Slag Behavior in Gasifiers. Part II: Constitutive Modeling of Slag
Abstract
:1. Introduction
2. Governing Equations of Motion and Heat Transfer
3. The Importance of Slag layer Viscosity in Gasification and Combustion Processes
3.1. Viscosity of Slags
3.2. A Brief Review of Various Viscosity Models
c = 0.0415 SiO2 +0.0192 Al2O3 +0.0276 Equiv Fe2O3 +0.0160 CaO − 3.92
SiO2 + Al2O3 + Equiv Fe2O3 +CaO+ MgO = 100 (wt%)
n = 11.57
Viscosity as a function of temperature | See for example Equations (3.1), or (3.2), and others. Generally expressed as an exponential function or some type of power-law [see Equation (3.49)] |
---|---|
Viscosity as a function of time | See Equation (3.5) |
Viscosity as a function of chemical composition | See Equations (3.9)–(3.12) and others. Generally expressed as a polynomial equation |
Viscosity as a function of concentration | See Equation (3.13), generally expressed as a polynomial [see also Table 2 in Section 4] |
Viscosity as a function of the shear rate | See Equation (3.50), generally expressed as the power-law type non-Newtonian fluid model |
4. Constitutive Modeling of Slag
4.1. Background
- The ability to shear-thin or shear-thicken
- The ability to creep
- The ability to relax stresses
- The presence of normal stress differences in simple shear flows
- The presence of yield stress
4.2. Yield Stress
4.3. Effects of Concentration, Shear Rate, and Pressure
4.3.1. Concentration Effect
Mooney (1951) [115] | |
Roscoe (1952) [87] | |
Brinkman (1952) [112] | |
Krieger and Dougherty (1959) [113] | |
Nielsen (1970)[114] | |
Choi et al. (2000) [116], Kwon et al. (1998) [117] | |
4.3.2. Normal Stress Effects and Shear-Rate Dependent Viscosity
4.3.3. Pressure Effects
5. Concluding Remarks
References
- Tonmukayakul, N.; Nguyen, Q.D. A new rheometer for direct measurement of the flow properties of coal ash at high temperatures. Fuel 2002, 81, 397–404. [Google Scholar] [CrossRef]
- Walsh, P.M.; Sarofim, A.F.; Beer, J.M. Fouling of convection heat-exchangers by lignitic coal ash. Energy Fuels 1992, 6, 709–715. [Google Scholar] [CrossRef]
- Lee, B.E.; Fletcher, C.A.J.; Shin, S.H.; Kwon, S.B. Computational study of fouling deposit due to surface-coated particles in coal-fired power utility boilers. Fuel 2002, 81, 2001–2008. [Google Scholar] [CrossRef]
- Wang, H.F.; Harb, J.N. Modeling of ash deposition in large-scale combustion facilities burning pulverized coal. Progress Energy Combust. Sci. 1997, 23, 267–282. [Google Scholar] [CrossRef]
- Erickson, T.A.; Allan, S.E.; McCollor, D.P.; Hurley, J.P.; Srinivasachar, S.; Kang, S.G.; Baker, J.E.; Morgan, M.E.; Johnson, S.A.; Borio, R. Modeling of fouling and slagging in coal-fired utility boilers. Fuel Process. Technol. 1995, 44, 155–171. [Google Scholar] [CrossRef]
- Ni, J.J.; Yu, G.S.; Guo, Q.H.; Dai, Z.H.; Wang, F.C. Modeling and comparison of different syngas cooling types for entrained-flow gasifier. Chem. Eng. Sci. 2011, 66, 448–459. [Google Scholar] [CrossRef]
- Zbogar, A.; Frandsen, F.J.; Jensen, P.A.; Glarborg, P. Heat transfer in ash deposits: A modelling tool-box. Progress Energy Combust. Sci. 2005, 31, 371–421. [Google Scholar] [CrossRef]
- Jak, E.; Degterov, S.; Zhao, B.; Pelton, A.D.; Hayes, P.C. Coupled experimental and thermodynamic modeling studies for metallurgical smelting and coal combustion slag systems. Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 2000, 31, 621–630. [Google Scholar] [CrossRef]
- Bale, C.W.; Pelton, A.D.; Thompson, W.T. Facility for the Analysis of Chemical Thermodynamics (FACT); École Polytechnique de Montréal: Palaiseau, France, 1996. [Google Scholar]
- Breault, R.W. Gasification processes old and new: a basic review of the major technologies. Energies 2010, 3, 216–240. [Google Scholar] [CrossRef]
- Papastergios, G.; Fernandez-Turiel, J.L.; Georgakopoulos, A.; Gimeno, D. Slag and ash chemistry after high-calcium lignite combustion in a pulverized coal-fired power plant. Glob. Nest J. 2007, 9, 77–82. [Google Scholar]
- Vorres, K.S.; Greenberg, S.; Poeppel, R. Viscosity of synthetic coal ash slags. Acs Symp. Ser. 1986, 301, 156–169. [Google Scholar]
- Lawn, C.J. Principles of Combustion Engineering for Boilers; Academic Press: London, UK, 1987. [Google Scholar]
- Jak, E.; Saulov, D.; Kondratiev, A.; Hayes, P.C. Prediction of phase equilibria and viscosity in complex coal ash slag systems. Abstr. Pap. Am. Chem. Soc. 2004, 227, 1079. [Google Scholar]
- Browning, G.J.; Bryant, G.W.; Hurst, H.J.; Lucas, J.A.; Wall, T.F. An empirical method for the prediction of coal ash slag viscosity. Energy Fuels 2003, 17, 731–737. [Google Scholar] [CrossRef]
- Kang, T.W.; Gupta, S.; Saha-Chaudhury, N.; Sahajwalla, V. Wetting and interfacial reaction investigations of coke/slag systems and associated liquid permeability of blast furnaces. Iron Steel Inst. Jpn. Int. 2005, 45, 1526–1535. [Google Scholar] [CrossRef]
- Thomas, B.G.; Samarasekera, I.V.; Brimacombe, J.K. Mathematical-model of the thermal-processing of steel ingots: Part I. Heat-flow model. Metal. Trans. B Process Metall. 1987, 18, 119–130. [Google Scholar] [CrossRef]
- Thomas, B.G.; Samarasekera, I.V.; Brimacombe, J.K. Mathematical-model of the thermal-processing of steel ingots: Part II. Stress model. Metal. Trans. B Process Metall. 1987, 18, 131–147. [Google Scholar] [CrossRef]
- Zhao, B.; Vanka, S.P.; Thomas, B.G. Numerical study of flow and heat transfer in a molten flux layer. Int.J. Heat Fluid Flow 2005, 26, 105–118. [Google Scholar] [CrossRef]
- Karamanova, E.; Avdeev, G.; Karamanov, A. Ceramics from blast furnace slag, kaolin and quartz. J. Eur. Ceram. Soc. 2011, 31, 989–998. [Google Scholar] [CrossRef]
- Fu, Y.W.; Cai, L.C.; Wu, Y.G. Freeze-thaw cycle test and damage mechanics models of alkali-activated slag concrete. Constr. Build. Mater. 2011, 25, 3144–3148. [Google Scholar] [CrossRef]
- Lachemi, M.; Hossain, K.M.A.; Lambros, V.; Bouzoubaa, N. Development of cost-effective self-consolidating concrete incorporating fly ash, slag cement, or viscosity-modifying admixtures. Aci Mater. J. 2003, 100, 419–425. [Google Scholar]
- Ekmann, J.M.; Winslow, J.C.; Smouse, S.M.; Ramezan, M. International survey of cofiring coal with biomass and other wastes. Fuel Process. Technol. 1998, 54, 171–188. [Google Scholar] [CrossRef]
- Easterly, J.L.; Burnham, M. Overview of biomass and waste fuel resources for power production. Biomass Bioenergy 1996, 10, 79–92. [Google Scholar] [CrossRef]
- Bridgwater, A.V.; Toft, A.J.; Brammer, J.G. A techno-economic comparison of power production by biomass fast pyrolysis with gasification and combustion. Renew. Sustain. Energy Rev. 2002, 6, 181–248. [Google Scholar] [CrossRef]
- Bridgwater, A.V. Renewable fuels and chemicals by thermal processing of biomass. Chem. Eng. J. 2003, 91, 87–102. [Google Scholar] [CrossRef]
- Sondreal, E.A.; Benson, S.A.; Hurley, J.P.; Mann, M.D.; Pavlish, J.H.; Swanson, M.L.; Zygarlicke, C.J. Review of advances in combustion technology and biomass cofiring. Fuel Process. Technol. 2001, 71, 7–38. [Google Scholar] [CrossRef]
- Open-Cycle Magnetohydrodynamic Electrical Power Generation; Petrick, M.; Ya, S.B. (Eds.) Argonne National Laboratory: Argonne, IL, USA, 1978.
- Pian, C.C.P.; Yoshikawa, K. Development of a high-temperature air-blown gasification system. Bioresour. Technol. 2001, 79, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.X.; Horio, M.; Kojima, T. Use of numerical modeling in the design and scale-up of entrained flow coal gasifiers. Fuel 2001, 80, 1513–1523. [Google Scholar] [CrossRef]
- Willimas, A.; Pourkashanian, M.; Jones, J.M. The combustion of coal and some other solid fuels. Proc. Combust. Inst. 2000, 28, 2141–2162. [Google Scholar] [CrossRef]
- Backreedy, R.I.; Fletcher, L.M.; Jones, J.M.; Ma, L.; Pourkashanian, M.; Williams, A. Co-firing pulverised coal and biomass: a modeling approach. Proc. Combust. Inst. 2005, 30, 2955–2964. [Google Scholar]
- Bjorkvall, J.; Du, S.C.; Stolyarova, V.; Seetharaman, S. A model description of the thermochemical properties of multicomponent slags and its application to slag viscosities. Glass Phys. Chem. 2001, 27, 132–147. [Google Scholar] [CrossRef]
- Montagnaro, F.; Salatino, P. Analysis of char-slag interaction and near-wall particle segregation in entrained-flow gasification of coal. Combust. Flame 2010, 157, 874–883. [Google Scholar] [CrossRef]
- Ma, Z.H.; Iman, F.; Lu, P.S.; Sears, R.; Kong, L.B.; Rokanuzzaman, A.S.; McCollor, D.P.; Benson, S.A. A comprehensive slagging and fouling prediction tool for coal-fired boilers and its validation/application. Fuel Process.Technol. 2007, 88, 1035–1043. [Google Scholar] [CrossRef]
- Koric, S.; Thomas, B.G. Thermo-mechanical models of steel solidification based on two elastic visco-plastic constitutive laws. J. Mater. Process. Technol. 2008, 197, 408–418. [Google Scholar] [CrossRef]
- Anand, L. Constitutive-equations for the rate-dependent deformation of metals at elevated-temperatures. J. Eng. Mater. Technol. Trans. ASME 1982, 104, 12–17. [Google Scholar] [CrossRef]
- Kozlowski, P.F.; Thomas, B.G.; Azzi, J.A.; Hao, W. Simple constitutive-equations for steel at high-temperature. Metall. Trans. A Phys. Metall. Mater. Sci. 1992, 23, 903–918. [Google Scholar] [CrossRef]
- Rezaei, H.R.; Gupta, R.P.; Bryant, G.W.; Hart, J.T.; Liu, G.S.; Bailey, C.W.; Wall, T.F.; Miyamae, S.; Makino, K.; Endo, Y. Thermal conductivity of coal ash and slags and models used. Fuel 2000, 79, 1697–1710. [Google Scholar] [CrossRef]
- Massoudi, M.; Wang, P. A Brief. Review of Viscosity Models for Slag in Coal Gasification; DOE report 103673; U.S. Department of Energy, National Energy Technology Laboratory: Pittsburgh, PA, USA, 2012. Available online: http://www.osti.gov/servlets/purl/1036735/ (accessed on 20 September 2012).
- Slattery, J.C. Advanced Transport. Phenomena; Cambridge University Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Liu, I.S. Continuum Mechanics; Springer-Verlag: Berlin, Germany, 2002. [Google Scholar]
- Muller, I. On entropy inequality. Arch. Ration. Mech. Anal. 1967, 26, 118–141. [Google Scholar] [CrossRef]
- Ziegler, H. An Introduction to Thermomechanics, 2nd ed.; North-Holland Publishing Company: Amsterdam, The Netherlands, 1983. [Google Scholar]
- Truesdell, C.; Noll, W. The Non-Linear Field Theories of Mechanics; Springer-Verlag: New York, NY, USA, 1992. [Google Scholar]
- Bills, P.M. Viscosities in silicate slag systems. J. Iron Steel Inst. 1963, 201, 133–140. [Google Scholar]
- Kim, H.; Kim, W.H.; Sohn, I.; Min, D.J. The effect of MgO on the viscosity of the CaO-SiO2-20 wt% Al2O3-MgO slag system. Steel Res. Int. 2010, 81, 261–264. [Google Scholar] [CrossRef]
- Xu, J.F.; Zhang, J.Y.; Jie, C.; Ruan, F.; Chou, K.C. Experimental measurements and modelling of viscosity in CaO-Al2O3-MgO slag system. Ironmak. Steelmak. 2011, 38, 329–337. [Google Scholar] [CrossRef]
- Vargas, S.; Frandsen, F.J.; Dam-Johansen, K. Rheological properties of high-temperature melts of coal ashes and other silicates. Prog. Energy Combust. Sci. 2001, 27, 237–429. [Google Scholar] [CrossRef]
- Groen, J.C.; Brooker, D.D.; Welch, P.J.; Oh, M.S. Gasification slag rheology and crystallization in titanium-rich, iron-calcium-aluminosilicate glasses. Fuel Process. Technol. 1998, 56, 103–127. [Google Scholar] [CrossRef]
- Kong, L.X.; Bai, J.; Li, W.; Bai, Z.Q.; Guo, Z.X. Effect of lime addition on slag fluidity of coal ash. J. Fuel Chem. Technol. 2011, 39, 407–411. [Google Scholar] [CrossRef]
- Stanmore, B.R.; Budd, S. Measuring the viscous flow of molten coal ash. Fuel 1996, 75, 1476–1479. [Google Scholar] [CrossRef]
- Forsbacka, L.; Holappa, L.; Iida, T.; Kita, Y.; Toda, Y. Experimental study of viscosities of selected CaO-MgO-Al2O3-SiO2 slags and application of the Iida model. Scand. J. Metall. 2003, 32, 273–280. [Google Scholar] [CrossRef]
- Saito, N.; Hori, N.; Nakashima, K.; Mori, K. Viscosity of blast furnace type slags. Metall. and Mater. Trans. B Process Metall. Mater. Process. Sci. 2003, 34, 509–516. [Google Scholar] [CrossRef]
- Pandey, J.C.; Raj, M.; Lenka, S.N.; Suresh, P.; Balasubramaniam, K. Measurement of viscosity and melting characteristics of mould powder slags by ultrasonics. Ironmak. Steelmak. 2011, 38, 74–79. [Google Scholar] [CrossRef]
- Seetharaman, S.; Mukai, K.; Sichen, D. Viscosities of slags—an overview. Steel Res. Int. 2005, 76, 267–728. [Google Scholar]
- Einstein, A. Theory of the Brownian Movement; Dover Publications: New York, NY, USA, 1956. [Google Scholar]
- Taylor, G.I. The Viscosity of a Fluid Containing Small Drops of Another Fluid. Proc. R. Soc. Lond. A 1932, 138, 41–48. [Google Scholar] [CrossRef]
- Batchelor, G.K. Transport Properties of Two-Phase Materials with Random Structure. Annu. Rev. Fluid Mech. 1974, 6, 225–255. [Google Scholar] [CrossRef]
- Park, W.; Oh, M.S. Slagging of petroleum coke ash using Korean anthracites. J. Ind. Eng. Chem. 2008, 14, 350–356. [Google Scholar] [CrossRef]
- Ducret, A.C.; Chao, M.C.; Steyn, A.J.; Fortune, S.M.; Deng, L.L; Rubin, E.J. Liquidus temperatures and viscosities of FeO-Fe2O3-SiO2-CaO-MgO slags at compositions relevant to nickel matte smelting. Scand. J. Metall. 2002, 31, 59–67. [Google Scholar] [CrossRef]
- Broadbent, C.P.; Franken, M.; Gould, D.; Mills, K.C. Standard Reference Material (SRM) for High Temperature Viscosity Measurements. In Proceedings of 4th International Conference on Molten Slags and Fluxes, Sendai, Japan, 8–11 June 1992; pp. 439–443.
- Sridhar, S. Estimation models for molten slag and alloy viscosities. Jom J. Miner. Metals Mater. Soc. 2002, 54, 46–50. [Google Scholar] [CrossRef]
- Patterson, J.H.; Hurst, H.J. Ash and slag qualities of Australian bituminous coals for use in slagging gasifiers. Fuel 2000, 79, 1671–1678. [Google Scholar] [CrossRef]
- Song, W.J.; Tang, L.H.; Zhu, X.D.; Wu, Y.Q.; Zhu, Z.B.; Koyama, S. Flow properties and rheology of slag from coal gasification. Fuel 2010, 89, 1709–1715. [Google Scholar] [CrossRef]
- Watt, J.D.; Fereday, F. Flow properties of slags formed from ashes of british coals. 1. Viscosity of homogeneous liquid slags in relation to slag composition. J. Inst. Fuel. 1969, 42, 99–103. [Google Scholar]
- Hoy, H.R.; Roberts, A.G.; Wilkins, D.M. Behaviour of mineral matter in slagging gasification processes. J. Inst. Gas Engrs. 1965, 5, 444–469. [Google Scholar]
- Kato, M.; Minowa, S. Viscosity measurements of molten slag - properties of slag at elevated temperature .I. Trans. Iron Steel Inst. Jpn. 1969, 9, 31–38. [Google Scholar]
- Urbain, G. Viscosity estimation of slags. Steel Res. 1987, 58, 111–116. [Google Scholar]
- Weymann, H.D. On hole theory of viscosity, compressibility, and expansivity of liquids. Kolloid-Zeitschrift Zeitschrift Fur Polym. 1962, 181, 131–137. [Google Scholar] [CrossRef]
- Riboud, P.V.; Larrecq, M. Lubrication and heat transfer in a continuous casting mold. Steelmak. Proc. 1979, 62, 78–92. [Google Scholar]
- Kondratiev, A.; Jak, E. Predicting coal ash slag flow characteristics (viscosity model for the Al2O3-CaO-'FeO'-SiO2 system). Fuel 2001, 80, 1989–2000. [Google Scholar] [CrossRef]
- Kondratiev, A.; Jak, E. Review of experimental data and modeling of the viscosities of fully liquid slags in the Al2O3-CaO-'FeO'-SiO2 system. Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 2001, 32, 1015–1025. [Google Scholar] [CrossRef]
- Nowok, J.W. Viscosity and phase-transformation in coal ash slags near and below the temperature of critical viscosity. Energy Fuels 1994, 8, 1324–1336. [Google Scholar] [CrossRef]
- Nowok, J.W. Viscosity and structural state of iron in coal ash slags under gasification conditions. Energy Fuels 1995, 9, 534–539. [Google Scholar] [CrossRef]
- Seggiani, M. Modelling and simulation of time varying slag flow in a Prenflo entrained-flow gasifier. Fuel 1998, 77, 1611–1621. [Google Scholar] [CrossRef]
- Reid, W.T.; Cohen, P. The Flow Characteristics of Coal-Ash Slags in the Solidification Range. J. Eng. Power Trans. ASME 1944, 66, 83–97. [Google Scholar]
- Johnson, E.K. A non-Newtonian flow model for coal-ash slag. J. Eng. Gas Turbines Power 1984, 106, 777–781. [Google Scholar] [CrossRef]
- Hurst, H.J.; Novak, F.; Patterson, J.H. Viscosity measurements and empirical predictions for some model gasifier slags. Fuel 1999, 78, 439–444. [Google Scholar] [CrossRef]
- Hurst, H.J.; Patterson, J.H.; Quintanar, A. Viscosity measurements and empirical predictions for some model gasifier slags—II. Fuel 2000, 79, 1797–1799. [Google Scholar] [CrossRef]
- Mills, K.C.; Sridhar, S. Viscosities of ironmaking and steelmaking slags. Ironmak. Steelmak. 1999, 26, 262–268. [Google Scholar] [CrossRef]
- Iida, T.; Sakai, H.; Kita, Y.; Shigeno, K. An equation for accurate prediction of the viscosities of blast furnace type slags from chemical composition. ISIJ Int. 2000, 40, 110–114. [Google Scholar] [CrossRef]
- Reddy, R.G.; Hebbar, K. Viscosity of FeO-SiO2 slags. Miner. Metall. Process. 2001, 18, 195–199. [Google Scholar]
- Bockris, J.O.M.; Reddy, A.K.N. Modern Electrochemistry; Plenum Press: New York, NY, USA, 1970. [Google Scholar]
- Reddy, R.G.; Hebbar, K. Prediction of Viscosities of Binary Silicate Melts EPD Congress 91; Minerals, Metals & Materials Society: New Orleans, LA, USA, 1991; pp. 523–540. [Google Scholar]
- Urbain, G.; Cambier, F.; Deletter, M.; Anseau, M.R. Viscosity of silicate melts. Trans. J. Br. Ceram. Soc. 1981, 80, 139–141. [Google Scholar]
- Roscoe, R. The viscosity of suspensions of rigid spheres. Br. J. Appl. Phys. 1952, 3, 267–269. [Google Scholar] [CrossRef]
- Wright, S.; Zhang, L.; Sun, S.; Jahanshahi, S. Viscosity of a CaO-MgO-Al2O3-SiO2 melt containing spinel particles at 1646 K. Metall. Mater.Trans. B 2000, 31, 97–104. [Google Scholar] [CrossRef]
- Mudersbach, D.; Drissen, P.M.; Kuhn, M.; Geiseler, J. Viscosity of slags. Steel Res. 2001, 72, 86–90. [Google Scholar]
- Nicholls, P.; Reid, W.T. Viscosity of coal ash slags. Trans. ASME 1940, 62, 141–153. [Google Scholar]
- Inaba, S.; Kimura, Y. Viscosity measurement of slag formed in the carbon-bearing iron oxide during the rapid heating. ISIJ Int. 2004, 44, 2067–2072. [Google Scholar] [CrossRef]
- Nakamoto, M.; Lee, J.; Tanaka, T. A model for estimation of viscosity of molten silicate slag. ISIJ Int. 2005, 45, 651–656. [Google Scholar] [CrossRef]
- Buhre, B.J.P.; Browning, G.J.; Gupta, R.P.; Wall, T.F. Measurement of the viscosity of coal-derived slag using thermomechanical analysis. Energy Fuels 2005, 19, 1078–1083. [Google Scholar] [CrossRef]
- Seok, S.H.; Jung, S.M.; Lee, Y.S.; Min, D.J. Viscosity of highly basic slags. ISIJ Int. 2007, 47, 1090–1096. [Google Scholar] [CrossRef]
- Kalicka, Z.; Kawecka-Cebula, E.; Pytel, K. Application of the lida model for estimation of slag viscosity for Al2O3-Cr2O3-CaO-CaF2 systems. Arch. Metall. Mater. 2009, 54, 179–187. [Google Scholar]
- van Dyk, J.C.; Benson, S.A.; Laumb, M.L.; Waanders, B. Coal and coal ash characteristics to understand mineral transformations and slag formation. Fuel 2009, 88, 1057–1063. [Google Scholar]
- van Dyk, J.C.; Waanders, F.B.; Benson, S.A.; Laumb, M.L.; Hack, K. Viscosity predictions of the slag composition of gasified coal, utilizing FactSage equilibrium modelling. Fuel 2009, 88, 67–74. [Google Scholar] [CrossRef]
- Mizukami, H.; Murakami, K.; Miyashita, Y. Mechanical properties of continuously cast steels at high temperatures. Tetsu-to-Hagane (Iron Steel) 1977, 63, 652. [Google Scholar]
- Thomas, B.G. Issues in thermal-mechanical modeling of casting processes. ISIJ Int. 1995, 35, 737–743. [Google Scholar] [CrossRef]
- Thomas, B.G. Modeling of the continuous casting of steel-past, present, and future. Metall. Mater. Trans. B Process Metall. Mater. Process Sci. 2002, 33, 795–812. [Google Scholar] [CrossRef]
- Meng, Y.A.; Thomas, B.G. Heat-transfer and solidification model of continuous slab casting: CON1D. Metall. Mater. Trans. B Process Metall. Mater. Process Sci. 2003, 34, 685–705. [Google Scholar] [CrossRef]
- Meng, Y.A.; Thomas, B.G. Modeling transient slag-layer phenomena in the shell/mold gap in continuous casting of steel. Metall. Mater. Trans. B Process Metall. Mater. Process Sci. 2003, 34, 707–725. [Google Scholar] [CrossRef]
- Wang, C.C.; Truesdell, C. Introduction to Rational Elasticity; Noordhoff International Publishing: Leyden, The Netherlands, 1973. [Google Scholar]
- Bingham, E.C. Fluidity and Plasticity; McGraw Hill: New York, NY, USA, 1922. [Google Scholar]
- Prager, W. Introduction to Mechanics of Continua; Dover Publications: Mineola, NY, USA, 1989. [Google Scholar]
- Casson, N. A Flow Equation for Pigment-Oil Suspensions of the Printing Ink Type. In Rheology of Disperse Systems; Mill, C.C., Ed.; Pergamon: New York, NY, USA, 1959. [Google Scholar]
- Oldroyd, J.G. An approach to non-newtonian fluid-mechanics. J. Non-Newton. Fluid Mech. 1984, 14, 9–46. [Google Scholar] [CrossRef]
- Lipscomb, G.G.; Denn, M.M. Flow of bingham fluids in complex geometries. J. Non-Newton. Fluid Mech. 1984, 14, 337–346. [Google Scholar] [CrossRef]
- Tanner, R.I. Engineering Rheology, 2nd ed.; Oxford University Press: Oxford, UK, 1988. [Google Scholar]
- Massoudi, M.; Mehrabadi, M.M. A continuum model for granular materials: considering dilatancy and the Mohr-Coulomb criterion. Acta Mech. 2001, 152, 121–138. [Google Scholar] [CrossRef]
- Batchelor, G.K.; Green, J.T. Determination of bulk stress in a suspension of spherical-particles to order C-2. J. Fluid Mech. 1972, 56, 401–427. [Google Scholar] [CrossRef]
- Brinkman, H.C. The viscosity of concentrated suspensions and solutions. J. Chem. Phys. 1952, 20, 571. [Google Scholar] [CrossRef]
- Krieger, I.M.; Dougherty, T.J. A mechanism for non-newtonian flow in suspensions of rigid spheres. Trans. Soc. Rheol. 1959, 3, 137–152. [Google Scholar] [CrossRef]
- Nielsen, L.E. Generalized equation for elastic moduli of composite materials. J. Appl. Phys. 1970, 41, 4626–4627. [Google Scholar] [CrossRef]
- Mooney, M. The viscosity of a concentrated suspension of spherical particles. J. Colloid Sci. 1951, 6, 162–170. [Google Scholar] [CrossRef]
- Choi, H.J.; Kwon, T.M.; Jhon, M.S. Effects of shear rate and particle concentration on rheological properties of magnetic particle suspensions. J. Mater. Sci. 2000, 35, 889–894. [Google Scholar] [CrossRef]
- Kwon, T.M.; Jhon, M.S.; Choi, H.J. Viscosity of magnetic particle suspension. J. Mol. Liq. 1998, 75, 115–126. [Google Scholar] [CrossRef]
- Rivlin, R.S.; Ericksen, J.L. Stress-deformation relations for isotropic materials. J. Ration. Mech. Anal. 1955, 4, 323–425. [Google Scholar]
- Dunn, J.E.; Fosdick, R.L. Thermodynamics, stability, and boundedness of fluids of complexity-2 and fluids of second grade. Arch. Ration. Mech. Anal. 1974, 56, 191–252. [Google Scholar] [CrossRef]
- Man, C.S. Nonsteady channel flow of ice as a modified 2nd-order fluid with power-law viscosity. Arch. Ration. Mech. Anal. 1992, 119, 35–57. [Google Scholar] [CrossRef]
- Massoudi, M.; Vaidya, A. On some generalizations of the second grade fluid model. Nonlinear Anal. Real World Appl. 2008, 9, 1169–1183. [Google Scholar] [CrossRef]
- Bird, R.B.; Armstrong, R.C.; Hassager, J. Dynamics of Polymeric Liquids; John Wiley & Sons: New York, NY, USA, 1977. [Google Scholar]
- Macosko, C.W. Rheology: Principles, Measurements and Applications; Wiley-VCH: New York, NY, USA, 1994. [Google Scholar]
- Gupta, G.; Massoudi, M. Flow of a generalized 2nd-grade fluid between heated plates. Acta Mech. 1993, 99, 21–33. [Google Scholar] [CrossRef]
- Szeri, A.Z. Fluid Film Lubricatio; Cambridge University Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Franta, M.; Malek, J.; Rajagopal, K.R. Oil steady flows of fluids with pressure- and shear-dependent viscosities. Proc. R. Soc. A Math. Phys. Engi. Sci. 2005, 461, 651–670. [Google Scholar] [CrossRef]
- Hron, J.; Malek, J.; Rajagopal, K.R. Simple flows of fluids with pressure-dependent viscosities. Proc. R. Soc. A Math. Phys. Engi. Sci. 2001, 457, 1603–1622. [Google Scholar] [CrossRef]
- Griffiths, R.W. The dynamics of lava flows. Annu. Rev. Fluid Mech. 2000, 32, 477–518. [Google Scholar] [CrossRef]
- Tsai, C.Y.; Novack, M.; Roffe, G. Rheological and Heat Transfer Characteristics of Flowing Coal-Water Mixtures; General Applied Science Laboratory: Ronkonkoma, NY, USA, 1988. [Google Scholar]
- Renner, J.; Evans, B.; Hirth, G. On the theologically critical melt fraction. Earth Planet. Sci. Lett. 2000, 181, 585–594. [Google Scholar] [CrossRef]
- Roscoe, R. Suspensions. In Flow Properties of Disperse Systems; Hermans, J.J., Ed.; North Holland: New York, NY, USA, 1953; pp. 1–38. [Google Scholar]
- Massoudi, M.; Phuoc, T.X. Flow of a generalized second grade non-Newtonian fluid with variable viscosity. Contin. Mech. Thermodyn. 2004, 16, 529–538. [Google Scholar] [CrossRef]
- Shannon, G.; White, L.; Sridhar, S. Modeling inclusion approach to the steel/slag interface. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2008, 495, 310–315. [Google Scholar] [CrossRef]
- Shannon, G.N.; Rozelle, P.L.; Pisupati, S.V.; Sridhar, S. Conditions for entrainment into a FeOx containing slag for a carbon-containing particle in an entrained coal gasifier. Fuel Process. Technol. 2008, 89, 1379–1385. [Google Scholar] [CrossRef]
- Hanao, M.; Tanaka, T.; Kawamoto, M.; Takatani, K. Evaluation of Surface Tension of Molten Slag in Multi-Component Systems. ISIJ Int. 2007, 47, 935–939. [Google Scholar] [CrossRef]
- Nakano, J.; Sridhar, S.; Bennett, J.; Kwong, K.S.; Moss, T. Interactions of refractory materials with molten gasifier slags. Int. J. Hydrog. Energy 2011, 36, 4595–4604. [Google Scholar] [CrossRef]
- Soll-Morris, H.; Sawyer, C.; Zhang, Z.T.; Shannon, G.N.; Nakano, J.; Sridhar, S. The interaction of spherical Al2O3 particles with molten Al2O3-CaO-FeOx-SiO2 slags. Fuel 2009, 88, 670–682. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Massoudi, M.; Wang, P. Slag Behavior in Gasifiers. Part II: Constitutive Modeling of Slag. Energies 2013, 6, 807-838. https://doi.org/10.3390/en6020807
Massoudi M, Wang P. Slag Behavior in Gasifiers. Part II: Constitutive Modeling of Slag. Energies. 2013; 6(2):807-838. https://doi.org/10.3390/en6020807
Chicago/Turabian StyleMassoudi, Mehrdad, and Ping Wang. 2013. "Slag Behavior in Gasifiers. Part II: Constitutive Modeling of Slag" Energies 6, no. 2: 807-838. https://doi.org/10.3390/en6020807
APA StyleMassoudi, M., & Wang, P. (2013). Slag Behavior in Gasifiers. Part II: Constitutive Modeling of Slag. Energies, 6(2), 807-838. https://doi.org/10.3390/en6020807