A New Method for State of Charge Estimation of Lithium-Ion Battery Based on Strong Tracking Cubature Kalman Filter
Abstract
:1. Introduction
2. Battery Model and Parameters Identification
2.1. Battery Model

2.2. Parameters Identification


| Parameters | Ro | R1 | R2 | C1 | C2 |
|---|---|---|---|---|---|
| Value | 0.0377 Ω | 0.0242 Ω | 0.00300 Ω | 1673.3 F | 17,823 F |
3. SOC Estimation Based on the Strong Tracking Cubature Kalman Filter
3.1. Cubature Kalman Filter Algorithm (CKF)
- (a)
- Initialization:
- (b)
- Time update
- (1)
- Calculate the cubature points:where n represents the state-vector dimension and ξ is the set of standard cubature points, which is shown by:where [1]i represents the identity matrix and [1](i) denotes its i-th column vector.
- (2)
- Calculate the propagated cubature points:
- (3)
- Calculate the predicted state and covariance:where Qk is the process noise covariance matrix at time step k.
- (c)
- Measurement update
- (1)
- Calculate the cubature points:
- (2)
- Calculate the propagated cubature points:
- (3)
- Calculate the predicted measurement and covariance:where Rk is the measurement noise covariance matrix at time step k.
- (d)
- Estimate the Kalman gain, updated state and error covariance:
3.2. Strong Tracking Cubature Kalman Filter (STCKF)
- (1)
- Poor robustness against model uncertainties.
- (2)
- Loss of tracking ability for sudden changes of the state when it has reached steady state.
- (3)
- Cannot be used to estimate time-varying parameters.
| Initialization | |
| (1) Time update | |
| (a) The cubature points | |
| (b) Propagated cubature points | |
| (c) State and covariance time update | |
| (2) Measurement update | |
| (a) The cubature points | |
| (b) Propagated cubature points | |
| (c) Measurement and error covariance | |
| (3) The fading factor | |
| (4) Update after add fading factor | |
| (a) The cubature points | |
| (b) Propagated cubature points | |
| (c) Measurement and error covariance | |
| (d) Estimate the Kalman gain, updated state and error covariance | |
4. Experimental Configurations

5. Verification Results and Analysis
5.1. Estimation Results under Dynamic Stress Test (DST) Cycle



5.2. Estimation Results under New European Driving Cycle (NEDC) Cycle with Voltage Noise
| Estimation Method | EKF | CKF | STCKF |
|---|---|---|---|
| RMSE | 0.0233 | 0.0157 | 0.0133 |
| Maximum error | 6.13% | 5.28% | 4.17% |
| Execution time | 0.89 s | 1.55 s | 2.58 s |


6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lu, L.; Han, X.; Li, J.; Hua, J.; Ouyang, M. A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 2013, 226, 272–288. [Google Scholar] [CrossRef]
- Lotfi, N.; Fajri, P.; Novosad, S.; Savage, J.; Landers, R.G.; Ferdowsi, M. Development of an experimental testbed for research in lithium-ion battery management systems. Energies 2013, 6, 5231–5258. [Google Scholar] [CrossRef]
- Ng, K.; Moo, C.S.; Chen, Y.P.; Hsieh, Y.C. Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries. Appl. Energy 2009, 86, 1506–1511. [Google Scholar] [CrossRef]
- Lee, S.; Kim, J.; Lee, J.; Cho, B.H. State-of-charge and capacity estimation of lithium-ion battery using a new open-circuit voltage versus state-of-charge. J. Power Sources 2008, 185, 1367–1373. [Google Scholar] [CrossRef]
- Cheng, B.; Bai, Z.F.; Gao, B.G. State of charge estimation based on evolutionary neural network. Energy Convers. Manag. 2008, 49, 2788–2794. [Google Scholar]
- Charkhgard, M.; Farrokhi, M. State-of-charge estimation for lithium-ion batteries using neural networks and EKF. IEEE Trans. Ind. Electron. 2010, 57, 4178–4187. [Google Scholar] [CrossRef]
- Schwunk, S.; Armbruster, N.; Straub, S.; Kehl, J.; Vetter, M. Particle filter for state of charge and state of health estimation for lithium-iron phosphate batteries. J. Power Sources 2013, 239, 705–710. [Google Scholar] [CrossRef]
- Shao, S.; Bi, J.; Yang, F.; Guan, W. On-line estimation of state-of-charge of Li-ion batteries in electric vehicle using the resampling particle filter. Transp. Res. D Transp. Environ. 2014, 32, 207–217. [Google Scholar] [CrossRef]
- Barbarisi, O.; Vasca, F.; Glielmo, L. State of charge Kalman filter estimator for automotive batteries. Control Eng. Pract. 2006, 14, 267–275. [Google Scholar] [CrossRef]
- Sepasi, S.; Roose, L.; Matsuura, M.M. Extended Kalman filter with afuzzy method for accurate battery pack state of charge estimation. Energies 2015, 8, 5217–5233. [Google Scholar] [CrossRef]
- Sepasi, S.; Ghorbani, R.; Liaw, B.Y. A novel on-board state-of-charge estimation method for aged Li-ion batteries based on model adaptive extended Kalman filter. J. Power Sources 2014, 245, 337–344. [Google Scholar] [CrossRef]
- Plett, G.L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs Part 3. State and parameter estimation. J. Power Sources 2004, 134, 277–292. [Google Scholar] [CrossRef]
- Xiong, R.; Gong, X.; Mi, C.C. A robust state-of-charge estimator for multiple types of lithium-ion batteries using adaptive extended Kalman filter. J. Power Sources 2013, 243, 805–816. [Google Scholar] [CrossRef]
- Wan, E.; van der Merwe, R. The unscented Kalman filter for nonlinear estimation. In Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium, AS-SPCC, Lake Louise, AB, Canada, 1–4 October 2000; pp. 153–158.
- Tian, Y.; Xia, B.; Sun, W.; Xu, Z.; Zheng, W. A modified model based state of charge estimation of power lithium-ion batteries using unscented Kalman filter. J. Power Sources 2014, 270, 619–626. [Google Scholar] [CrossRef]
- Zhang, W.; Shi, W.; Ma, Z. Adaptive unscented Kalman filter based state of energy and power capability estimation approach for lithium-ion battery. J. Power Sources 2015, 289, 50–62. [Google Scholar] [CrossRef]
- Sun, F.; Hu, X.; Zou, Y.; Li, S. Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles. Energy 2011, 36, 3531–3540. [Google Scholar] [CrossRef]
- Dey, S.; Ayalew, B.; Pisu, P. Adaptive observer design for a Li-ion cell based on coupled electrochemical-thermal model. In Proceedings of the ASME Dynamic Systems and Controls Conference, San Antonio, TX, USA, 22–24 October 2014.
- Dey, S.; Ayalew, B.; Pisu, P. Nonlinear robust observers for state-of-charge estimation of lithium-ion cells based on a reduced electrochemical model. IEEE Trans. Control Syst. Technol. 2015, 23, 1935–1942. [Google Scholar] [CrossRef]
- Moura, S.; Krstic, M.; Chaturvedi, N. Adaptive PDE observer for battery SOC/SOH estimation via an electrochemical model. J. Dyn. Syst. Meas. Control 2013, 136. [Google Scholar] [CrossRef]
- Arasaratnam, I.; Haykin, S. Cubature Kalman filters. IEEE Trans. Autom. Control 2009, 56, 1254–1269. [Google Scholar] [CrossRef]
- Arasaratnam, I.; Haykin, S.; Hurd, T.R. Cubature Kalman filtering for continuous-discrete systems: Theory and simulations. IEEE Trans. Signal Process. 2010, 58, 4977–4993. [Google Scholar] [CrossRef]
- Arasaratnam, I.; Haykin, S. Cubature Kalman smoothers. Automatica 2011, 47, 2245–2250. [Google Scholar] [CrossRef]
- Dahmahi, M.; Meche, A.; Keche, M.; Oramri, A. Reduced cubature Kalman filtering applied to target tracking. In Proceedings of the 2nd International Conference on Control, Instrumentation and Automation (ICCIA), Shiraz, Iran, 27–29 December 2011; pp. 1097–1101.
- Tang, X.J.; Liu, Z.B.; Zhang, J.S. Square-root quaternion cubature Kalman filtering for spacecraft attitude estimation. Acta Astronaut. 2012, 76, 84–94. [Google Scholar] [CrossRef]
- Hu, X.S.; Li, S.B.; Peng, H. A comparative study of equivalent circuit models for Li-ion batteries. J. Power Sources 2012, 198, 359–367. [Google Scholar] [CrossRef]
- Zhang, H.; Chow, M.Y. Comprehensive dynamic battery modeling for PHEV applications. In Proceedings of the IEEE Power and Energy Society General Meeting, Minneapolis, MN, USA, 25–29 July 2010; pp. 1–6.
- Chen, M.; Rincon-Mora, G.A. Accurate electrical battery model capable of predicting runtime and I–V performance. IEEE Trans. Energy Convers. 2006, 21, 504–511. [Google Scholar] [CrossRef]
- Tian, Y.; Chen, C.R.; Xia, B.Z.; Sun, W.; Xu, Z.H.; Zheng, W.W. An adaptive gain nonlinear observer for state of charge estimation of lithium-ion batteries in electric vehicles. Energies 2014, 7, 5995–6012. [Google Scholar] [CrossRef]
- Schweighofer, B.; Raab, K.; Brasseur, G. Modeling of high power automotive batteries by the use of an automated test system. IEEE Trans. Instrum. Meas. 2003, 52, 1087–1091. [Google Scholar] [CrossRef]
- Li, D.; Ouyang, J.; Li, H.; Wan, J. State of charge estimation for LiMn2O4 power battery based on strong tracking sigma point Kalman filter. J. Power Sources 2015, 279, 439–449. [Google Scholar] [CrossRef]
- Wang, D.; Zhou, D.H.; Jin, Y.H.; Qin, S.J. A strong tracking predictor for nonlinear processes with input time delay. Comput. Chem. Eng. 2004, 28, 2523–2540. [Google Scholar] [CrossRef]
- Xie, X.Q.; Zhou, D.H.; Jin, Y.H. Strong tracking filter based adaptive generic model control. J. Process Control 1999, 9, 337–350. [Google Scholar] [CrossRef]
- Xia, B.; Wang, H.Q.; Tian, Y. State of charge estimation of lithium-ion batteries using an adaptive cubature kalman filter. Energies 2015, 8, 5916–5936. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, B.; Wang, H.; Wang, M.; Sun, W.; Xu, Z.; Lai, Y. A New Method for State of Charge Estimation of Lithium-Ion Battery Based on Strong Tracking Cubature Kalman Filter. Energies 2015, 8, 13458-13472. https://doi.org/10.3390/en81212378
Xia B, Wang H, Wang M, Sun W, Xu Z, Lai Y. A New Method for State of Charge Estimation of Lithium-Ion Battery Based on Strong Tracking Cubature Kalman Filter. Energies. 2015; 8(12):13458-13472. https://doi.org/10.3390/en81212378
Chicago/Turabian StyleXia, Bizhong, Haiqing Wang, Mingwang Wang, Wei Sun, Zhihui Xu, and Yongzhi Lai. 2015. "A New Method for State of Charge Estimation of Lithium-Ion Battery Based on Strong Tracking Cubature Kalman Filter" Energies 8, no. 12: 13458-13472. https://doi.org/10.3390/en81212378
APA StyleXia, B., Wang, H., Wang, M., Sun, W., Xu, Z., & Lai, Y. (2015). A New Method for State of Charge Estimation of Lithium-Ion Battery Based on Strong Tracking Cubature Kalman Filter. Energies, 8(12), 13458-13472. https://doi.org/10.3390/en81212378
