Microalgae Isolation and Selection for Prospective Biodiesel Production
Abstract
:1. Introduction
2. Advanced Microalgae Biodiesel Production
3. Biodiesel Conversion from Microalgae
4. Isolation and Selection Criteria for Microalgae with Potential for Biodiesel Production
4.1. Sampling and Isolation of Pure Cultures
Primer name | Forward (5’–3’) | Primer name | Reverse (5’–3’) | Species | References |
---|---|---|---|---|---|
TH18S5’ | GGTAACGAATTGTTAG | TH18S3’ | GTCGGCATAGTTTATG | Thalassiosira pseudonana | [21] |
P45 | ACCTGGTTGATCCTGCCAGT | P47 | TCTCAGGCTCCCTCTCCGGA | Chlorella vulgaris | [22] |
GTCAGAGGTGAAATTCTTGGATTTA | AGGGCAGGGACGTAATCAACG | Dunaliella salina | [23] | ||
SS5 | GGTGATCCTGCCAGTAGTCATATGCTTG | SS3 | GATCCTTCCGCAGGTTCACCTACGGAAACC | Navicula sp. Chlorella sp. | [24] |
GAAGTCGTAACAAGGTTTCC | TCCTGGTTAGTTTCTTTTCC | Chlamydomonas coccoides Tetraselmis suecicaNannochloris atomus | [25] | ||
CCAACCTGGTTGATCCTGCCAGTA | CCTTGTTACGACTTCACCTTCCTCT | Nannochloropsis sp. | [26] |
4.2. Lipid Determination
4.3. Cultivation and Biomass Production
4.4. Testing at Larger Scale
Steps | Desirable traits |
---|---|
Screening | High oil |
High saturated fatty acids | |
Low unsaturated fatty acids | |
High omega 3 fatty acids | |
Rapid and synchronized lipid production | |
Radiation tolerance/pigment synthesis | |
Antioxidants, sterols, carotenoids, astaxanthins and other pigments | |
Low starch contents | |
High protein contents | |
Cultivation | Rapid growth |
Salinity/freshwater tolerance | |
High/low temperature tolerance | |
Reduced antennal pigments (for improved photosynthesis in bioreactor) | |
Flagella properties/possession | |
Sheering resistance | |
Harvesting | Cell size and cell wall properties amenable for autoflocculation |
Sinking speed | |
Foam fractionation properties | |
Structure and cell wall properties | |
Extraction | Cell wall properties amenable for oil extraction |
Lipid extraction efficiency |
5. Lipid Content in Microalgae
Species | Total lipids (% dry weight) | PUFA (% total lipids) | PUFA (% dry weight) |
---|---|---|---|
Isochrysis galbana | 25.6 | 17 | 4.3 |
Nanaochloropsis sp. | 5.6 | 2.8 | 0.2 |
Chaetoceros calcitrans | 11.8 | 8.7 | 0.9 |
Tetreselmis suecica | 2.5 | 20.9 | 0.2 |
Skeletonema costatum | 9.7 | 5.1 | 0.5 |
Phaeodactylum tricornutum | 30 | ||
Porphyridium cruentum | 1.5 | 17.1 | 0.3 |
Crypthecodinium cohnii | 20 | ||
Botryococcus braunii | 25.0–75.0 | ||
Chlorella sp. | 10.0–48.0 |
6. Cultivation and Lipid Extraction Properties of Microalgae
Species | Eicosapentaenoic acid (EPA) (% of total fatty acids) | Docosahexaenoic acid (DHA) (% of total fatty acids) |
---|---|---|
Isochrysis galbana | 0.9 | |
Nannochloropsis sp. | 30.1 | |
Chaetoceros calcitrans | 34 | |
Tetraselmis suecica | 6.2 | |
Chaetoceros muelleri | 12.8 | 0.8 |
Pavlova salina | 19.1 | 1.5 |
Skeletonema costatum | 40.7 | 2.3 |
Porphyridium cruentum | 30.7 | |
Crypthecodinium cohnii | 30 | |
Chroomonas salina | 12.9 | 7.1 |
Chaetoceros constriccus | 18.8 | 0.6 |
Tetraselmis viridis | 6.7 |
7. Conclusions
Acknowledgements
References
- Richmond, A. Handbook of Microalgal Culture: Biotechnology and Applied Phycology; Blackwell Science Ltd.: Hudson County, NJ, USA, 2004. [Google Scholar]
- Mata, T.M.; Martins, A.A.; Caetano, N.S. Microalgae for biodiesel production and other applications: A review. Renew. Sustain. Energy Rev. 2010, 14, 217–232. [Google Scholar] [CrossRef]
- CSIRO. Australian national algae culture collection. Available online: http://www.csiro.au/Organisation-Structure/National-Facilities/Australian-National-Algae-Culture-Collection.aspx (accessed on 19 January 2012).
- Chisti, Y. Biodiesel from microalgae. Biotechnol. Adv. 2007, 25, 294–306. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Du, W.; Liu, D. Perspectives of microbial oils for biodiesel production. Appl. Microbiol. Biotechnol. 2008, 80, 749–756. [Google Scholar] [CrossRef] [PubMed]
- European Biodiesel Board. The EU biodiesel industry. Available online: http://www.ebb-eu.org/stats.php (accessed on 18 January 2012).
- Carriquiry, M. U.S. Bidiesel production: Recent developments and prospects. Iowa Agric. Rev. Online 2007, 13, 8–9. [Google Scholar]
- TUSNBB. Production statistics. Available online: http://www.biodiesel.org/production/production-statistics (accesssed on 18 January 2012).
- Wang, B.; Li, Y.; Wu, N.; Lan, C.Q. CO2 bio-mitigation using microalgae. Appl. Microbiol. Biotechnol. 2008, 79, 707–718. [Google Scholar] [CrossRef] [PubMed]
- Sheehan, J.; Dunahay, T.; Benemann, J.; Roessler, P. A Look Back at the U.S. Department of Energy’s Aquatic Species Program: Biodiesel from Algae; National Renewable Energy Laboratory: Golden, Colorado, USA, 1998. [Google Scholar]
- Delucchi, M.A. A Lifecycle Emission Model (LEM): Lifecycle Emissions from Transportation Fuels; Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels; Institute of Transport Studies, University of California: Davis, CA, USA, 2003. [Google Scholar]
- Paulson, N.D.; Ginder, R.D. The Growth and Direction of Biodiesel Industry in the United States; Center for Agricultural and Rural Development: Iowa State University, IA, USA, 2007. [Google Scholar]
- Laboratory, N.R.E. Biodiesel Handling and Use Guide; The U.S. Department of Energy: Golden, Colorado, USA, 2009. [Google Scholar]
- Fukuda, H.; Kondo, A.; Noda, H. Biodiesel fuel production by transesterification of oils. J. Biosci. Bioeng. 2001, 92, 405–416. [Google Scholar] [CrossRef] [PubMed]
- Bahadur, N.P.; Boocock, D.G.B.; Konar, S.K. Liquid hydrocarbons from catalytic pyrolysis of sewage sludge lipid and canola oil: Evaluation of fuel properties. Energy Fuels 1995, 9, 248–256. [Google Scholar] [CrossRef]
- Boateng, A.A.; Mullen, C.A.; Goldberg, N.; Hicks, K.B.; Jung, H.-J.G.; Lamb, J.F.S. Production of bio-oil from alfalfa stems by fluidized-Bed fast pyrolysis. Ind. Eng. Chem. Res. 2008, 47, 4115–4122. [Google Scholar] [CrossRef]
- Davey, H.M.; Kell, D.B. Flow cytometry and cell sorting of heterogeneous microbial populations: The importance of single-cell analyses. Microbiol. Rev. 1996, 60, 641–696. [Google Scholar] [PubMed]
- Reckermann, M. Flow sorting in aquatic ecology. Sci. Mar. 2000, 64, 235–246. [Google Scholar] [CrossRef]
- Dinh, L.T.T.; Guo, Y.; Mannan, M.S. Sustainability evaluation of biodiesel production using multicriteria decision-making. Environ. Prog. Sustain. Energy 2009, 28, 38–46. [Google Scholar] [CrossRef]
- Rismani-Yazdi, H.; Haznedaroglu, B.Z.; Bibby, K.; Peccia, J. Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: Pathway description and gene discovery for production of next-generation biofuels. BMC Genomics 2011, 12, 148. [Google Scholar] [CrossRef] [PubMed]
- Tonon, T.; Harvey, D.; Qing, R.; Li, Y.; Larson, T.R.; Graham, I.A. Identification of a fatty acid Δ11-desaturase from the microalga Thalassiosira pseudonana. FEBS Lett. 2004, 563, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Berard, A.; Dorigo, U.; Humbert, J.F.; Martin-Laurent, F. Microalgae community structure analysis based on 18S rDNA amplification from DNA extracted directly from soil as a potential soil bioindicator. Agronomie 2005, 25, 1–7. [Google Scholar]
- Rasoul-Amini, S.; Ghasemi, Y.; Morowvat, M.H.; Mohagheghzadeh, A. PCR amplification of 18S rRNA, single cell protein production and fatty acid evaluation of some naturally isolated microalgae. Food Chem. 2009, 116, 129–136. [Google Scholar] [CrossRef]
- Matsumoto, M.; Sugiyama, H.; Maeda, Y.; Sato, R.; Tanaka, T.; Matsunaga, T. Marine diatom, Navicula sp. strain JPCC DA0580 and marine green alga, Chlorella sp. strain NKG400014 as potential sources for biodiesel production. Appl. Biochem. Biotechnol. 2010, 161, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Timmins, M.; Thomas-Hall, S.R.; Darling, A.; Zhang, E.; Hankamer, B.; Marx, U.C.; Schenk, P.M. Phylogenetic and molecular analysis of hydrogen-producing green algae. J. Exp. Bot. 2009, 60, 1691–1702. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Chen, B.; You, W. Identification of the alga known as Nannochloropsis Z-1 isolated from a prawn farm in Hainan, China as Chlorella. World J. Microbiol. Biotechnol. 2007, 23, 207–210. [Google Scholar] [CrossRef]
- Radakovits, R.; Jinkerson, R.E.; Darzins, A.; Posewitz, M.C. Genetic engineering of algae for enhanced biofuel production. Eukaryot. Cell 2010, 9, 486–501. [Google Scholar] [CrossRef] [PubMed]
- Schuhmann, H.; Lim, D.K.Y.; Schenk, P.M. Perspectives on metabolic engineering for increased lipid contents in microalgae. Biofuels 2012, 3, 71–86. [Google Scholar] [CrossRef]
- Radakovits, R.; Jinkerson, R.E.; Fuerstenberg, S.I.; Tae, H.; Settlage, R.E.; Boore, J.L.; Posewitz, M.C. Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropis gaditana. Nat. Commun. 2012, 3, 686. [Google Scholar] [CrossRef] [PubMed]
- Bligh, E.G.; Dyer, W.J. A rapid method for total lipid extraction and purification. Can. J. Biochem. Phys. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Eltgroth, M.L.; Watwood, R.L.; Wolfe, G.V. Production and cellular localization of neutral long-chain lipids in the haptophyte algae Isochrysis galbana and Emiliania huxleyi. J. Phycol. 2005, 41, 1000–1009. [Google Scholar] [CrossRef]
- Greenspan, P.; Mayer, E.P.; Fowler, S.D. Nile red—A selective fluorescent stain for intracellular lipid droplets. J. Cell Biol. 1985, 100, 965–973. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zhang, C.; Song, L.; Sommerfeld, M.; Hu, Q. A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. J. Microbiol. Methods 2009, 77, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Sommerfeld, M.; Hu, Q. Microwave-assisted Nile red method for in vivo quantification of neutral lipids in microalgae. Bioresour. Technol. 2011, 102, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Chiu, K.Y.; Chan, K.W. Rapid immunofluorescence staining of human renal biopsy speciments using microwave irradiation. J. Clin. Pathol. 1987, 40, 689–692. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, T.E.; Giberson, R.T.; Demaree, R.; Day, J.R. Microwave-assisted immunostaining: A new approach yields fast and consistent results. J. Neurosci. Methods 2004, 137, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Spaulding, B.W. A Nile red staining method for the fluorescence detection of lipid in algae utilizing a FlowCAM: Biofuels digest. Available online: http://www.biofuelsdigest.com/bdigest/2010/05/05/a-nile-red-staining-method-for-the-fluorescence-detection-of-lipid-in-algae-utilizing-a-flowcam/ (accessed on 31 January 2012).
- Schenk, P.; Thomas-Hall, S.; Stephens, E.; Marx, U.; Mussgnug, J.; Posten, C.; Kruse, O.; Hankamer, B. Second generation biofuels: High-efficiency microalgae for biodiesel production. Bioenerg. Res. 2008, 1, 20–43. [Google Scholar] [CrossRef]
- Rodolfi, L.; Chini Zittelli, G.; Bassi, N.; Padovani, G.; Biondi, N.; Bonini, G.; Tredici, M.R. Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng. 2009, 102, 100–112. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Qin, J.G. Comparison of growth and lipid content in three Botryococcus braunii strains. J. Appl. Phycol. 2005, 17, 6. [Google Scholar]
- Thomas, W.H.; Tornabene, T.G.; Weissman, J. Screening for Lipid Yielding Microalgae: Activities for 1983; Solar Energy Research Institute: Golden, Colorado, USA, 1984. [Google Scholar]
- Al-Hasan, R.; Ali, A.; Ka’wash, H.; Radwan, S. Effect of salinity on the lipid and fatty acid composition of the halophyte Navicula sp.: Potential in mariculture. J. Appl. Phycol. 1990, 2, 215–222. [Google Scholar] [CrossRef]
- Pulz, O.P. Photobioreactors: Production systems for phototrophic microorganisms. Appl. Microbiol. Biotechnol. 2001, 57, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.C.; Knights, B.A.; Conway, E. Hydrocarbon content and its relationship to physiological state in the green alga Botryococcus braunii. Phytochemistry 1969, 8, 5. [Google Scholar]
- Huerlimann, R.; de Nys, R.; Heimann, K. Growth, lipid content, productivity, and fatty acid composition of tropical microalgae for scale-up production. Biotechnol. Bioeng. 2010, 107, 245–257. [Google Scholar] [CrossRef] [PubMed]
- Miao, X.; Wu, Q. Biodiesel production from heterotrophic microalgal oil. Bioresour. Technol. 2006, 97, 841–846. [Google Scholar] [CrossRef] [PubMed]
- Knothe, G. Analyzing biodiesel: Standards and other methods. J. Am. Oil Chem. Soc. 2006, 83, 823–833. [Google Scholar] [CrossRef]
- Yan, L.; Schenk, P.M. Selection of Cultured Microalgae for Producing Omega-3 Bio-Lipid Oil; Report for Queensland Sea Scallop Trading Pty Ltd.; The University of Queensland: Queensland, Austrilia, 2011; p. 36. [Google Scholar]
- Scholz, M.; Hoshino, T.; Johnson, D.; Riley, M.R.; Cuello, J. Flocculation of wall-deficient cells of Chlamydomonas reinhardtii mutant cw15 by calcium and methanol. Biomass Bioenerg. 2011, 35, 4835–4840. [Google Scholar] [CrossRef]
- Christenson, L.; Sims, R. Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol. Adv. 2011, 29, 686–702. [Google Scholar] [CrossRef] [PubMed]
- Park, J.B.K.; Craggs, R.J.; Shilton, A.N. Recycling algae to improve species control and harvest efficiency from a high rate algal pond. Water Res. 2011, 45, 6637–6649. [Google Scholar] [CrossRef] [PubMed]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Duong, V.T.; Li, Y.; Nowak, E.; Schenk, P.M. Microalgae Isolation and Selection for Prospective Biodiesel Production. Energies 2012, 5, 1835-1849. https://doi.org/10.3390/en5061835
Duong VT, Li Y, Nowak E, Schenk PM. Microalgae Isolation and Selection for Prospective Biodiesel Production. Energies. 2012; 5(6):1835-1849. https://doi.org/10.3390/en5061835
Chicago/Turabian StyleDuong, Van Thang, Yan Li, Ekaterina Nowak, and Peer M. Schenk. 2012. "Microalgae Isolation and Selection for Prospective Biodiesel Production" Energies 5, no. 6: 1835-1849. https://doi.org/10.3390/en5061835