Nano-Structured Gratings for Improved Light Absorption Efficiency in Solar Cells
Abstract
:1. Introduction
2. FDTD Simulation Method
3. Design of GaAs-Based Solar Cell
4. Optimization of Nano-Structured Solar Cell
4.1. Rectangular Shaped Nano-Structured Solar Cell
4.2. Trapezoidal Shaped Nano-Structured Solar Cell
4.3. Triangular Shaped Nano-Structured Solar Cell
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
PV | Photovoltaics |
e-h | Electron and hole |
PEC | Photoelectrolysis cell |
GaAs | gallium arsenide |
SW | Subwavelength |
E | Electric |
ZO | zero-order |
H | Magnetic |
UV | Ultraviolet |
1-D | One-dimensional |
FDTD | Finite difference time domain |
TM | Transverse magnetic |
nm | Nanometer |
µm | Micrometer |
AR | Anti-reflective |
DC | Duty cycle |
T | Transmission |
R | Reflection |
A | Absorption |
References
- Holsten, H.H. Solar Energy Provides Electricity in Remote Areas. Available online: http://sciencenordic.com/solar-energy-provides-electricity-remote-areas (accessed on 8 August 2016).
- Burger, B. Photovoltaics Report. Available online: https://www.ise.fraunhofer.de/de/downloads/pdf-files/aktuelles/photovoltaics-report-in-englischer-sprache.pdf (accessed on 8 August 2016).
- Williams, R. Becquerel Photovoltaic Effect in Binary Compounds. J. Chem. Phys. 1960, 32, 1505–1514. [Google Scholar] [CrossRef]
- Juodkazis, K.; Juodkazytė, J.; Jelmakas, E.; Kalinauskas, P.; Valsiūnas, I.; Miečinskas, P.; Juodkazis, S. Photoelectrolysis of water: Solar Hydrogen—Achievements and Perspectives. Opt. Exp. 2010, 18, 147–160. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, Y.; Liu, N.; Han, Y.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S.; Zhong, J.; Kang, Z. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015, 347, 970–974. [Google Scholar] [CrossRef] [PubMed]
- Wahab, N.B.A.; Khan, S.A. Optimum doping for n+p silicon solar cell and the J-V characteristic. In Proceedings of the 2012 International Conference on Enabling Science and Nanotechnology (ESciNano), Johor Bahru, Malaysia, 5–7 January 2012.
- Yang, D.; Yu, X.; Li, X.; Wang, P.; Wang, L. Germanium-doped crystal silicon for solar cells. In Proceedings of the 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Shanghai, China, 1–4 November 2010.
- Chasteen, S.; Chaddha, R. How Do Solar Panels Work? Available online: http://www.livescience.com/41995-how-do-solar-panels-work.html (accessed on 8 August 2016).
- Wang, U. Clearing the Way for Cheap, Flexible Solar Panels. Available online: https://www.technologyreview.com/s/421190/clearing-the-way-for-cheap-flexible-solar-panels/ (accessed on 1 June 2016).
- Badawy, W.A. A review on solar cells from Si-single crystals to porous materials and quantum dots. J. Adv. Res. 2015, 6, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Lungenschmied, C.; Dennler, G.; Neugebauer, H.; Sariciftci, S.N.; Glatthaar, M.; Meyer, T.; Meyer, A. Flexible, long-lived, large-area, organic solar cells. Sol. Energy Mater. Sol. Cells 2007, 91, 379–384. [Google Scholar] [CrossRef]
- Broggi, A.; Tomasi, I.; Bianchi, L.; Marrocchi, A.; Vaccaro, L. Small Molecular Aryl Acetylenes: Chemically Tailoring High-Efficiency Organic Semiconductors for Solar Cells and Field-Effect Transistors. Chem. Plus. Chem. 2014, 79, 486–507. [Google Scholar] [CrossRef]
- Cheng, Y.J.; Yang, S.H.; Hsu, C.S. Synthesis of conjugated polymers for organic solar cell applications. Chem. Rev. 2009, 109, 5868–5923. [Google Scholar] [CrossRef] [PubMed]
- Sauvage, F.; Chen, D.; Comte, P.; Huang, L.H.F.; Cheng, Y.; Caruso, R.A.; Graetzel, M. Dye-Sensitized Solar Cells Employing a Single Film of Mesoporous TiO2 Beads Achieve Power Conversion Efficiencies Over 10%. ACS Nano 2010, 4, 4420–4425. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Chen, H.; Long, J.; Wang, G.; Tan, S. Novel D–A–π–A organic dyes based on 3-dimensional triarylamine and benzothiadiazole derivatives for high-performance dye-sensitized. J. Power Sources 2016, 326, 438–446. [Google Scholar] [CrossRef]
- Hu, Y.; Robertson, N. Atypical organic dyes used as sensitizers for efficient dye-sensitized solar cells. Front. Optoelectron. 2016, 9, 38–43. [Google Scholar] [CrossRef]
- Law, M.; Greene, L.E.; Johnson, J.C.; Saykally, R.; Yang, A.P. Nanowire dye-sensitized solar cells. Nat. Mater. 2005, 4, 455–459. [Google Scholar] [CrossRef] [PubMed]
- Kamat, P.V. Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J. Phys. Chem. C 2008, 112, 18737–18753. [Google Scholar] [CrossRef]
- Hu, L.; Chen, G. Analysis of Optical Absorption in Silicon Nanowire Arrays for Photovoltaic Applications. Nano Lett. 2007, 7, 3249–3252. [Google Scholar] [CrossRef] [PubMed]
- Nozik, A.J. Nanoscience and Nanostructures for Photovoltaics and Solar Fuels. Nano Lett. 2010, 10, 2735–2741. [Google Scholar] [CrossRef] [PubMed]
- Phelps, M. The Best States for Solar Power. 2009. Available online: http://www.motherearthnews.com/renewable-energy/solar-power/solar-incentives-solar-power-resources.aspx (accessed on 8 August 2016).
- Kemery, B.P. Optimal PV orientation and geographic dispersion: A study of 10 Canadian cities and 16 Ontario locations. In Proceedings of the Canadian Conference on Building Simulation, Halifax, NS, Canada, 1–4 May 2012.
- Hodgkins, K. Researchers develop cool way to improve solar cell efficiency. 2015. Available online: http://www.digitaltrends.com/cool-tech/stanford-solar-panel-heat/ (accessed on 8 August 2016).
- Yamaguchi, M.; Luque, A. High efficiency and high concentration in photovoltaics. IEEE Trans. Electron. Devices 1999, 46, 41–46. [Google Scholar] [CrossRef]
- Fan, Z.; Lin, Q. Reducing reflection losses in solar cells. Available online: http://spie.org/newsroom/5343-reducing-reflection-losses-in-solar-cells (accessed on 8 August 2016).
- Adams, P. Glass Coating Makes Solar Panels More Efficient. 2015. Available online: http://energy.gov/articles/glass-coating-makes-solar-panels-more-efficient (accessed on 8 August 2016). [Google Scholar]
- Ebbesen, T.W.; Lezec, H.J.; Ghaemi, H.F.; Thio, T. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 1998, 391, 667–668. [Google Scholar] [CrossRef]
- Søndergaard, T.; Bozhevolnyi, S.I.; Novikov, S.M.; Beermann, J. Extraordinary Optical Transmission Enhanced by Nanofocusing. Nano Lett. 2010, 10, 3123–3128. [Google Scholar] [CrossRef] [PubMed]
- Dühring, M.B.; Sigmund, O. Optimization of extraordinary optical absorption in plasmonic and dielectric structures. J. Opt. Soc. Am. B 2013, 30, 1154–1160. [Google Scholar] [CrossRef] [Green Version]
- Tsakalakos, L.; Balch, J.; Fronheiser, J.; Korevaar, B.A.; Sulima, O.; Rand, J. Silicon nanowire solar cells. Appl. Phys. Lett. 2007, 91. [Google Scholar] [CrossRef]
- Zhu, J.; Yu, Z.; Burkhard, G.F.; Hsu, C.M.; Connor, S.T.; Xu, Y.; Wang, Q.; McGehee, M.; Fan, S.H.; Cui, Y. Optical Absorption Enhancement in Amorphous Silicon Nanowire and Nanocone Arrays. Nano Lett. 2009, 9, 279–282. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Fan, P.; Vasudev, A.P.; White, J.S.; Yu, Z.; Cai, W. Semiconductor Nanowire Optical Antenna Solar Absorbers. Nano Lett. 2010, 10, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Dühring, M.B.; Mortensen, N.A.; Sigmund, O. Plasmonic versus dielectric enhancement in thin-film solar cells. Appl. Phys. Lett. 2012, 100. [Google Scholar] [CrossRef] [Green Version]
- Moushumy, N.; Das, N.; Alameh, K.; Lee, Y. Design and development of silver nanoparticles to reduce the reflection loss of solar cells. In Proceedings of the 8th International Conference on High-capacity Optical Networks and Emerging Technologies, Riyadh, Saudi Arabia, 19–21 December 2011.
- Das, N.; Charoenpitaks, K.; Islam, S. Analysis of incident light angles on nano-grating structure for minimizing reflection losses in GaAs solar cells. In Proceedings of the Power Engineering Conference (AUPEC), Hobart, Australia, 29 September–3 October 2013.
- Das, N.; Abu-Saida, A.; Islam, S. High efficiency plasmonics-based solar cells for smarter electricity grids. In Proceedings of the 2011 IEEE PES on Innovative Smart Grid Technologies Asia (ISGT), Perth, Australia, 13–16 November 2011.
- Das, N.; Masouleh, F.F.; Mashayekhi, H.R. Light Absorption and Reflection in Nanostructured GaAs Metal–Semiconductor–Metal Photodetectors. IEEE Trans. Nanotechnol. 2014, 13, 982–989. [Google Scholar] [CrossRef]
- Masouleh, F.F.; Das, N.; Mashayekhi, H.R. Assessment of amplifying effects of ridges spacing and height on nano-structured MSM photo-detectors. Opt. Quantum Electron. 2015, 47, 193–201. [Google Scholar] [CrossRef]
- Alenezi, M.R.; Henley, S.J.; Emerson, N.G.; Silva, S.R.P. From 1D and 2D ZnO nanostructures to 3D hierarchical structures with enhanced gas sensing properties. Nanoscale 2014, 6, 235–247. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. One-Dimensional Nanostructures: Synthesis, Characterization, and Applications. Adv. Mater. 2003, 15, 353–389. [Google Scholar] [CrossRef]
- Masouleh, F.F.; Das, N.; Rozati, S.M. Optimal subwavelength design for efficient light trapping in central slit of plasmonics-based metal-semiconductor-metal photodetector. Opt. Quantum Electron. 2015, 47, 1477–1485. [Google Scholar] [CrossRef]
- Beard, M.C.; Luther, J.M.; Nozik, A.J. The promise and challenge of nanostructured solar cells. Nat. Nanotechnol. 2014, 9, 951–954. [Google Scholar] [CrossRef] [PubMed]
- Natale, C.D. Sensors and Microsystems. In Proceedings of the 8th Italian Conference, Trento, Italy, 12–14 February 2003.
- Lei, K. Materials and Fabrication Techniques for Nano- and Microfluidic Devices. In Microfluidics in Detection Science: Lab-on-a-Chip Technologies; Labeed, F.H., Fatoyinbo, H.O., Eds.; Royal Society of Chemistry: London, UK, 2014; pp. 1–28. [Google Scholar] [CrossRef]
- Applications-GaAs Solar Cells. Available online: http://photonetc.com/gaas (accessed on 8 August 2016).
- Hayes, G.J.; Clemens, B.M. Laser liftoff of gallium arsenide thin films. MRS Commun. 2015, 5, 1–5. [Google Scholar] [CrossRef]
- The Future of Solar Energy: An interdisciplinary MIT study. Available online: https://cleanenergysolutions.org/resources/future-solar-energy-interdisciplinary-mit-study (accessed on 8 August 2016).
- Miles, R. Photovoltaic solar cells: Choice of materials and production methods. Vacuum 2006, 80, 1090–1097. [Google Scholar] [CrossRef]
- Why Gallium Arsenide? Alta Devices, 2015. Available online: http://www.altadevices.com/solar-cells/why-gallium-arsenide/ (accessed on 8 August 2016).
- Kayes, B.M.; Nie, H.; Twist, R.; Spruytte, S.G.; Reinhardt, F.; Kizilyalli, I.C.; Higashi, G.S. 27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination. In Proceedings of the IEEE Photovoltaic Specialists Conference (PVSC), Seattle, WA, USA, 19–24 June 2011.
- Grandidier, J.; Watson, T.J.; Callahan, D.M.; Munday, J.N.; Atwater, H.A. Gallium Arsenide Solar Cell Absorption Enhancement Using Whispering Gallery Modes of Dielectric Nanospheres. IEEE J. Photovolt. 2012, 2, 123–128. [Google Scholar] [CrossRef]
- Green, M.A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E.D. Solar cell efficiency tables (Version 45). Prog. Photovolt. 2015, 23, 1–9. [Google Scholar] [CrossRef]
- Wang, X.; Khan, M.R.; Gray, J.L.; Alam, M.A. Design of GaAs Solar Cells Operating Close to the Shockley–Queisser Limit. IEEE J. Photovolt. 2013, 3, 737–744. [Google Scholar] [CrossRef]
- Sheridan, J.; Coutsomitros, C.T.; Lucia, A. Zero Order Gratings: Homogenisation and the Effective Index Model; European Commission: Brussels, Belgium, 1996. [Google Scholar]
- Gorb, S.N. Functional Surfaces in Biology: Little Structures with Big Effects; Springer: New York, NY, USA, 2009. [Google Scholar]
- Raut, H.K.; Ganesh, V.A.; Nair, A.S.; Ramakrishna, S. Anti-reflective coatings: A critical, in-depth review. Energy Environ. Sci. 2011, 4, 3779–3804. [Google Scholar] [CrossRef]
- Stork, W.; Streibl, N.; Haidner, H.; Kipfer, P. Artificial distributed-index media fabricated by zero-order gratings. Opt. Lett. 1991, 16, 1921–1923. [Google Scholar] [CrossRef] [PubMed]
- Lalanne, P.; Hutley, M. Artificial Media Optical Properties-Subwavelength Scale. Encycl. Opt. Eng. 2003, 1, 62–71. [Google Scholar]
- Honsberg, C.B.; Barnett, A.M.; Kirkpatrick, D. Nanostructured Solar Cells for High Efficiency Photovoltaics. In Proceedings of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conference, Waikoloa, HI, USA, 7–12 May 2006.
- Akatemia, S. Nanostructures Improve the Efficiency of Solar Cells. 2013. Available online: https://www.sciencedaily.com/releases/2013/04/130425091358.htm (accessed on 8 August 2016).
- Jin, J.M. Theory and Computation of Electromagnetic Fields; John Wiley & Sons Ltd: Hoboken, NJ, USA, 2010. [Google Scholar]
- Yu, W. Electromagnetic Simulation Techniques Based on the FDTD Method; John Wiley & Sons Ltd: Hoboken, NJ, USA, 2009. [Google Scholar]
- Finite Difference Time Domain Photonics Simulation Software, OptiFDTD Technical background and Tutorials. Version 8. Available online: http://www.optiwave.com/products/fdtd_overview.html (accessed on 8 August 2016).
- Ellingson, R.; Nozik, A.; Beard, M.; Johnson, J.; Murphy, J.; Knutsen, K.; Gerth, K.; Luther, J.; Hanna, M.; Micic, O.; et al. Nanocrystals generating >1 electron per photon may lead to increased solar cell efficiency. Nano Lett. 2005, 5, 865–871. [Google Scholar] [CrossRef] [PubMed]
- Jha, A.R. Solar Cell Technology and Applications; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA, 2009. [Google Scholar]
- Zhu, J.; Cui, Y. Photovoltaics: More solar cells for less. Nat. Mater. 2010, 9, 183–184. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.M.; Lee, Y.T. Simulation of antireflective subwavelength grating structure for optical device applications. In Proceedings of the 9th International Conference on Numerical Simulations of Optoelectronic Devices (NUSOD), Gwangju, Korea, 14–17 September 2009.
- von Fraunhofer, J. Joseph von Fraunhofer’s Gesammelte Schriften—Primary Source Edition; Nabu Press: Munich, Germany, 1888. [Google Scholar]
- Rayleigh, L. On Reflection of Vibrations at the Confines of two Media between which the Transition is Gradual. Proc. Lond. Math. Soc. 1879, 1, 48–51. [Google Scholar] [CrossRef]
- Thelen, A. Design of Optical Interference Coatings; McGraw-Hill Optical and Electro-Optical Engineering Series; McGraw-Hill: New York, NY, USA, 1989. [Google Scholar]
- Prevo, B.G.; Hwang, Y.; Velev, O.D. Convective Assembly of Antireflective Silica Coatings with Controlled Thickness and Refractive Index. Chem. Mater. 2005, 17, 3642–3651. [Google Scholar] [CrossRef]
- Schmid, J.H.; Cheben, P.; Janz, S.; Lapointe, J.; Post, E.; Delage, A.; Densmore, A.; Lamontagne, B.; Waldron, P.; Xu, D.X. Subwavelength grating structures in planar waveguide facets for modified reflectivity. Adv. Opt. Technol. 2008. [Google Scholar] [CrossRef]
- Gupta, S.C. Optoelectronic Device and Systems; PHI Learning: Delhi, India, 2014. [Google Scholar]
- Antireflection Coatings Made by a Sol–Gel Process. Available online: http://www.rug.nl/research/portal/files/2972404/c4.pdf (accessed on 8 August 2016).
- Albregtsen, F. Reflection, Refraction, Diffraction, and Scattering. Available online: https://www.uio.no/studier/emner/matnat/ifi/INF-GEO4310/h09/undervisningsmateriale/imaging-kap2.pdf (accessed on 8 August 2016).
Geometry | Rectangle | Trapezoidal | Triangular |
---|---|---|---|
Pitch (nm) | 800 | 700 | 800 |
Height (nm) | 250 | 350 | 300 |
Absorption (%) | 37.5 | 45.5 | 43.2 |
Reflection (%) | 26.8 | 12.7 | 5.7 |
Transmission (%) | 35.7 | 41.8 | 51.1 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fadakar Masouleh, F.; Das, N.; Rozati, S.M. Nano-Structured Gratings for Improved Light Absorption Efficiency in Solar Cells. Energies 2016, 9, 756. https://doi.org/10.3390/en9090756
Fadakar Masouleh F, Das N, Rozati SM. Nano-Structured Gratings for Improved Light Absorption Efficiency in Solar Cells. Energies. 2016; 9(9):756. https://doi.org/10.3390/en9090756
Chicago/Turabian StyleFadakar Masouleh, Farzaneh, Narottam Das, and Seyed Mohammad Rozati. 2016. "Nano-Structured Gratings for Improved Light Absorption Efficiency in Solar Cells" Energies 9, no. 9: 756. https://doi.org/10.3390/en9090756
APA StyleFadakar Masouleh, F., Das, N., & Rozati, S. M. (2016). Nano-Structured Gratings for Improved Light Absorption Efficiency in Solar Cells. Energies, 9(9), 756. https://doi.org/10.3390/en9090756