. A 2015, 3, 1121–1126. [Google Scholar] [CrossRef]
- Brandrup, J.; Immergut, E.H.; Grulke, E.A. Polymer Handbook; Wiley-Interscience: New York, NY, USA, 1989. [Google Scholar]
Tungsten (% Atom) | d-Spacing (nm) | Crystal Size (nm) | |
---|---|---|---|
From XRD | From TEM | ||
0 | 0.3199 | 0.3550 | 26.9 |
0.5 | 0.3209 | 0.3586 | 22.2 |
1.0 | 0.3202 | n/a | 25.6 |
2.0 | 0.3209 | 0.2460 | 28.1 |
Properties | EVA Films | EVA/VO2 (1 wt %) Films | ||
---|---|---|---|---|
Melt Mixing | Solution Mixing | Melt Mixing | Solution Mixing | |
Modulus (MPa) | 14.29 (±0.99) | 4.70 (±0.73) | 13.12 (±1.23) | 5.31 (±0.34) |
Ultimate tensile Stress (MPa) | 29.75 (±3.75) | 13.63 (±2.00) | 32.25 (±1.39) | 13.89 (±0.76) |
Strain (%) | 604 (±37) | 802 (±17.81) | 696 (±9) | 745 (±14.72) |
Toughness (J) | 6.20 (±0.87) | 7.14 (±0.59) | 7.58 (±0.39) | 6.10 (±0.49) |
Gel content (%) | 83.62 (±3.49) | 45.90 (±1.11) | 93.25 (±1.89) | 34.80 (±2.20) |
Visible light transmittance (%) | 85.98 (±0.97) | 89.95 (±0.54) | 31.60 (±0.73) | 73.73 (±0.56) |
Chemicals (Trade Names) | Formulation/Content (phr) | |
---|---|---|
EVA-1 | EVA-2 | |
EVA Polymer (Evaflex 150) | 100 | 100 |
Primary Antioxidant (Tinnuvin 770) | 0.1 | 0.1 |
Secondary Antioxidant (Irganox PS 802FD) | 0.2 | 0.2 |
Peroxide Curing Agent (Luperox 101) | 1.5 | 1.5 |
VO2 | 0 | 1 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srirodpai, O.; Wootthikanokkhan, J.; Nawalertpanya, S.; Yuwawech, K.; Meeyoo, V. Preparation, Characterization and Thermo-Chromic Properties of EVA/VO2 Laminate Films for Smart Window Applications and Energy Efficiency in Building. Materials 2017, 10, 53. https://doi.org/10.3390/ma10010053
Srirodpai O, Wootthikanokkhan J, Nawalertpanya S, Yuwawech K, Meeyoo V. Preparation, Characterization and Thermo-Chromic Properties of EVA/VO2 Laminate Films for Smart Window Applications and Energy Efficiency in Building. Materials. 2017; 10(1):53. https://doi.org/10.3390/ma10010053
Chicago/Turabian StyleSrirodpai, Onruthai, Jatuphorn Wootthikanokkhan, Saiwan Nawalertpanya, Kitti Yuwawech, and Vissanu Meeyoo. 2017. "Preparation, Characterization and Thermo-Chromic Properties of EVA/VO2 Laminate Films for Smart Window Applications and Energy Efficiency in Building" Materials 10, no. 1: 53. https://doi.org/10.3390/ma10010053
APA StyleSrirodpai, O., Wootthikanokkhan, J., Nawalertpanya, S., Yuwawech, K., & Meeyoo, V. (2017). Preparation, Characterization and Thermo-Chromic Properties of EVA/VO2 Laminate Films for Smart Window Applications and Energy Efficiency in Building. Materials, 10(1), 53. https://doi.org/10.3390/ma10010053