Water Desalination Using Geothermal Energy
Abstract
:1. Introduction
2. Desalination Using Renewable Energies
Renewable energy sources technology | Feed water salinity | Desalting technologies | ||||
---|---|---|---|---|---|---|
Multiple effect boiling (MEB) | Multi-stage flash (MSF) | Reverse osmosis (RO) | Electrodialysis (ED) | Compression (MVC) | ||
Solar thermal | Seawater | ✓ | ✓ | |||
Photovoltaic | Seawater | ✓ | ||||
Brackish water | ✓ | ✓ | ||||
Wind | Seawater | ✓ | ✓ | |||
Brackish water | ✓ | |||||
Geothermal | Seawater | ✓ |
3. Geothermal Energy and Desalination
4. Case Studies
4.1. Capacity Building Strategies for Desalination Using Renewable Energies in Algeria and the Proposed Seawater Greenhouse System
4.2. Geothermal Energy in Seawater Desalination in Milos Island Greece
- Geothermal production wells: Production will be derived from the wells located closer to the sea, due to their high energy yield and the corresponding hot water transmission costs.
- Geothermal submersible pumps and inverters installed at the production wells.
- Piping network conveying the geothermal water to the main Plant.
- Organic Rankine Cycle (ORC) unit, transforming approximately 7% of geothermal energy to electricity designed to generate approximately 470 kWe.
- Multi Effect Distillation-Thermal Vapor Compression (MED-TVC) seawater desalination unit providing 75–80 m3/h desalinated water.
- Main heat exchanger, transferring the energy from the hot geothermal water exiting the ORC unit to the MED-TVC desalination unit.
- Reinjection wells (RE I and II) located at the margin of the geothermal field, close to the coast, downstream and at lower elevation of the main Plant.
- Geothermal water transmission lines from main heat exchanger to reinjection wells.
- Seawater transmission lines conveying 1,000 m3/h cooling seawater to the MED-TVC unit plus 200–575 m3/h cooling water for the ORC unit.
- Desalinated water transmission line from plant to water tanks near adjacent town.
- Power substation for power provision or delivery to the local power net: 500 kWe.
- Main computer monitoring and control system for real time data logging and automation control.
4.3. Water Desalination with Geothermal Energy in Baja Peninsula Mexico
- To develop solutions to the scarcity of water in northwestern Mexico, considering the environment, costs and social impact of desalination.
- To form a solid group of engineers and researchers who would master the topics related to this project, and who would be able to transform science into applied solutions with a high degree of knowledge about renewable energies.
- At the end of this process, knowledge and expertise must be disseminated to society via courses, books, seminars, on-site training.
5. Environmental Considerations and Sustainability
Energy Source | Coal | Oil (& Gas) | Geothermal |
---|---|---|---|
CO2 (Kg/MWh) | 994 | 893 (599) | 40–120 |
SO2 (Kg/MWh) | 4.71 | − | 0.16 |
H2S (Kg/MWh) | − | 814 (550) | 0.08 |
Amount fresh water used (L/MWh) | 1,370 | 1,170 | 20 |
6. Market Potential, Barriers to Growth and Risk Management
Market potential |
|
Barriers to growth |
|
Risk Management |
|
7. Concluding Remarks
References
- Serpen, U.; Aksoy, N.; Öngür, T. 2010 present status of geothermal energy in Turkey. In Proceedings of Thirty-fifth Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, USA, 1–3 February 2010. SGP-TR-188.
- Mahmoudi, H.; Spahis, N.; Goosen, M.F.A.; Ghaffour, N.; Drouiche, N.; Ouagued, A. Application of geothermal energy for heating and fresh water production in a brackish water greenhouse desalination unit: A case study from Algeria. Renew. Sustain. Energy Rev. 2010, 14, 512–517. [Google Scholar] [CrossRef]
- Huang, S.; Liu, J. Geothermal energy stuck between a rock and a hot place. Nature 2010, 463, 293. [Google Scholar] [CrossRef] [PubMed]
- Lund, J.W. Characteristics, development and utilization of geothermal resources. GHC Bull. 2007, 28, 1–9. [Google Scholar]
- Cataldi, R.; Hodgson, S.; Lund, J. Stories from a Heated Earth–Our Geothermal Heritage; Geothermal Resources Council: Davis, CA, USA, 1999; p. 569. [Google Scholar]
- Eltawil, M.A.; Zhao, Z.M.; Yuan, L.Q. A review of renewable energy technologies integrated with desalination systems. Renew. Sustain. Energy Rev. 2009, 13, 2245–2262. [Google Scholar] [CrossRef]
- Barbier, E. Geothermal energy technology and current status: An overview. Renew. Sustain. Energy Rev. 2002, 6, 3–65. [Google Scholar] [CrossRef]
- White, D.E.; Williams, D.L. Assessment of Geothermal Resources of the United States-1975; U.S. Government Printing Office: Washington DC, USA, 1975; p. 155.
- Bouchekima, B. A small solar desalination plant for the production of drinking water in remote arid areas of southern Algeria. Desalination 2003, 159, 197–204. [Google Scholar] [CrossRef]
- Dorn, J.G. World geothermal power generation nearing eruption. In Plan B Updates; Earth Policy Institute: Washington, DC, USA, 14 August 2008; Available online: http://www.earthpolicy.org/Updates/2008/Update74.htm/ (accessed on 29 June 2010).
- Wright, M. Nature of geothermal resources. In Geothermal Direct–Use Engineering and Design Guidebook; Lund, J.W., Ed.; Geo-Heat Center: Klamath Falls, OR, USA, 1998; pp. 27–69. [Google Scholar]
- Lund, J.W. Chena hot springs. GHC Quart. Bull. 2006, 27, 2–4. [Google Scholar]
- Fridleifsson, I.B.; Bertani, R.; Huenges, E.; Lund, J.W.; Ragnarsson, A.; Rybach, L. The possible role and contribution of geothermal energy to the mitigation of climate change. In Proceedings of IPCC Scoping Meeting on Renewable Energy Sources, Luebeck, Germany, 20–25 January 2008.
- Mahmoudi, H.; Abdul-Wahab, S.A.; Goosen, M.F.A.; Sablani, S.S.; Perret, J.; Ouagued, A. Weather data and analysis of hybrid photovoltaic–Wind power generation systems adapted to a seawater greenhouse desalination unit designed for arid coastal countries. Desalination 2008, 222, 119–127. [Google Scholar] [CrossRef]
- Goosen, M.F.; Shayya, W. Water management, purification and conservation in arid climates. In Water Management, Purification and Conservation in Arid Climates: Water Management; Goosen, M.F.A., Shayya, W.H., Eds.; Technomic Publishing Co.: Lancaster, PA, USA, 1999; Volume 1, pp. 1–6. [Google Scholar]
- Kalogirou, S. Seawater desalination using renewable energy sources. Prog. Energ. Combust. Sci. 2005, 31, 242–281. [Google Scholar] [CrossRef]
- Ophir, A. Desalination plant using low grade geothermal heat. Desalination 1982, 40, 125–132. [Google Scholar] [CrossRef]
- Karytsas, C. Low enthalpy geothermal energy driven sea-water desalination plant on Milos island-A case study. In Proceedings of Mediterranean Conference on Renewable Energy Sources for Water Production, Santorini, Greece, 10–12 June 1996; pp. 128–131.
- Bourouni, K.; Martin, R.; Tadrist, L. Presented at the International Workshop on Desalination Technologies for Small and Medium Size Plants with Limited Environmental Impact, Rome, Italy, 3 December 1998; pp. 301–313.
- Bourouni, K.; Martin, R.; Tadrist, L.; Chaibi, M.T. Heat transfer and evaporation in geothermal desalination units. Appl. Energ. 1999, 64, 129–147. [Google Scholar] [CrossRef]
- Bourouni, K; Chaibi, M.T.; Tadrist, L. Water desalination by humidification and dehumidification of air: State of the art. Desalination 2001, 137, 167–176. [Google Scholar]
- Houcine, I.; Benjemaa, F.; Chahbani, M.H.; Maalej, M. Renewable energy sources for water desalting in Tunisia. Desalination 1999, 125, 123–132. [Google Scholar] [CrossRef]
- Mahmoudi, H.; Spahis, N.; Goosen, M.F.A.; Sablani, S.; Abdul-wahab, S.; Ghaffour, N.; Drouiche, N. Assessment of wind energy to power solar brackish water greenhouse desalination units: A case study from Algeria. Renew. Sustain. Energy Rev. 2009, 13, 2149–2155. [Google Scholar] [CrossRef]
- Mahmoudi, H.; Ouagued, A.; Ghaffour, N. Capacity building strategies and policy for desalination using renewable energies in Algeria. Renew. Sustain. Energy Rev. 2009, 13, 921–926. [Google Scholar] [CrossRef]
- Rodrıguez, G.; Rodrıguez, M.; Perez, J.; Veza, J. A systematic approach to desalination powered by solar, wind and geothermal energy sources. In Proceedings of the Mediterranean Conference on Renewable Energy Sources for Water Production, Santorini, Greece, 10–12 June 1996; pp. 20–25.
- European Geothermal Energy Council. The Voice of Geothermal Industry in Europe; Renewable Energy House: Brussels, Belgium; Available online: http://www.egec.org/ (accessed on 29 June 2010).
- Al-Hallaj, S.; Farid, M.M.; Tamimi, A.R. Solar desalination with a humidification-dehumidification cycle: Performance of the unit. Desalination 1998, 120, 273–280. [Google Scholar] [CrossRef]
- Fath, M.E.S. Solar desalination: A promising alternative for water provision with free energy, simple technology and a clean environment. Desalination 1998, 116, 45–56. [Google Scholar] [CrossRef]
- Tzen, E.; Theofilloyianakos, D.; Karamanis, K. Design and development of a hybrid autonomous system for seawater desalination. Desalination 2004, 166, 267–274. [Google Scholar] [CrossRef]
- Bourouni, K.; Chaibi, M.T. Application of geothermal energy for brackish water desalination in the south of Tunisia. In Proceedings of World Geothermal Congress, Antalya, Turkey, 24–29 April 2005; pp. 1–6.
- Sablani, S.; Goosen, M.F.A.; Paton, C.; Shayya, W.H.; Al-Hinai, H. Simulation of fresh water production using a humidification–dehumidification Seawater Greenhouse. Desalination 2003, 159, 283–288. [Google Scholar] [CrossRef]
- Popiel, C.; Wojtkowiak, J.; Biernacka, B. Measurements of temperature distribution in ground. Exp. Therm. Fluid Sci. 2001, 25, 301–309. [Google Scholar] [CrossRef]
- Bertani, R. What is geothermal potential? IGA News 2003, 53, 1–3. Available online: http://iga.igg.cnr.it/ (accessed on 29 June 2010). [Google Scholar]
- Tester, J.W.; Anderson, B.J.; Batchelor, A.S.; Blackwell, D.D.; DiPippo, R.; Drake, E.M.; Garnish, J.; Livesay, B.; Moore, M.C.; Nichols, K.; Petty, S.; Toksoz, M.N.; Veatch, R.W.; Baria, R.; Augustine, C.; Murphy, E.; Negraru, P.; Richards, M. Impact of enhanced geothermal systems on U.S. energy supply in the twenty-first century. Phil. Trans. Roy. Soc. A Math. Phy. 2007, 365, 1057–1094. [Google Scholar] [CrossRef] [PubMed]
- Paschen, H.; Oertel, D.; Grünwald, R. Möglichkeiten Geothermischer Stromerzeugung in Deutschland; Deutscher Bundestag, Ausschuss für Bildung, Forschung und Technikfolgena-bschätzung A-Drs: Berlin, Germany, 2003. [Google Scholar]
- Stefansson, V. World geothermal assessment. In Proceedings of the World Geothermal Congress, Antalya, Turkey, 24–29 April 2005; pp. 1–6. Available online: http://iga.igg.cnr.it/ (accessed on 29 June 2010).
- Dauncey, G.; Mazza, P. Stormy Weather: 101 Solutions to Global Climate Change; New Society Publishers, Ltd.: Gabriola Island, BC, Canada, 2001. [Google Scholar]
- Kedaid, F.Z. Database on the geothermal resources of Algeria. Geothermics 2007, 265–275. [Google Scholar] [CrossRef]
- Laboy, E.; Schaffner, F.; Abdelhadi, A.; Goosen, M.F.A. Environmental Management, Sustainable Development & Human Health; Taylor & Frances (Balkema NDL): London, UK, 2009; pp. 3–12. [Google Scholar]
- Fekraoui, A.; Kedaid, F. Geothermal resources and uses in Algeria: A country update report. In Proceedings of World Geothermal Congress, Antalya, Turkey, 24–29 April 2005; pp. 1–8.
- Geothermal desalination: Hot rocks key to producing low cost fresh water. Available online: http://washtech.wordpress.com/category/regions/east-asia-pacific/ (accessed on 29 June 2010).
- Paton, C.; Davies, A. The seawater greenhouse for arid lands. In Proceedings of Mediterranean Conference on Renewable Energy Sources for Water Production, Santorini, Greece, 10–12 June 1996; pp. 163–166.
- Seawater Greenhouse-Projects. Available online: www.seawatergreenhouse.com/ (accessed on 29 June 2010).
- Davies, P.A.; Paton, C. The seawater greenhouse in the United Arab Emirates: Thermal modeling and evaluation of design options. Desalination 2005, 173, 103–111. [Google Scholar] [CrossRef]
- Karytsas, C.; Mendrinosa, D.; Radoglou, G. The current geothermal exploration and development of the geothermal field of Milos island in Greece. GHC Bull. 2004, 25, 17–21. [Google Scholar]
- Alcocer, S.M.; Hiriart, G. An applied research program on water desalination with renewable energies. Am. J. Environ. Sci. 2008, 4, 204–211. [Google Scholar] [CrossRef]
- Independent Statistics and Analysis: Saudi Arabia. Available online: http://www.eia.doe.gov/cabs/Saudi_Arabia/Profile.html/ (accessed 27 July 2010).
- U.S. Census Bureau. Table A-4 Population by Region and Country 1950–2050. In Global Population Profile: 2002; International Population Reports WP/02; U.S. Government Printing Office: Washington, DC, USA, 2004. Available online: http://www.census.gov/prod/2004pubs/wp-02.pdf/ (accessed on 29 June 2010). [Google Scholar]
- Cristo, M.W.; Kovalcik, M.P. Population Pressure and the Future of Saudi State Stability. M.S. Thesis, Naval Postgraduate School, Monterey, CA, USA, December 2008. [Google Scholar]
- Rybach, L. Geothermal Sustainability. In Proceedings of European Geothermal Congress, Unterhaching, Germany, 30 May–1 June 2007; p. 5.
- Kagel, A.; Bates, D.; Gawell, K. A Guide to Geothermal Energy and the Environment; Geothermal Energy Association: Washington, DC, USA, 2005; p. 75. [Google Scholar]
- Stock Trading: How Quickly Will Saudi Arabia Turn To Nuclear Vitality? Available online: http://www.profitablenicheinnovation.com/trading/day-trading/stock-trading-how-quickly-will-saudi-arabia-turn-to-nuclear-vitality/ (accessed on 27 July 2010).
- Reif, T. Profitability Analysis and Risk Management of Geothermal Projects. GHC Bull. 2008, 28, 1–4. [Google Scholar]
- USBR Technical Service Center. Cost Estimating Procedures. In Desalting Handbook for Planners, 3rd ed.Desalination and Water Purification Research and Development Program Report No. 72; US Government Printing Office: Washington DC, USA, 2003; Chapter 9; pp. 187–231. [Google Scholar]
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Goosen, M.; Mahmoudi, H.; Ghaffour, N. Water Desalination Using Geothermal Energy. Energies 2010, 3, 1423-1442. https://doi.org/10.3390/en3081423
Goosen M, Mahmoudi H, Ghaffour N. Water Desalination Using Geothermal Energy. Energies. 2010; 3(8):1423-1442. https://doi.org/10.3390/en3081423
Chicago/Turabian StyleGoosen, Mattheus, Hacene Mahmoudi, and Noreddine Ghaffour. 2010. "Water Desalination Using Geothermal Energy" Energies 3, no. 8: 1423-1442. https://doi.org/10.3390/en3081423