Next Article in Journal
On the Evaluation of Solar Greenhouse Efficiency in Building Simulation during the Heating Period
Next Article in Special Issue
The Characteristics of the Exergy Reference Environment and Its Implications for Sustainability-Based Decision-Making
Previous Article in Journal
Microalgae Isolation and Selection for Prospective Biodiesel Production
Previous Article in Special Issue
Optimization of Steam Pressure Levels in a Total Site Using a Thermoeconomic Method
Open AccessArticle

Advanced Thermodynamic Analysis and Evaluation of a Supercritical Power Plant

Institute for Advanced Energy System, North China Electric Power University, Beinong Road 2, Beijing 102206, China
Institut für Energietechnik, Technische Universität Berlin, Marchstr. 18, Berlin 10587, Germany
Author to whom correspondence should be addressed.
Energies 2012, 5(6), 1850-1863;
Received: 2 May 2012 / Revised: 18 May 2012 / Accepted: 31 May 2012 / Published: 15 June 2012
(This article belongs to the Special Issue Exergy Analysis of Energy Systems)
A conventional exergy analysis can highlight the main components having high thermodynamic inefficiencies, but cannot consider the interactions among components or the true potential for the improvement of each component. By splitting the exergy destruction into endogenous/exogenous and avoidable/unavoidable parts, the advanced exergy analysis is capable of providing additional information to conventional exergy analysis for improving the design and operation of energy conversion systems. This paper presents the application of both a conventional and an advanced exergy analysis to a supercritical coal-fired power plant. The results show that the ratio of exogenous exergy destruction differs quite a lot from component to component. In general, almost 90% of the total exergy destruction within turbines comes from their endogenous parts, while that of feedwater preheaters contributes more or less 70% to their total exergy destruction. Moreover, the boiler subsystem is proven to have a large amount of exergy destruction caused by the irreversibilities within the remaining components of the overall system. It is also found that the boiler subsystem still has the largest avoidable exergy destruction; however, the enhancement efforts should focus not only on its inherent irreversibilities but also on the inefficiencies within the remaining components. A large part of the avoidable exergy destruction within feedwater preheaters is exogenous; while that of the remaining components is mostly endogenous indicating that the improvements mainly depend on advances in design and operation of the component itself. View Full-Text
Keywords: supercritical power plant; advanced exergy analysis; improvement strategy supercritical power plant; advanced exergy analysis; improvement strategy
Show Figures

Figure 1

MDPI and ACS Style

Wang, L.; Yang, Y.; Morosuk, T.; Tsatsaronis, G. Advanced Thermodynamic Analysis and Evaluation of a Supercritical Power Plant. Energies 2012, 5, 1850-1863.

Show more citation formats Show less citations formats

Article Access Map by Country/Region

Only visits after 24 November 2015 are recorded.
Back to TopTop