#
Thermo-Economic and Heat Transfer Optimization of Working-Fluid Mixtures in a Low-Temperature Organic Rankine Cycle System^{ †}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Models and Methodology

#### 2.1. ORC Thermodynamic Model

#### 2.2. Heat Exchanger Sizing

^{-1}·K

^{-1}), and are discretized (for modelling purposes) into 100 (variable-sized) segments, i (=1–100), each segment having an equal heat transfer/duty, i.e., ${\dot{Q}}_{\mathrm{in}}/100$ or ${\dot{Q}}_{\mathrm{out}}/100$. A typical segment is illustrated in Figure 1. In all heat exchangers, the working fluid flows through the tube-side (tb), while the heat source and sink streams are the shell-side (sh) fluids. Thus, the total rates at which heat is transferred to/from the working fluid in relation to Equations (3) and (5), respectively, are given by:

#### 2.3. Component Cost Estimation

#### 2.4. Application and Problem Definition

_{e}Birdsville geothermal ORC power-plant in Birdsville, Australia [41], with an inlet temperature (${T}_{\mathrm{hs,in}}$) of 98 ${}^{\circ}$C and a flow-rate of 27 kg·s

^{−1}. This is typical of what is obtainable from (low-pressure) geothermal reservoirs and also (low-grade) waste-heat streams in industrial processes [42]. The heat sink is a water stream at ambient conditions (in at 20 ${}^{\circ}$C, out at 30 ${}^{\circ}$C).

## 3. Results and Discussion

#### 3.1. Optimal Cycles with Working-Fluid Mixtures

#### 3.2. Sizing and Costing of Optimal ORC Systems

#### 3.2.1. Heat Exchanger Sizing for Optimal ORC Systems

^{2}and 15 m

^{2}for the preheaters and desuperheaters, respectively) are much smaller than those associated with the two-phase heat exchangers (maximum range of 32 m

^{2}and 95 m

^{2}for the evaporators and condensers respectively). This is important, in that it suggests that working-fluid mixtures have a more profound effect on the Evaporator and Condenser sizes than they do on the single-phase heat-exchangers, at least in the present study.

^{2}(${x}_{\mathrm{R-227ea}}$ = 0) to 204 m

^{2}(${x}_{\mathrm{R-227ea}}$ = 0.5). This implies an increase in HTA of 85% when a working-fluid mixture is substituted for a pure working fluid (or, conversely, a decrease in HTA of 45% when a working-fluid mixture is substituted with a pure working fluid). Such large differences in HTAs between working-fluid mixtures and pure fluids can lead to considerable differences in plant size and cost, in favour of the pure working fluids.

#### 3.2.2. Cost Estimation of Optimal ORC Systems

#### 3.3. Heat Input Limitations and Other Working-Fluid Mixtures

- ${\dot{Q}}_{\mathrm{in,lim}}$ is allowed to attain a maximum possible value; this is the case in Section 3.1 where the optimal cycle heat input (${\dot{Q}}_{\mathrm{in}}$) for different working fluids is seen to vary between 3.2 MW and 4.0 MW.
- ${\dot{Q}}_{\mathrm{in,lim}}=2.5$ MW.
- ${\dot{Q}}_{\mathrm{in,lim}}=1.0$ MW.

#### 3.4. Multi-Objective Cost-Power Optimization

## 4. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## Nomenclature

A | Heat transfer area [${\mathrm{m}}^{2}$] | Ev | Evaporator |

${C}_{\mathrm{B}}$ | Component-base cost [£] | HTA | Heat-transfer area |

${c}_{P}$ | Isobaric specific heat-capacity [kJ·kg${}^{-1}$·K${}^{-1}$] | HTC | Heat-transfer coefficient |

${d}_{\mathrm{SH}}$ | Degree of superheat [-] | HX | Heat exchanger |

$dx$ | Tube thickness [m] | LHS | Left-hand side |

h | Specific enthalpy [kJ·kg${}^{-1}$] | ORC | Organic Rankine cycle |

h | Heat-transfer coefficient [kW·m${}^{-2}$·K${}^{-1}$] | PH | Preheater |

H | Pump head [m] | RHS | Right-hand side |

k | Thermal conductivity [kW·m${}^{-1}$·K${}^{-1}$] | SH | Superheater |

$\dot{m}$ | Mass flow-rate [kg·s${}^{-1}$] | ||

P | Pressure [bar] | Subscripts | |

$PR$ | Expander pressure ratio [-] | ‘1’, ‘2’, ‘3’, ‘4’ | Working-fluid state points |

q | Vapour quality on mass basis [-] | ‘cond’ | Condensation |

$\dot{Q}$ | Heat flow-rate [kW] | ‘crit’ | Critical |

s | Specific entropy [kJ·kg${}^{-1}$·K${}^{-1}$] | ‘cs’ | Heat sink |

T | Temperature [°C] | ‘evap’ | Evaporation |

U | Overall HTC [kW·m${}^{-2}$·K${}^{-1}$] | ‘exp’ | Expander |

$\dot{V}$ | Volumetric flow-rate [m${}^{3}$·s${}^{-1}$] | ‘hs’ | Heat source |

$VR$ | Expander volume ratio [-] | ‘i’ | Segment number |

w | Specific work-output [kJ·kg${}^{-1}$] | ‘in’ | Input |

$\dot{W}$ | Power [kW] | ‘is’ | Isentropic |

x | Mass fraction [-] | ‘lim’ | Limit |

‘lm’ | Logarithm mean | ||

Greek symbols | ‘max’ | Maximum | |

η | Efficiency [%] | ‘min’ | Minimum |

μ | Dynamic viscosity [Pa·s] | ‘n’ | Normalized |

ρ | Density [kg·m${}^{-3}$] | ‘out’ | Output/Outlet |

‘s’ | Isentropic | ||

Abbreviations | ‘sh’ | Shell-side | |

CAMD | Computer-aided molecular design | ‘tb’ | Tube-side |

CHP | Combined heat and power | ‘th’ | Thermal |

Cn | Condenser | ‘v’ | Vapour volume |

DSh | Desuperheater | ‘wf’ | Working fluid |

## References

- Markides, C.N. Low-concentration solar-power systems based on organic Rankine cycles for distributed-scale applications: Overview and further developments. Front. Energy Res.
**2015**, 3:47, 1–16. [Google Scholar] [CrossRef] - Angelino, G.; di Paliano, P.C. Multicomponent working fluids for ORCs. Energy
**1998**, 23, 449–463. [Google Scholar] [CrossRef] - Garg, P.; Kumar, P.; Srinivasan, K.; Dutta, P. Evaluation of isopentane, R-245fa and their mixtures as working fluids for organic Rankine cycles. Appl. Ther. Eng.
**2013**, 51, 292–300. [Google Scholar] [CrossRef] - Wang, J.L.; Zhao, L.; Wang, X.D. A comparative study of pure and zeotropic mixtures in low-temperature solar Rankine cycle. Appl. Energy
**2010**, 87, 3366–3373. [Google Scholar] [CrossRef] - Oyewunmi, O.A.; Taleb, A.I.; Haslam, A.J.; Markides, C.N. On the use of SAFT-VR Mie for assessing large-glide fluorocarbon working-fluid mixtures in organic Rankine cycles. Appl. Energy
**2016**, 163, 263–282. [Google Scholar] [CrossRef] - Lecompte, S.; Lemmens, S.; Huisseune, H.; van den Broek, M.; De Paepe, M. Multi-objective thermo-economic optimization strategy for ORCs applied to subcritical and transcritical cycles for waste heat recovery. Energies
**2015**, 8, 2714–2741. [Google Scholar] [CrossRef] [Green Version] - Sami, S.M. Energy and exergy analysis of new refrigerant mixtures in an organic Rankine cycle for low temperature power generation. Int. J. Ambient Energy
**2010**, 31, 23–32. [Google Scholar] [CrossRef] - Chen, H.; Goswami, D.Y.; Rahman, M.M.; Stefanakos, E.K. A supercritical Rankine cycle using zeotropic mixture working fluids for the conversion of low-grade heat into power. Energy
**2011**, 36, 549–555. [Google Scholar] [CrossRef] - Aghahosseini, S.; Dincer, I. Comparative performance analysis of low-temperature organic Rankine cycle (ORC) using pure and zeotropic working fluids. Appl. Ther. Eng.
**2013**, 54, 35–42. [Google Scholar] [CrossRef] - Gao, H.; Liu, C.; He, C.; Xu, X.; Wu, S.; Li, Y. Performance analysis and working fluid selection of a supercritical organic Rankine cycle for low grade waste heat recovery. Energies
**2012**, 5, 3233–3247. [Google Scholar] [CrossRef] - Heberle, F.; Preißinger, M.; Brüggemann, D. Zeotropic mixtures as working fluids in organic Rankine cycles for low-enthalpy geothermal resources. Renew. Energy
**2012**, 37, 364–370. [Google Scholar] [CrossRef] - Shu, G.; Gao, Y.; Tian, H.; Wei, H.; Liang, X. Study of mixtures based on hydrocarbons used in ORC (organic Rankine cycle) for engine waste heat recovery. Energy
**2014**, 74, 428–438. [Google Scholar] [CrossRef] - Dong, B.; Xu, G.; Cai, Y.; Li, H. Analysis of zeotropic mixtures used in high-temperature organic Rankine cycle. Energy Convers. Manag.
**2014**, 84, 253–260. [Google Scholar] [CrossRef] - Preißinger, M.; Brüggemann, D. Thermal stability of hexamethyldisiloxane (MM) for high-temperature organic Rankine cycle (ORC). Energies
**2016**, 9, 183. [Google Scholar] [CrossRef] - Lecompte, S.; Ameel, B.; Ziviani, D.; van den Broek, M.; De Paepe, M. Exergy analysis of zeotropic mixtures as working fluids in organic Rankine cycles. Energy Convers. Manag.
**2014**, 85, 727–739. [Google Scholar] [CrossRef] - Stijepovic, M.Z.; Linke, P.; Papadopoulos, A.I.; Grujic, A.S. On the role of working fluid properties in organic Rankine cycle performance. Appl. Ther. Eng.
**2012**, 36, 406–413. [Google Scholar] [CrossRef] - Mathkor, R.Z.; Agnew, B.; Al-Weshahi, M.A.; Latrsh, F. Exergetic analysis of an integrated tri-generation organic Rankine cycle. Energies
**2015**, 8, 8835–8856. [Google Scholar] [CrossRef] - Li, Y.R.; Du, M.T.; Wu, C.M.; Wu, S.Y.; Liu, C. Potential of organic Rankine cycle using zeotropic mixtures as working fluids for waste heat recovery. Energy
**2014**, 77, 509–519. [Google Scholar] [CrossRef] - Papadopoulos, A.I.; Stijepovic, M.; Linke, P. On the systematic design and selection of optimal working fluids for organic Rankine cycles. Appl. Ther. Eng.
**2010**, 30, 760–769. [Google Scholar] [CrossRef] - Lampe, M.; Kirmse, C.; Sauer, E.; Stavrou, M.; Gross, J.; Bardow, A. Computer-aided molecular design of ORC working fluids using PC-SAFT. Comput. Aided Chem. Eng.
**2014**, 34, 357–362. [Google Scholar] - Papadopoulos, A.I.; Stijepovic, M.; Linke, P.; Seferlis, P.; Voutetakis, S. Toward optimum working fluid mixtures for organic Rankine cycles using molecular design and sensitivity analysis. Ind. Eng. Chem. Res.
**2013**, 52, 12116–12133. [Google Scholar] [CrossRef] - Oyewunmi, O.A.; Haslam, A.J.; Markides, C.N. Towards the computer-aided molecular design of organic Rankine cycle systems with advanced fluid theories. In Proceedings of the 2015 Sustainable Thermal Energy Management Network Conference, Newcastle, UK, 7–8 July 2015.
- Jung, D.S.; McLinden, M.; Radermacher, R.; Didion, D. Horizontal flow boiling heat transfer experiments with a mixture of R22/R114. Int. J. Heat Mass Transf.
**1989**, 32, 131–145. [Google Scholar] [CrossRef] - Celata, G.; Cumo, M.; Setaro, T. A review of pool and forced convective boiling of binary mixtures. Exp. Ther. Fluid Sci.
**1994**, 9, 367–381. [Google Scholar] [CrossRef] - Gungor, K.; Winterton, R. A general correlation for flow boiling in tubes and annuli. Int. J. Heat Mass Transf.
**1986**, 29, 351–358. [Google Scholar] [CrossRef] - Gungor, K.; Winterton, R. Simplified general correlation for saturated flow boiling and comparisons of correlations with data. Chem. Eng. Res. Design
**1987**, 65, 148–156. [Google Scholar] - Thome, J.R. Prediction of binary mixture boiling heat transfer coefficients using only phase equilibrium data. Int. J. Heat Mass Transf.
**1983**, 26, 965–974. [Google Scholar] [CrossRef] - Ünal, H. Prediction of nucleate pool boiling heat transfer coefficients for binary mixtures. Int. J. Heat Mass Transf.
**1986**, 29, 637–640. [Google Scholar] [CrossRef] - Jung, D.; McLinden, M.; Radermacher, R.; Didion, D. A study of flow boiling heat transfer with refrigerant mixtures. Int. J. Heat Mass Transf.
**1989**, 32, 1751–1764. [Google Scholar] [CrossRef] - Kondou, C.; Baba, D.; Mishima, F.; Koyama, S. Flow boiling of non-azeotropic mixture R32/R1234ze(E) in horizontal microfin tubes. Int. J. Refrig.
**2013**, 36, 2366–2378. [Google Scholar] [CrossRef] - Balakrishnan, R.; Dhasan, M.; Rajagopal, S. Flow boiling heat transfer coefficient of R-134a/R-290/R-600a mixture in a smooth horizontal tube. Ther. Sci.
**2008**, 12, 33–44. [Google Scholar] [CrossRef] - Lim, T.; Kim, J. An experimental investigation of heat transfer in forced convective boiling of R134a, R123 and R134a/R123 in a horizontal tube. KSME Int. J.
**2004**, 18, 513–525. [Google Scholar] - Chiou, C.; Lu, D.; Liao, C.; Su, Y. Experimental study of forced convective boiling for non-azeotropic refrigerant mixtures R-22/R-124 in horizontal smooth tube. Appl. Ther. Eng.
**2009**, 29, 1864–1871. [Google Scholar] [CrossRef] - Oyewunmi, O.A.; Taleb, A.I.; Haslam, A.J.; Markides, C.N. An assessment of working-fluid mixtures using SAFT-VR Mie for use in organic Rankine cycle systems for waste-heat recovery. Comput. Ther. Sci. Int. J.
**2014**, 6, 301–316. [Google Scholar] [CrossRef] - Kunz, O.; Wagner, W. The GERG-2008 wide-range equation of state for natural gases and other mixtures: An expansion of GERG-2004. J. Chem. Eng. Data
**2012**, 57, 3032–3091. [Google Scholar] [CrossRef] - Lemmon, E.W.; Huber, M.L.; McLinden, M.O. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP; NIST: Gaithersburg, MD, USA, 2013. [Google Scholar]
- Shin, J.Y.; Kim, M.S.; Ro, S.T. Correlation of evaporative heat transfer coefficients for refrigerant mixtures. In Proceedings of the International Refrigeration and Air Conditioning Conference, West Lafayette, IN, USA, 23–26 July 1996; p. 316.
- Turton, R.; Bailie, R.C.; Whiting, W.B.; Shaeiwitz, J.A. Analysis, Synthesis and Design of Chemical Processes; Pearson Education: Upper Saddle River, NJ, USA, 2008. [Google Scholar]
- Seider, W.D.; Seader, J.D.; Lewin, D.R. Product & Process Design Principles: Synthesis, Analysis and Evaluation; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Hewitt, G.F.; Pugh, S.J. Approximate design and costing methods for heat exchangers. Heat Transf. Eng.
**2007**, 28, 76–86. [Google Scholar] [CrossRef] - Beardsmore, G.; Budd, A.; Huddlestone-Holmes, C.; Davidson, C. Country update—Australia. In Proceedings of the World Geothermal Congress 2015, Melbourne, Australia, 9–25 April 2015; pp. 19–24.
- Markides, C.N. The role of pumped and waste heat technologies in a high-efficiency sustainable energy future for the UK. Appl. Therm. Eng.
**2013**, 53, 197–209. [Google Scholar] - Chys, M.; van den Broek, M.; Vanslambrouck, B.; De Paepe, M. Potential of zeotropic mixtures as working fluids in organic Rankine cycles. Energy
**2012**, 44, 623–632. [Google Scholar] [CrossRef] - Braimakis, K.; Leontaritis, A.D.; Preißinger, M.; Karellas, S.; Brüggeman, D.; Panopoulos, K. Waste heat recovery with innovative low-temperature ORC based on natural refrigerants. In Proceedings of the 27th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, Turku, Finland, 15–19 June 2014.
- Braimakis, K.; Preißinger, M.; Brüggeman, D.; Karellas, S.; Panopoulos, K. Low grade waste heat recovery with subcritical and supercritical organic Rankine cycle based on natural refrigerants and their binary mixtures. Energy
**2015**, 88, 80–92. [Google Scholar] [CrossRef] - Byrd, R.; Hribar, M.; Nocedal, J. An interior point algorithm for large-scale nonlinear programming. SIAM J. Opt.
**1999**, 9, 877–900. [Google Scholar] [CrossRef] - Andreasen, J.G.; Kærn, M.R.; Pierobon, L.; Larsen, U.; Haglind, F. Multi-objective optimization of organic Rankine cycle power plants using pure and mixed working fluids. In Proceedings of the 3rd International Seminar on ORC Power Systems, Brussels, Belgium, 12–14 October 2015.
- Andreasen, J.G.; Kærn, M.R.; Pierobon, L.; Larsen, U.; Haglind, F. Multi-objective optimization of organic Rankine cycle power plants using pure and mixed working fluids. Energies
**2016**, 9, 322. [Google Scholar] [CrossRef] [Green Version] - Heberle, F.; Brüggemann, D. Thermo-economic evaluation of organic Rankine cycles for geothermal power generation using zeotropic mixtures. Energies
**2015**, 8, 2097–2124. [Google Scholar] [CrossRef] - Heberle, F.; Brüggemann, D. Thermo-economic analysis of zeotropic mixtures and pure working fluids in organic Rankine cycles for waste heat recovery. Energies
**2016**, 9, 226. [Google Scholar] [CrossRef] - Oyewunmi, O.A.; Markides, C.N. Effect of working-fluid mixtures on organic Rankine cycle systems: Heat transfer and cost analysis. In Proceedings of the 3rd International Seminar on ORC Power Systems, Brussels, Belgium, 12–14 October 2015.

**Figure 1.**

**Left**: ORC T–s diagram for the case of a pure (single-component) working fluid.

**Right**: Heat-exchanger segment showing flow directions on the shell (sh) and tube (tb) sides.

**Figure 2.**Optimal net power-output (maximum ${\dot{W}}_{\mathrm{net}}$) with corresponding operating phase-change pressure, and evaporation and condensation temperature glides at optimal operating conditions. (

**a**) n-pentane + n-hexane; (

**b**) temperature glides; (

**c**) R-245fa + R-227ea.

**Figure 3.**Expander volumetric flow-rate, volume and pressure ratio at optimal power output. (

**a**) n-pentane + n-hexane; (

**b**) R-245fa + R-227ea.

**Figure 5.**Heat-transfer areas along the phase-change heat exchangers (Evaporator and Condenser) for R-245fa + R-227ea system. (

**a**) evaporator; (

**b**) condenser.

**Figure 6.**Normalized total heat-transfer areas for heat exchangers with the different working-fluid mixtures. Normalization parameters are given in Table 3. (

**a**) n-pentane + n-hexane; (

**b**) R-245fa + R-227ea.

**Figure 7.**Optimal ORC systems’ component costs (bars; LHS axes) and total component costs (line; RHS axes). Component-base costs, ${C}_{\mathrm{B}}$ are indexed in year 2006, with the following currency conversions: £1 ≡ €1.47, $1.84. The legend in Figure 7a applies to both figures. (

**a**) n-pentane + n-hexane; (

**b**) R-245fa + R-227ea.

**Figure 8.**Maximum net power output and related rated costs (in pounds per kW) for ORC systems with working fluid mixtures. Cycle heat input is not restricted, i.e., ${Q}_{\mathrm{in,lim}}$ is allowed to attain a maximum possible value; ‘x’ represents the mass fraction of the first component fluid in each working-fluid mixture pairing. Component-base costs, ${C}_{\mathrm{B}}$, are indexed in the year 2006, with the following currency conversions: £1 ≡ €1.47, $1.84.

**Figure 9.**Maximum net power output and related rated costs (in pounds per kW) for ORC systems when employing working fluid mixtures. Cycle heat input is restricted to 2.5 MW, i.e., ${Q}_{\mathrm{in,lim}}=2.5$ MW; ‘x’ represents the mass fraction of the first component fluid in each working-fluid mixture pairing. Component-base costs, ${C}_{\mathrm{B}}$, are indexed in the year 2006, with the following currency conversions: £1 ≡ €1.47, $1.84.

**Figure 10.**Maximum net power output and related rated costs (in pounds per kW) for ORC systems that employ working fluid mixtures. Cycle heat input is restricted to 1.0 MW, i.e., ${Q}_{\mathrm{in,lim}}=1.0$ MW; ‘x’ represents the mass fraction of the first component fluid in each working-fluid mixture pairing. Component-base costs, ${C}_{\mathrm{B}}$, are indexed in the year 2006, with the following currency conversions: £1 ≡ €1.47, $1.84.

**Figure 11.**The pareto optimal curves for the multi-objective optimization (maximum net power and minimum rated costs in pounds per kW) of ORCs with two sets of working-fluid mixtures. Component-base costs, ${C}_{\mathrm{B}}$, are indexed in the year 2006, with the following currency conversions: £1 ≡ €1.47, $1.84. (

**a**) n-pentane + n-hexane; (

**b**) R-245fa + R-227ea.

Component | S | F | ${\mathit{C}}_{\mathbf{0}}$ | ${\mathit{C}}_{\mathbf{1}}$ | ${\mathit{C}}_{\mathbf{2}}$ |
---|---|---|---|---|---|

Pump | $\dot{V}\sqrt{H}$ (m^{3}·s^{−1}·m^{1/2}) | 2.7 | 9.0073 | 0.4636 | 0.0519 |

Expander | ${\dot{W}}_{\mathrm{exp}}$ (kW) | 1.0 | 6.5106 | 0.8100 | 0.0000 |

Expander * | ${\dot{W}}_{\mathrm{exp}}$ (kW) | 1.0 | 7.3194 | 0.8100 | 0.0000 |

Heaters/Coolers | HTA (m^{2}) | 1.0 | 10.106 | −0.4429 | 0.0901 |

Evaporator/Condenser | HTA (m^{2}) | 1.0 | 9.5638 | 0.5320 | −0.0002 |

**Table 2.**Cycle parameters for ORC systems optimized for maximum net power output using n-pentane + n-hexane and R-245fa + R-227ea working-fluid mixtures.

${\mathit{x}}_{{\mathbf{\text{C}}}_{\mathbf{6}}{\mathbf{\text{H}}}_{\mathbf{14}}}$ | ${\dot{\mathit{W}}}_{\mathbf{\text{net}}}$ | ${\mathbf{\eta}}_{\mathbf{\text{th}}}$ | ${\mathit{w}}_{\mathbf{\text{exp}}}$ | ${\dot{\mathit{W}}}_{\mathbf{\text{pump}}}$ | ${\dot{\mathit{m}}}_{\mathbf{\text{wf}}}$ | ${\mathit{d}}_{\mathbf{\text{SH}}}$ | ${\dot{\mathit{m}}}_{\mathbf{\text{cs}}}$ | ${\dot{\mathit{Q}}}_{\mathbf{\text{PH}}}$ | ${\dot{\mathit{Q}}}_{\mathbf{\text{Ev}}}$ | ${\dot{\mathit{Q}}}_{\mathbf{\text{DSh}}}$ | ${\dot{\mathit{Q}}}_{\mathbf{\text{Cn}}}$ | ${\mathit{x}}_{\mathbf{\text{227ea}}}$ | ${\dot{\mathit{W}}}_{\mathbf{\text{net}}}$ | ${\mathbf{\eta}}_{\mathbf{\text{th}}}$ | ${\mathit{w}}_{\mathbf{\text{exp}}}$ | ${\dot{\mathit{W}}}_{\mathbf{\text{pump}}}$ | ${\dot{\mathit{m}}}_{\mathbf{\text{wf}}}$ | ${\mathit{d}}_{\mathbf{\text{SH}}}$ | ${\dot{\mathit{m}}}_{\mathbf{\text{cs}}}$ | ${\dot{\mathit{Q}}}_{\mathbf{\text{PH}}}$ | ${\dot{\mathit{Q}}}_{\mathbf{\text{Ev}}}$ | ${\dot{\mathit{Q}}}_{\mathbf{\text{DSh}}}$ | ${\dot{\mathit{Q}}}_{\mathbf{\text{Cn}}}$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

kW | % | $\mathbf{\text{kJ}}\mathbf{\xb7}{\mathbf{\text{kg}}}^{\mathbf{-}\mathbf{1}}$ | kW | $\mathbf{\text{kg}}\mathbf{\xb7}{\mathrm{s}}^{\mathbf{-}\mathbf{1}}$ | - | $\mathbf{\text{kg}}\mathbf{\xb7}{\mathrm{s}}^{\mathbf{-}\mathbf{1}}$ | MW | MW | MW | MW | kW | % | $\mathbf{\text{kJ}}\mathbf{\xb7}{\mathbf{\text{kg}}}^{\mathbf{-}\mathbf{1}}$ | kW | $\mathbf{\text{kg}}\mathbf{\xb7}{\mathrm{s}}^{\mathbf{-}\mathbf{1}}$ | - | $\mathbf{\text{kg}}\mathbf{\xb7}{\mathrm{s}}^{\mathbf{-}\mathbf{1}}$ | MW | MW | MW | MW | ||

0.0 | 161 | 5.00 | 21.1 | 2.17 | 7.74 | 0.45 | 73.1 | 0.47 | 2.75 | 0.30 | 2.75 | 0.0 | 163 | 4.97 | 11.5 | 4.05 | 14.5 | 1.00 | 74.7 | 0.50 | 2.78 | 0.48 | 2.64 |

0.1 | 179 | 5.25 | 21.8 | 2.20 | 8.29 | 0.18 | 77.2 | 0.53 | 2.88 | 0.23 | 3.00 | 0.1 | 187 | 5.17 | 11.8 | 5.18 | 16.2 | 1.00 | 82.1 | 0.60 | 3.01 | 0.52 | 2.92 |

0.2 | 193 | 5.43 | 22.5 | 2.16 | 8.68 | 0.00 | 80.5 | 0.57 | 2.99 | 0.18 | 3.19 | 0.2 | 204 | 5.30 | 11.7 | 6.44 | 18.0 | 0.84 | 87.1 | 0.70 | 3.15 | 0.49 | 3.15 |

0.3 | 204 | 5.55 | 23.3 | 2.05 | 8.86 | 0.00 | 83.2 | 0.59 | 3.09 | 0.19 | 3.29 | 0.3 | 214 | 5.39 | 11.1 | 7.88 | 19.9 | 0.54 | 90.1 | 0.78 | 3.20 | 0.41 | 3.36 |

0.4 | 211 | 5.61 | 23.7 | 1.92 | 8.98 | 0.00 | 84.9 | 0.61 | 3.15 | 0.20 | 3.35 | 0.4 | 219 | 5.42 | 10.3 | 9.66 | 22.3 | 0.11 | 91.6 | 0.87 | 3.17 | 0.25 | 3.58 |

0.5 | 214 | 5.64 | 23.9 | 1.78 | 9.03 | 0.00 | 85.8 | 0.62 | 3.18 | 0.20 | 3.38 | 0.5 | 219 | 5.40 | 9.79 | 11.0 | 23.5 | 0.12 | 91.7 | 0.91 | 3.14 | 0.26 | 3.57 |

0.6 | 213 | 5.61 | 23.8 | 1.62 | 9.02 | 0.00 | 85.8 | 0.62 | 3.18 | 0.21 | 3.38 | 0.6 | 213 | 5.33 | 9.02 | 12.7 | 25.1 | 0.00 | 90.6 | 0.95 | 3.05 | 0.21 | 3.57 |

0.7 | 208 | 5.55 | 23.4 | 1.44 | 8.94 | 0.00 | 84.7 | 0.60 | 3.15 | 0.20 | 3.34 | 0.7 | 204 | 5.21 | 8.29 | 14.3 | 26.3 | 0.00 | 88.6 | 0.97 | 2.94 | 0.22 | 3.48 |

0.8 | 198 | 5.44 | 22.7 | 1.26 | 8.77 | 0.00 | 82.4 | 0.58 | 3.06 | 0.20 | 3.24 | 0.8 | 191 | 5.06 | 7.52 | 15.9 | 27.5 | 0.00 | 85.9 | 0.98 | 2.81 | 0.22 | 3.37 |

0.9 | 183 | 5.28 | 21.7 | 1.06 | 8.48 | 0.00 | 78.4 | 0.53 | 2.93 | 0.19 | 3.09 | 0.9 | 179 | 4.89 | 6.80 | 17.9 | 29.0 | 0.00 | 83.3 | 0.99 | 2.67 | 0.23 | 3.25 |

1.0 | 161 | 5.05 | 20.2 | 0.85 | 8.02 | 0.00 | 72.3 | 0.47 | 2.71 | 0.17 | 2.85 | 1.0 | 170 | 4.76 | 6.19 | 20.2 | 30.7 | 0.00 | 81.4 | 1.02 | 2.55 | 0.24 | 3.17 |

Pentane + Hexane | PH | Ev | DSh | Cn | R-245fa + R227ea | PH | Ev | DSh | Cn |
---|---|---|---|---|---|---|---|---|---|

${A}_{\mathrm{min}}$ (m${}^{2}$) | 21.8 | 48.5 | 15.8 | 80.8 | ${A}_{\mathrm{min}}$ (m${}^{2}$) | 24.5 | 51.1 | 15.2 | 109 |

${A}_{\mathrm{max}}$ (m${}^{2}$) | 25.8 | 65.3 | 23.4 | 150 | ${A}_{\mathrm{max}}$ (m${}^{2}$) | 37.2 | 82.6 | 29.9 | 204 |

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Oyewunmi, O.A.; Markides, C.N.
Thermo-Economic and Heat Transfer Optimization of Working-Fluid Mixtures in a Low-Temperature Organic Rankine Cycle System. *Energies* **2016**, *9*, 448.
https://doi.org/10.3390/en9060448

**AMA Style**

Oyewunmi OA, Markides CN.
Thermo-Economic and Heat Transfer Optimization of Working-Fluid Mixtures in a Low-Temperature Organic Rankine Cycle System. *Energies*. 2016; 9(6):448.
https://doi.org/10.3390/en9060448

**Chicago/Turabian Style**

Oyewunmi, Oyeniyi A., and Christos N. Markides.
2016. "Thermo-Economic and Heat Transfer Optimization of Working-Fluid Mixtures in a Low-Temperature Organic Rankine Cycle System" *Energies* 9, no. 6: 448.
https://doi.org/10.3390/en9060448