Thermal Performance of Segmented Stator Teeth Topologies for Electric Motors †
Abstract
1. Introduction
2. Experiment Methods
3. Results and Discussion
3.1. Effects of Different Winding Methodologies
3.2. Effects of Different Tooth Topologies
3.3. Determining Cumulative Effects
3.4. Thermal Mass Effects
4. Calculating Thermal Energy and Resistance
5. Finite Element Analysis (FEA)
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sen, P.C. Electric motor drives and control-past, present, and future. IEEE Trans. Ind. Electron. 1990, 37, 562–575. [Google Scholar] [CrossRef]
- Palmer, C. The drive for electric motor innovation. Engineering 2022, 8, 9–11. [Google Scholar] [CrossRef]
- Zhang, B.; Song, Z.; Liu, S.; Huang, R.; Liu, C. Overview of integrated electric motor drives: Opportunities and challenges. Energies 2022, 15, 8299. [Google Scholar] [CrossRef]
- Feng, S.; Magee, C.L. Technological development of key domains in electric vehicles: Improvement rates, technology trajectories and key assignees. Appl. Energy 2020, 260, 114264. [Google Scholar] [CrossRef]
- Scrosati, B.; Garche, J. Lithium batteries: Status, prospects and future. J. Power Sources 2010, 195, 2419–2430. [Google Scholar] [CrossRef]
- Poizot, P.; Dolhem, F. Clean energy new deal for a sustainable world: From non-CO2 generating energy sources to greener electrochemical storage devices. Energy Environ. Sci. 2011, 4, 2003–2019. [Google Scholar] [CrossRef]
- Wang, Q.; Ping, P.; Zhao, X.; Chu, G.; Sun, J.; Chen, C. Thermal runaway caused fire and explosion of lithium-ion battery. J. Power Sources 2012, 208, 210–224. [Google Scholar] [CrossRef]
- Saunders, L.; Wang, J.; Stimming, U. Evaluating single-crystal and polycrystalline NMC811 electrodes in lithium-ion cells via non-destructive EIS alone. J. Appl. Electrochem. 2022, 52, 1305–1316. [Google Scholar] [CrossRef]
- Yang, Y.; Arshad-Ali, K.; Roeleveld, J.; Emadi, A. State-of-the-art electrified powertrains—Hybrid, plug-in, and electric vehicles. Int. J. Powertrains 2016, 5, 1–29. [Google Scholar] [CrossRef]
- Bilgin, B.; Magne, P.; Malysz, P.; Yang, Y.; Pantelic, V.; Preindl, M.; Korobkine, A.; Jiang, W.; Lawford, M.; Emadi, A. Making the case for electrified transportation. IEEE Trans. Transport. Electrific. 2015, 1, 4–17. [Google Scholar] [CrossRef]
- Bilgin, B.; Emadi, A. Electric motors in electrified transportation: A step toward achieving a sustainable and highly efficient transportation system. IEEE Power Electron. Mag. 2014, 1, 10–17. [Google Scholar] [CrossRef]
- Zhu, Z.Q.; Howe, D. Electrical machines and drives for electric, hybrid, and fuel cell vehicles. Proc. IEEE 2007, 95, 746–765. [Google Scholar] [CrossRef]
- Yilmaz, M. Limitations/capabilities of electric machine technologies and modeling approaches for electric motor design and analysis in plug-in electric vehicle applications. Renew. Sus. Ener. Rev. 2015, 52, 80–99. [Google Scholar] [CrossRef]
- Emadi, A.; Lee, Y.J.; Rajashekara, K. Power electronics and motor drives in electric, hybrid electric, and plug-in hybrid electric vehicles. IEEE Trans. Ind. Electron. 2008, 55, 2237–2245. [Google Scholar] [CrossRef]
- Laskaris, K.I.; Kladas, A.G. Internal permanent magnet motor design for electric vehicle drive. IEEE Trans. Ind. Electron. 2010, 57, 138–145. [Google Scholar] [CrossRef]
- Tounsi, S.; Hadj, N.B.; Neji, R.; Sellami, F. Optimization of electric motor design parameters maximizing the autonomy of electric vehicles. Int. Rev. Electric. Eng. 2007, 2, 118–126. [Google Scholar]
- Yang, Y.; Schofield, N.; Emadi, A. Integrated electromechanical double-rotor compound hybrid transmissions for hybrid electric vehicles. IEEE Trans. Veh. Technol. 2016, 65, 4687–4699. [Google Scholar] [CrossRef]
- Rahman, K.M.; Ehsani, M. Performance analysis of electric motor drives for electric and hybrid electric vehicle applications. In Proceedings of the Power Electronics in Transportation, Dearborn, MI, USA, 24–25 October 1996; pp. 49–56. [Google Scholar]
- Cai, W.; Wu, X.; Zhou, M.; Liang, Y.; Wang, Y. Review and development of electric motor systems and electric powertrains for new energy vehicles. Automot. Innov. 2021, 4, 3–22. [Google Scholar] [CrossRef]
- Dong, C.; Hu, X.; Qian, Y.; Zhuge, W.; Zhang, Y. Thermal Management Integrated with Flat Heat Pipes for In-Slot Stator Windings of Electric Motors. IEEE Trans. Ind. Appl. 2023, 59, 699–711. [Google Scholar] [CrossRef]
- Le, W.; Lin, M.; Jia, L.; Wang, S. Design of a novel stator water-cooling system for yokeless and segmented armature axial flux machine. In Proceedings of the 2021 IEEE 4th Student Conference on Electric Machines and Systems (SCEMS), Huzhou, China, 1–3 December 2021; pp. 1–4. [Google Scholar]
- Weiwei, G.; Zhuoran, Z.; Qiang, L. High torque density fractional-slot concentrated-winding axial-flux permanent-magnet machine with modular SMC stator. IEEE Trans. Ind. Appl. 2020, 56, 3691–3699. [Google Scholar] [CrossRef]
- Wanjiku, J.; Ge, L.; Zhang, Z.; Chang, K.; Wu, C.; Zhan, F. Electromagnetic and direct-cooling analysis of a traction motor. In Proceedings of the 2021 IEEE Energy Conversion Congress and Exposition (ECCE), Vancouver, BC, Canada, 10–14 October 2021; pp. 1461–1467. [Google Scholar]
- Jenkins, C.; Jones-Jackson, S.; Zaher, I.; Pietrini, G.; Rodriguez, R.; Cotton, J.; Emadi, A. Innovations in Axial Flux Permanent Magnet Motor Thermal Management for High Power Density Applications. IEEE Trans. Transport. Electrific. 2023, 9, 4380–4405. [Google Scholar] [CrossRef]
- T’Jollyn, I.; Nonneman, J.; Paepe, M.D. Thermal Modeling and Experimental Validation of Mid-Conductor Winding Cooling. Heat Trans. Eng. 2024, 45, 715–727. [Google Scholar] [CrossRef]
- Veg, L.; Kaska, J.; Skalický, M.; Pechánek, R. A Complex Study of Stator Tooth-Coil Winding Thermal Models for PM Synchronous Motors Used in Electric Vehicle Applications. Energies 2021, 14, 2395. [Google Scholar] [CrossRef]
- Liao, C.; Zhang, Z.; Yao, Y.; Gu, X.; Wang, C.; Bianchi, N. Multiphysics Analysis and Optimization of Air-Cooled High-Speed Concentrated Winding PMSMs With Auxiliary Teeth. IEEE Trans. Transport. Electrific. 2025, 11, 7357–7366. [Google Scholar] [CrossRef]
- Dalli, C.J.; Galea, M.; Cilia, J. Thermal Modelling Improvement Aspects for Automotive Physically Integrated Drives. In Proceedings of the International Conference on Electrical Machines (ICEM), Torino, Italy, 1–4 September 2024; pp. 1–6. [Google Scholar]
- Yu, Y.; Chai, F.; Pei, Y.; Chen, L. Current reference selection for acoustic noise reduction in two switched reluctance motors by flattening radial force sum. IEEE Trans. Ind. Appl. 2019, 55, 3671–3684. [Google Scholar] [CrossRef]
- Reichert, T.; Kolar, J.W.; Nussbaumer, T. Stator tooth design study for bearingless exterior rotor PMSM. IEEE Trans. Ind. Appl. 2013, 49, 1515–1522. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, Z.Q.; Li, G.J. Influence of stator topologies on average torque and torque ripple of fractional-slot SPM machines with fully closed slots. IEEE Trans. Ind. Appl. 2018, 54, 2151–2164. [Google Scholar] [CrossRef]
- Hao, L.; Lin, M.; Xu, D.; Fu, X.; Zhang, W. Cogging torque reduction of axial-field flux-switching permanent magnet machine by rotor tooth notching. IEEE Trans. Magn. 2015, 51, 1–4. [Google Scholar]
- Khoshoo, B.; Aggarwal, A.; Barron, M.; Foster, S.N. Analysis of Segmented Stator and Rotor Design in PMSM Using a Physics-Based MEC Model. In Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE), Phoenix, AZ, USA, 20–24 October 2024; pp. 5240–5246. [Google Scholar]
- He, X.; Zhang, Z.; Wang, H.; Chen, H.; Shi, T. A Novel Separated Teeth and Yokes Structure Motor. In Proceedings of the IEEE Energy Conversion Conference Congress and Exposition (ECCE), Philadelphia, PA, USA, 19–23 October 2025; pp. 1–7. [Google Scholar]
- Zheng, M.; Zhu, Z.Q.; Cai, S.; Xue, S.S. A Novel Modular Stator Hybrid-Excited Doubly Salient Synchronous Machine with Stator Slot Permanent Magnets. IEEE Trans. Magn. 2019, 55, 1–9. [Google Scholar] [CrossRef]
- Hairulnizam, H.F.; Misron, N.; Ibrahim, N.A.; Ramli, H.R.; Vaithilingam, C.A. Evaluation of the Performance of New Type of Segmented Stator Permanent Magnet Synchronous Motor. IEEE Access 2025, 13, 75563–75575. [Google Scholar] [CrossRef]
- Wrobel, R.; Mellor, P.H.; McNeill, N.; Staton, D.A. Thermal performance of an open-slot modular-wound machine with external rotor. IEEE Trans. Energy Conver. 2010, 25, 403–411. [Google Scholar] [CrossRef]
- Godbehere, J.; Wrobel, R.; Drury, D.; Mellor, P.H. Experimentally calibrated thermal stator modeling of AC machines for short-duty transient operation. IEEE Trans. Ind. Appl. 2017, 53, 3457–3466. [Google Scholar] [CrossRef]
- Perigo, E.A.; Weidenfeller, B.; Kollár, P.; Füzer, J. Past, present, and future of soft magnetic composites. Appl. Phys. Rev. 2018, 5, 031301. [Google Scholar] [CrossRef]
- Sunday, K.J.; Taheri, M.L. Soft magnetic composites: Recent advancements in the technology. Met. Powder Rep. 2017, 72, 425–429. [Google Scholar] [CrossRef]
- Shokrollahi, H.; Janghorban, K. Soft magnetic composite materials (SMCs). J. Mater. Process. Technol. 2007, 189, 1–12. [Google Scholar] [CrossRef]
- Zhao, G.; Wu, C.; Yan, M. Enhanced magnetic properties of Fe soft magnetic composites by surface oxidation. J. Magnet. Magnetic Mater. 2016, 399, 51–57. [Google Scholar] [CrossRef]
- Dias, M.M.; Mozetic, H.; Barboza, J.; Martins, R.; Pelegrini, L.; Schaeffer, L. Influence of resin type and content on electrical and magnetic properties of soft magnetic composites (SMCs). Powder Technol. 2013, 237, 213–220. [Google Scholar] [CrossRef]
- Blyskun, P.; Kowalczyk, M.; Łukaszewicz, G.; Cieślak, G.; Ferenc, J.; Zackiewicz, P.; Kolano-Burian, A. Influence of particles size fraction on magnetic properties of soft magnetic composites prepared from a soft magnetic nanocrystalline powder with no synthetic oxide layer. Mater. Sci. Eng. B 2021, 272, 115357. [Google Scholar] [CrossRef]
- Wu, S.; Dong, Y.; Li, X.; Gong, M.; Zhao, R.; Gao, W.; Wu, H.; He, A.; Li, J.; Wang, X.; et al. Microstructure and magnetic properties of FeSiCr soft magnetic powder cores with a MgO insulating layer prepared by the sol-gel method. Ceram. Int. 2022, 48, 22237–22245. [Google Scholar] [CrossRef]
- Peng, Y.; Nie, J.; Zhang, W.; Ma, J.; Bao, C.; Cao, Y. Effect of the addition of Al2O3 nanoparticles on the magnetic properties of Fe soft magnetic composites. J. Magn. Magn. Mater. 2016, 399, 88–93. [Google Scholar] [CrossRef]
- Saunders, L.; Ugurluoglu, Y.; Atkinson, G. Segmented stators offering improved thermal performance and the potential for greater power density. In Proceedings of the IEMDC 2025—IEEE International Electric Machines and Drives Conference, Houston, TX, USA, 18–21 May 2025; pp. 650–654. [Google Scholar]
- Boglietti, A.; Cossale, M.; Vaschetto, S.; Dutra, T. Winding thermal model for short-time transient: Experimental validation in operative conditions. IEEE Trans. Ind. Appl. 2018, 54, 1312–1319. [Google Scholar] [CrossRef]
- Pescetto, P.; Ferrari, S.; Pellegrino, G.; Carpaneto, E.; Boglietti, A. Winding thermal modeling and parameters identification for multithree phase machines based on short-time transient tests. IEEE Trans. Ind. Appl. 2020, 56, 2472–2480. [Google Scholar] [CrossRef]
- Boglietti, A.; Carpaneto, E.; Cossale, M.; Vaschetto, S. Stator-winding thermal models for short-time thermal transients: Definition and validation. IEEE Trans. Ind. Electron. 2016, 63, 2713–2721. [Google Scholar] [CrossRef]
- Boglietti, A.; Cossale, M.; Propescu, M.; Staton, D.A. Electrical machines thermal model: Advanced calibration techniques. IEEE Trans. Ind. Appl. 2019, 55, 2620–2628. [Google Scholar] [CrossRef]
- Ayat, S.; Liu, H.; Chauvicourt, F.; Wrobel, R. Experimental derivation of thermal parameters of the stator- winding region in thermal analysis of pm electrical machines. In Proceedings of the IECON 2018—44th Annual Conference of the IEEE Industrial Electronics Society, Washington, DC, USA, 21–23 October 2018; pp. 496–501. [Google Scholar]
- Madonna, V.; Giangrande, P.; Galea, M. Influence of insulation thermal aging on the temperature assessment in electrical machines. IEEE Trans. Energy Conver. 2021, 36, 456–467. [Google Scholar] [CrossRef]
- Wrobel, R.; Williamson, S.J.; Booker, J.D.; Mellor, P.H. Characterizing the in situ thermal behavior of selected electrical machine insulation and impregnation materials. IEEE Trans. Ind. Appl. 2016, 52, 4678–4687. [Google Scholar] [CrossRef]
- Sciascera, C.; Giangrande, P.; Papini, L.; Gerada, C.; Galea, M. Analytical thermal model for fast stator winding temperature prediction. IEEE Trans. Ind. Electron. 2017, 64, 6116–6126. [Google Scholar] [CrossRef]
- Wrobel, R.; Mecrow, B.; Benarous, M.; Sneddon, I.N. Thermal evaluation of a short-operating-duty dual-lane fault-tolerant actuator for aerospace applications. IEEE Trans. Ind. Appl. 2023, 59, 4083–4094. [Google Scholar] [CrossRef]
- Wrobel, R. A methodology for experimentally deriving thermal parameters in design of electrical machines for short-duty transient operation. In Proceedings of the 26th International Conference on Electrical Machines (ICEM), Torino, Italy, 1–4 September 2024; pp. 1–7. [Google Scholar]
- Lee, H.J.; Min, S.G. Manufacturing-based design methodology of permanent magnet machines considering practical slot-filling factor. IEEE Trans. Transport. Electrific. 2024, 10, 3756–3769. [Google Scholar]
- Jaritz, M.; Hillers, A.; Biela, J. General analytical model for the thermal resistance of windings made of solid or litz wire. IEEE Trans. Power Electron. 2019, 34, 668–684. [Google Scholar] [CrossRef]






















Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Saunders, L.; Ugurluoglu, Y.; Kulan, M.C.; Atkinson, G. Thermal Performance of Segmented Stator Teeth Topologies for Electric Motors. Energies 2026, 19, 672. https://doi.org/10.3390/en19030672
Saunders L, Ugurluoglu Y, Kulan MC, Atkinson G. Thermal Performance of Segmented Stator Teeth Topologies for Electric Motors. Energies. 2026; 19(3):672. https://doi.org/10.3390/en19030672
Chicago/Turabian StyleSaunders, Luke, Yusuf Ugurluoglu, Mehmet C. Kulan, and Glynn Atkinson. 2026. "Thermal Performance of Segmented Stator Teeth Topologies for Electric Motors" Energies 19, no. 3: 672. https://doi.org/10.3390/en19030672
APA StyleSaunders, L., Ugurluoglu, Y., Kulan, M. C., & Atkinson, G. (2026). Thermal Performance of Segmented Stator Teeth Topologies for Electric Motors. Energies, 19(3), 672. https://doi.org/10.3390/en19030672

