# Asymmetrical Interleaved DC/DC Switching Converters for Photovoltaic and Fuel Cell Applications—Part 1: Circuit Generation, Analysis and Design

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Interleaved Structures and Voltage Multiplier Cells

#### 2.1. Interleaved Dual Boost (IDB)

#### 2.2. Switched Capacitor Interleaved Dual Boost (SCIDB)

## 3. Asymmetrical Interleaved Dual Boost (AIDB)

#### 3.1. Circuital Analysis

- topology 1: ${S}_{B}$ and ${D}_{A}$ ON; ${S}_{A}$ and ${D}_{B}$ OFF.
- topology 2: ${S}_{A}$ and ${D}_{B}$ ON; ${S}_{B}$ and ${D}_{A}$ OFF.
- topology 3: ${S}_{A}$ ON; ${S}_{B}$, ${D}_{A}$ and ${D}_{B}$ OFF; ${D}_{B}$ OFF because ${i}_{B}$ and ${i}_{AO}$ are in DCM.
- topology 4: ${S}_{B}$ ON; ${S}_{A}$, ${D}_{A}$ and ${D}_{B}$ OFF; ${D}_{A}$ OFF because ${i}_{A}$ is in DCM.

#### 3.2. Design Process

#### 3.3. Design Example and Experimental Results

## 4. Asymmetrical Interleaved Dual Buck-Boost (AIDBB) Converter

## 5. Asymmetrical Interleaved Dual Flyback (AIDF) Converters

## 6. Conclusions

## Acknowledgments

## References

- Ouyang, W.; Cheng, H.; Zhang, X.; Yao, L. Distribution network planning method considering distributed generation for peak cutting. Energy Convers. Manag.
**2010**, 51, 2394–2401. [Google Scholar] [CrossRef] - Sadeghi, M.; Shishebori, A.; Taki, F. Economic Evaluation of Uncertain Distributed Generations for a Distribution Company. Intern. Rev. Electr. Eng.
**2011**, 6, 967–973. [Google Scholar] - Oner, Y.; Cetin, E. Investigation of the Reactions Exhibited by the System in Relation to Different Loads in a Sample House Powered with a Hybrid Photovoltaic-Hydrogen/Fuel Cell. Intern. Rev. Electr. Eng.
**2010**, 5, 1588–1594. [Google Scholar] - Ulu, E.Y.; Cetin, E.; Karakilinc, O.O.; Yilanci, A.; Ozturk, H.K. Analysis of a Photovoltaic-Fuel Cell Hybrid Energy System in Terms of Electromagnetic Pollution. Intern. Rev. Electr. Eng.
**2010**, 5, 1600–1608. [Google Scholar] - Ramos-Paja, C.; Bordons, C.; Romero, A.; Giral, R.; Martinez-Salamero, L. Minimum Fuel Consumption Strategy for PEM Fuel Cells. IEEE Trans. Ind. Electron.
**2009**, 56, 685–696. [Google Scholar] [CrossRef] - Hegazy, O.; Mierlo, J.V.; Lataire, P. Design Optimization and Optimal Power Control of Fuel Cell Hybrid Electric Vehicles Based on Swarm Intelligence. Intern. Rev. Electr. Eng.
**2011**, 6, 1727–1738. [Google Scholar] - Chao, K.H.; Lee, R.H.; Yen, K.L. Design of a Hybrid Power Fed-Converter and Time Controller for LED Traffic Light Systems. Intern. Rev. Electr. Eng.
**2011**, 6, 1086–1093. [Google Scholar] - Guerrero-González, A.; García-Córdova, F.; de Asis Ruz-Vila, F. A Solar Powered Autonomous Mobile Vehicle for Monitoring and Surveillance Missions of Long Duration. Intern. Rev. Electr. Eng.
**2010**, 5, 1580–1587. [Google Scholar] - Tsao-Tsung, M. Design and Implementation of a High Step-Up Grid-Connected PV Inverter. Intern. Rev. Electr. Eng.
**2010**, 2, 416–425. [Google Scholar] - Yu, X.; Starke, M.; Tolbert, L.; Ozpineci, B. Fuel cell power conditioning for electric power applications: a summary. IET Electr. Power Appl.
**2007**, 1, 643–656. [Google Scholar] [CrossRef] - Khanh, L.N.; Seo, J.J.; Kim, Y.S.; Won, D.J. Power-Management Strategies for a Grid-Connected PV-FC Hybrid System. IEEE Trans. Power Deliv.
**2010**, 23, 1874–1882. [Google Scholar] [CrossRef] - Petrone, G.; Ramos-Paja, C.A.; Spagnuolo, G.; Vitelli, M. Granular control of photovoltaic arrays by means of a multi-output Maximum Power Point Tracking algorithm. Prog. Photovolt. Res. Appl.
**2012**. [Google Scholar] [CrossRef] - Ramos-Paja, C.A.; Arango, E.; Giral, R.; Saavedra-Montes, A.J. DC/DC pre-regulator for input current ripple reduction and efficiency improvement. Electr. Power Syst. Res.
**2011**, 81, 2048–2055. [Google Scholar] [CrossRef] - Gemmen, R.S. Analysis for the Effect of Inverter Ripple Current on Fuel Cell Operating Condition. J. Fluids Eng.
**2003**, 125, 576–585. [Google Scholar] [CrossRef] - Aranda, E.; Galan, J.; de Cardona, M.; Marquez, J. Measuring the I-V curve of PV generators. IEEE Ind. Electron. Mag.
**2009**, 3, 4–14. [Google Scholar] [CrossRef] - G. Fontes, G.; Turpin, C.; Astier, S.; Meynard, T. Interactions Between Fuel Cells and Power Converters: Influence of Current Harmonics on a Fuel Cell Stack. IEEE Trans. Power Electron
**2007**, 22, 670–678. [Google Scholar] [CrossRef] - Arango, E.; Ramos-Paja, C.; Carrejo, C.; Giral, R.; Saavedra-Montes, A.J. A ripple-mitigating pre-amplifier based on interleaved DC-DC boost converters for efficiency improvement. Revista Facultad de Ingenieria
**2011**, 60, 214–225. [Google Scholar] - Arango, E.; Calvente, J.; Giral, R. Asymmetric Interleaved DC-DC Switching Converters: Generation, Modelling and Control; LAP Lambert Academic Publishing: Saarbrucken, Germany, 2010. [Google Scholar]
- Hegazy, O.; Mierlo, J.V.; Lataire, P. Analysis, Control and Implementation of a High-Power Interleaved Boost Converter for Fuel Cell Hybrid Electric Vehicles. Intern. Rev. Electr. Eng.
**2011**, 6, 1739–1747. [Google Scholar] - Jung, A.Y.; Park, J.H.; Jeon, H.J. Analysis and design of phase-interleaving series-connected module-integrated converter for DC-link ripple reduction of multi-stage photovoltaic power systems. Prog. Photovolt. Res. Appl.
**2012**. [Google Scholar] [CrossRef] - Subiyanto; Mohamed, A.; Hannan, M.A. Photovoltaic Maximum Power Point Tracking Controller Using a New High Performance Boost Converter. Intern. Rev. Electr. Eng.
**2010**, 5, 2535–2545. [Google Scholar] - Li, Q.; Wolfs, P. A Review of the Single Phase Photovoltaic Module Integrated Converter Topologies With Three Different DC Link Configurations. IEEE Trans. Power Electron.
**2008**, 23, 1320–1333. [Google Scholar] - Kjaer, S.; Pedersen, J.; Blaabjerg, F. A review of single-phase grid-connected inverters for photovoltaic modules. IEEE Trans. Ind. Appl.
**2005**, 41, 1292–1306. [Google Scholar] [CrossRef] - Prudente, M.; Pfitscher, L.; Emmendoerfer, G.; Romaneli, E.; Gules, R. Voltage Multiplier Cells Applied to Non-Isolated DCDC Converters. IEEE Trans. Power Electron.
**2008**, 23, 871–887. [Google Scholar] [CrossRef] - Fani, B.; Delshad, M. A New Asymmetrical DC-DC Converter with High Voltage Gain. Intern. Rev. Electr. Eng.
**2011**, 6, 41–48. [Google Scholar] - Erickson, R.W.; Maksimovic, D. Fundamentals of Power Electronics, 2nd ed.; Springer: New York, NY, USA, 2001. [Google Scholar]
- Xu, H.; Wen, X.; Qiao, E.; Guo, X.; Kong, L. High Power Interleaved Boost Converter in Fuel Cell Hybrid Electric Vehicle. IEEE Intern. Conf. Electr. Mach. Driv.
**2005**, 1, 1814–1819. [Google Scholar] - Giral, R.; Martinez-Salamero, L.; Leyva, R.; Maixe, J. Sliding-mode control of interleaved boost converters. IEEE Trans. Circuits Syst. I Fundam. Theory Appl.
**2000**, 47, 1330–1339. [Google Scholar] - Maksimovic, D.; Stankovic, A.; Thottuvelil, V.; Verghese, G. Modeling and simulation of power electronic converters. Proc. IEEE
**2001**, 89, 898–912. [Google Scholar] [CrossRef] - Zafrany, I.; Ben-Yaakov, S. Generalized switched inductor model (GSIM): accounting for conduction losses. IEEE Trans. Aerosp. Electron. Syst.
**2002**, 38, 681–687. [Google Scholar] - Reatti, A.; Kazimierczuk, M. Small-signal model of PWM converters for discontinuous conduction mode and its application for boost converter. IEEE Trans. Circuits Syst. I Fundam. Theory Appl.
**2003**, 50, 65–73. [Google Scholar] [CrossRef] - Femia, N.; Lisi, G.; Petrone, G.; Spagnuolo, G.; Vitelli, M. Distributed Maximum Power Point Tracking of Photovoltaic Arrays: Novel Approach and System Analysis. IEEE Trans. Ind. Electron.
**2008**, 55, 2610–2621. [Google Scholar] [CrossRef] - Femia, N.; Petrone, G.; Spagnuolo, G.; Vitelli, M. Optimization of perturb and observe maximum power point tracking method. IEEE Trans. Power Electron.
**2005**, 20, 963–973. [Google Scholar] [CrossRef] - Ray, B.; Kosai, H.; McNeal, S.; Jordan, B.; Scofield, J. Performance analysis of a multi-mode interleaved boost converter. IEEE Energy Convers. Congr. Expo. ECCE
**2009**, 1, 2176–2183. [Google Scholar] - Tseng, S.Y.; Su, Y.H.; Shiang, J.Z.; Yang, C.M.; Fan, S.Y. Interleaved buck-boost converter with single-capacitor turn-off snubber using coupled inductor for stunning poultry applications. In Proceedings of IEEE Power Electronics Specialists Conference (PESC 2008), Rhodes, Greece, 15–19 June 2008; pp. 1964–1970.
- Kang, F.S. Modified multilevel inverter employing half- and full-bridge cells with cascade transformer and its extension to photovoltaic power generation. Electric Power Syst. Res.
**2010**, 80, 1437–1445. [Google Scholar] [CrossRef]

© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

## Share and Cite

**MDPI and ACS Style**

Arango, E.; Ramos-Paja, C.A.; Calvente, J.; Giral, R.; Serna, S.
Asymmetrical Interleaved DC/DC Switching Converters for Photovoltaic and Fuel Cell Applications—Part 1: Circuit Generation, Analysis and Design . *Energies* **2012**, *5*, 4590-4623.
https://doi.org/10.3390/en5114590

**AMA Style**

Arango E, Ramos-Paja CA, Calvente J, Giral R, Serna S.
Asymmetrical Interleaved DC/DC Switching Converters for Photovoltaic and Fuel Cell Applications—Part 1: Circuit Generation, Analysis and Design . *Energies*. 2012; 5(11):4590-4623.
https://doi.org/10.3390/en5114590

**Chicago/Turabian Style**

Arango, Eliana, Carlos Andres Ramos-Paja, Javier Calvente, Roberto Giral, and Sergio Serna.
2012. "Asymmetrical Interleaved DC/DC Switching Converters for Photovoltaic and Fuel Cell Applications—Part 1: Circuit Generation, Analysis and Design " *Energies* 5, no. 11: 4590-4623.
https://doi.org/10.3390/en5114590