Individuals’ Climate Change and Course of Energy Transition Process Efforts for Local Communities in Rural Poland
Abstract
1. Introduction
2. Literature Review
2.1. European Energy Transition Framework and the Role of Local Communities
2.2. Energy Transition in Poland—Technology Society, Institutions
2.3. Characteristics of Rural Areas and the Role of Grassroots Efforts
- The impact of climate change on the sustainable attitudes and behaviour of Polish rural populations;
- The level of awareness and activity of rural populations in the context of the outlined challenges;
- The role of local governments in efforts towards environmental protection and energy transition.
3. Materials and Methods
- -
- Do you think that energy generation from non-renewable sources (coal, oil) contributes to climate change?
- -
- Do people in your neighbourhood often dispose of waste by dumping it in the woods, in pits or in the river?
- -
- How do you evaluate the local government’s efforts to protect the environment?
- -
- Please assess the extent to which your behaviour can contribute to combating climate change.
- -
- What environmental problems are there in the area where you live?
- -
- Please specify how your house/flat is heated.
4. Results
4.1. Individuals’ Efforts for Local Communities Concerning Climate Change and Energy Transition: A Case Study of Małopolskie Voivodeship
4.2. Analysis and Assessment of Individuals’ Efforts for the Local Community Concerning Climate Change and Energy Transition—Empirical Research
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IPCC. Climate Change 2022: Impacts, Adaptation and Vulnerability. Summary for Policymakers; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2022; Available online: https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_SummaryForPolicymakers.pdf (accessed on 10 December 2025).
- Marshal’s Office of the Małopolska Region. Regional Climate and Energy Action Plan for the Małopolska Region—Roadmap for Climate Neutrality by 2030 (Kraków/Region Case); Marshal’s Office of the Małopolska Region: Kraków, Poland, 2020; Available online: https://netzerocities.app/_content/files/knowledge/4663/ccc_krakow.pdf (accessed on 10 December 2025).
- Zupok, S.; Chomać-Pierzecka, E.; Dmowski, A.; Dyrka, S.; Hordyj, A. A Review of Key Factors Shaping the Development of the U.S. Wind Energy Market in the Context of Contemporary Challenges. Energies 2025, 18, 4224. [Google Scholar] [CrossRef]
- Atkinson, C.L.; Atkinson, A.M. Impacts of Climate Change on Rural Communities: Vulnerability and Adaptation in the Global South. Encyclopedia 2023, 3, 721–729. [Google Scholar] [CrossRef]
- Chomać-Pierzecka, E. Economic, Environmental and Social Security in Accordance with the Concept of Sustainable Development. Stud. Adm. Bezpieczeństwa 2025, 18, 257–272. [Google Scholar] [CrossRef]
- Li, J.; Hai, Q. Evaluation of Economic Security and Environmental Protection Benefits from the Perspective of Sustainable Development and Technological Ecological Environment. Sustainability 2023, 15, 6072. [Google Scholar] [CrossRef]
- Oleszek, M.; Witorożec-Piechnik, A.; Radzikowski, P.; Matyka, M. Current Status and Prospects for the Development of Prosumers and Energy Communities in Poland. Energies 2025, 18, 4276. [Google Scholar] [CrossRef]
- Białynicki-Birula, P.; Makieła, K.; Mamica, Ł. Energy Literacy and Its Determinants among Students within the Context of Public Intervention in Poland. Energies 2022, 15, 5368. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2022: Mitigation of Climate Change. Summary for Policymakers; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2022; Available online: https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_SummaryForPolicymakers.pdf (accessed on 10 December 2025).
- European Commission. The European Green Deal. COM (2019) 640 Final; European Commission: Brussels, Belgium, 2019; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52019DC0640 (accessed on 10 December 2025).
- Ministry of Climate and Environment. Poland’s National Energy and Climate Plan for the Years 2021–2030 (NECP); Ministry of Climate and Environment: Warsaw, Poland, 2019. Available online: https://www.gov.pl/web/climate/national-energy-and-climate-plan (accessed on 10 December 2025).
- Bellini, F.; Campana, P.; Censi, R.; Di Renzo, M.; Tarola, A.M. Energy Communities in the Transition to Renewable Sources: Innovative Models of Energy Self-Sufficiency through Organic Waste. Energies 2024, 17, 3789. [Google Scholar] [CrossRef]
- European Commission. Poland—Draft Updated NECP 2021–2030; European Commission: Brussels, Belgium, 2024; Available online: https://commission.europa.eu/publications/poland-draft-updated-necp-2021-2030_en (accessed on 10 December 2025).
- Quilley, S. Top-Down Versus Bottom-Up Approaches to Energy Transition: Why the Societal ‘Ends’ Are More Important than the Technical ‘Means’ of Any New Paradigm. World 2025, 6, 127. [Google Scholar] [CrossRef]
- Chomać-Pierzecka, E. Innovation as an Attribute of the Sustainable Development of Pharmaceutical Companies. Sustainability 2025, 17, 2417. [Google Scholar] [CrossRef]
- Wang, B.; Liu, J. Impact of Climate Change on Green Technology Innovation—An Examination Based on Microfirm Data. Sustainability 2024, 16, 11206. [Google Scholar] [CrossRef]
- Di Lorenzo, G.; Stracqualursi, E.; Micheli, L.; Martirano, L.; Araneo, R. Challenges in Energy Communities: State of the Art and Future Perspectives. Energies 2022, 15, 7384. [Google Scholar] [CrossRef]
- Santillán, O.S.; Cedano, K.G. Energy Literacy: A Systematic Review of the Scientific Literature. Energies 2023, 16, 7235. [Google Scholar] [CrossRef]
- Menegatto, M.; Bobbio, A.; Freschi, G.; Zamperini, A. The Social Acceptance of Renewable Energy Communities: The Role of Socio-Political Control and Impure Altruism. Climate 2025, 13, 55. [Google Scholar] [CrossRef]
- Ministry of the Environment. Polish National Strategy for Adaptation to Climate Change (NAS 2020) with the Perspective by 2030; Ministry of the Environment: Warsaw, Poland, 2013; Available online: https://www.preventionweb.net/media/60263/download (accessed on 10 December 2025).
- Amiraslani, F.; Dragovich, D. A Social Dimension of Adaptation and Mitigation of Climate Change: Empowering Local Rural Communities to Confront Extreme Poverty. Climate 2023, 11, 240. [Google Scholar] [CrossRef]
- Salvador Costa, M.J.; Jiménez, E.; García-Mayor, C. Climate Change Prevention through Community Actions and Empowerment: A Scoping Review. Int. J. Environ. Res. Public Health 2022, 19, 14645. [Google Scholar] [CrossRef]
- Cardey, S.; Eleazar, P.J.M.; Ainomugisha, J.; Kalowekamo, M.; Kalowekamo, M. Communication for Development: Conceptualising Changes in Communication and Inclusive Rural Transformation in the Context of Environmental Change. Soc. Sci. 2024, 13, 324. [Google Scholar] [CrossRef]
- Slee, B.; McMorran, R. Collaborative Action, Policy Support and Rural Transformation in the Context of Climate Change. Sustainability 2024, 16, 870. [Google Scholar] [CrossRef]
- Guetlein, M.C.; Schleich, J. Understanding Citizen Investment in Renewable Energy Communities. Ecol. Econ. 2023, 208, 107788. Available online: https://www.sciencedirect.com/science/article/am/pii/S0921800923001581 (accessed on 10 December 2025). [CrossRef]
- Becker, S.; Kunze, C.; Vancea, M. Community energy and social entrepreneurship: Addressing purpose, organisation and embeddedness of renewable energy projects. J. Clean. Prod. 2017, 147, 25–36. [Google Scholar] [CrossRef]
- Chodkowska-Miszczuk, J.; Kola-Bezka, M.; Lewandowska, A.; Martinát, S. Local Communities’ Energy Literacy as a Way to Rural Resilience—An Insight from Inner Peripheries. Energies 2021, 14, 2575. [Google Scholar] [CrossRef]
- Gajdzik, B.; Jaciow, M.; Wolniak, R.; Wolny, R.; Grebski, W.W. Diagnosis of the Development of Energy Cooperatives in Poland—A Case Study of a Renewable Energy Cooperative in the Upper Silesian Region. Energies 2024, 17, 647. [Google Scholar] [CrossRef]
- Siamanta, Z.C. Community Renewable Energy Ecologies (CREE): A Conceptual Framework. J. Political Ecol. 2021, 28, 47–69. Available online: https://journals.librarypublishing.arizona.edu/jpe/article/2297/galley/2496/view/ (accessed on 10 December 2025).
- Kaze, K.; Balta-Ozkan, N.; Shrimpton, E. Connecting power to people: Integrating community renewable energy and multi-level governance towards low-carbon energy transition in Nigeria. Energy Res. Soc. Sci. 2025, 121, 103938. [Google Scholar] [CrossRef]
- Chomać-Pierzecka, E. Value as an Economic Category in the Light of the Multidimensionality of the Concept ‘Value’. Lang. Relig. Identity 2021, 2, 155–166. [Google Scholar] [CrossRef]
- European Investment Bank. The EIB Climate Survey. Citizens Call for Green Recovery; European Investment Bank: Luxembourg, 2022. [Google Scholar]
- Kostecka-Jurczyk, D.; Struś, M.; Marak, K. The Role of Energy Cooperatives in Ensuring the Energy and Economic Security of Polish Municipalities. Energies 2024, 17, 3082. [Google Scholar] [CrossRef]
- Aydın, B.; Stecuła, K.; Olczak, P.; Kulpa, J.; Stecuła, B. Exploring the Green Horizon: Recent Research on Renewable Energy in Poland—A Review. Energies 2025, 18, 1695. [Google Scholar] [CrossRef]
- Niemiec, M.; Komorowska, M.; Atilgan, A.; Abduvasikov, A. Labelling the Carbon Footprint as a Strategic Element of Environmental Assessment of Agricultural Systems. Agric. Eng. 2024, 28, 235–250. [Google Scholar] [CrossRef]
- Polak, R.; Dziki, D.; Krzykowski, A.; Rudy, S.; Biernacka, B. RenewGeo: An Innovative Geothermal Technology Augmented by Solar Energy. Agric. Eng. 2025, 29, 49–62. [Google Scholar] [CrossRef]
- Kozera, A.; Standar, A.; Stanisławska, J.; Rosa, A. Investments in Renewable Energy in Rural Communes: An Analysis of Regional Disparities in Poland. Energies 2024, 17, 6185. [Google Scholar] [CrossRef]
- Miousse, I.R.; Hale, R.B.; Alsbrook, S.; Boysen, G.; Broadnax, T.; Murry, C.; Williams, C.; Park, C.H.; Richards, R.; Reedy, J.; et al. Climate Change and New Challenges for Rural Communities: Particulate Matter Matters. Sustainability 2023, 15, 16192. [Google Scholar] [CrossRef]
- Brodzińska, K.; Karwacka, W.; Obracht-Prondzyńska, H.; Twardowski, M. Energy Cooperatives as an Instrument for Stimulating Economic and Social Transformations in Rural Poland. Energies 2025, 18, 838. [Google Scholar] [CrossRef]
- Carraro, G.; Dal Cin, E.; Rech, S. Integrating Energy Generation and Demand in the Design and Operation Optimization of Energy Communities. Energies 2024, 17, 6358. [Google Scholar] [CrossRef]
- Volpato, G.; Carraro, G.; Dal Cin, E.; Rech, S. On the Different Fair Allocations of Economic Benefits for Energy Communities. Energies 2024, 17, 4788. [Google Scholar] [CrossRef]
- Dobric, G.; Zarkovic, M. Towards Sustainable Energy Communities: Integrating Time-of-Use Pricing and Techno-Economic Analysis for Optimal Design—A Case Study of Valongo, Portugal. Energies 2024, 17, 3375. [Google Scholar] [CrossRef]
- Jasiński, J. Determinants of Energy Cooperatives’ Development in Poland. Energies 2021, 14, 319. [Google Scholar] [CrossRef]
- Orłowska, J.; Suchacka, M.; Trembaczowski, Ł.; Ulewicz, R. Social Aspects of Establishing Energy Cooperatives. Energies 2024, 17, 5709. [Google Scholar] [CrossRef]
- Musolino, M.; Farinella, D. Renewable Energy Communities as Examples of Civic and Citizen-Led Practices: A Comparative Analysis from Italy. Land 2025, 14, 603. [Google Scholar] [CrossRef]
- Chomać-Pierzecka, E.; Kowalska, M.; Czyrka, K. The Problem of Transforming the Energy System towards a Low-Emission Economy in the Context of Consumers’ Energy Poverty in Poland. Energies 2025, 18, 5548. [Google Scholar] [CrossRef]
- Puczko, A. Perspectives for and Obstacles to Energy Democracy in Poland. Prawo–Law Rev. Wrocław Univ. 2024. [Google Scholar] [CrossRef]
- Piwowar, A.; Dzikuć, M. Development of Renewable Energy Sources in the Context of Threats Resulting from Low-Altitude Emissions in Rural Areas in Poland: A Review. Energies 2019, 12, 3558. [Google Scholar] [CrossRef]
- Adamowicz, M.; Zwolińska-Ligaj, M. The “Smart Village” as a Way to Achieve Sustainable Development in Rural Areas of Poland. Sustainability 2020, 12, 6503. [Google Scholar] [CrossRef]
- Budziewicz-Guźlecka, A.; Drożdż, W. Development and Implementation of the Smart Village Concept as a Challenge for the Modern Power Industry on the Example of Poland. Energies 2022, 15, 603. [Google Scholar] [CrossRef]
- Satoła, Ł.; Milewska, A. The Concept of a Smart Village as an Innovative Way of Implementing Public Tasks in the Era of Instability on the Energy Market—Examples from Poland. Energies 2022, 15, 5175. [Google Scholar] [CrossRef]
- Siudek, A.; Klepacka, A.M.; Florkowski, W.J.; Gradziuk, P. Renewable Energy Utilization in Rural Residential Housing: Economic and Environmental Facets. Energies 2020, 13, 6637. [Google Scholar] [CrossRef]
- Tokarski, S.; Urych, B.; Smolinski, A. National Energy and Climate Plan—Polish Participation in the Implementation of European Climate Policy in the 2040 Perspective and Its Implications for Energy Sustainability. Sustainability 2025, 17, 5035. [Google Scholar] [CrossRef]
- Komorowski, Ł.; Dymitrow, M. Digitalisation as a Challenge for Smart Villages: The Case of Poland. Agriculture 2024, 14, 2270. [Google Scholar] [CrossRef]
- Kaya, O.; Florkowski, W.J.; Us, A.; Klepacka, A.M. Renewable Energy Perception by Rural Residents of a Peripheral EU Region. Sustainability 2019, 11, 2075. [Google Scholar] [CrossRef]
- Abouaiana, A. Rural Energy Communities as Pillar towards Low Carbon Future in Egypt: Beyond COP27. Land 2022, 11, 2237. [Google Scholar] [CrossRef]
- Peng, X.; Guan, X.; Zeng, Y.; Zhang, J. Artificial Intelligence-Driven Multi-Energy Optimization: Promoting Green Transition of Rural Energy Planning and Sustainable Energy Economy. Sustainability 2024, 16, 4111. [Google Scholar] [CrossRef]
- Wiśniewski, R.; Daniluk, P.; Kownacki, T.; Nowakowska-Krystman, A. Energy System Development Scenarios: Case of Poland. Energies 2022, 15, 2962. [Google Scholar] [CrossRef]
- Romero-Castro, N.; Miramontes-Viña, V.; López-Cabarcos, M.Á.; Santos-Rodrigues, H. A Composite Index to Identify Appropriate Locations for Rural Community Renewable Energy Projects. Appl. Sci. 2025, 15, 12072. [Google Scholar] [CrossRef]
- Żukowska, S.; Chmiel, B.; Połom, M. The Smart Village Concept and Transport Exclusion of Rural Areas—A Case Study of a Village in Northern Poland. Land 2023, 12, 260. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, J.; Du, Y.; Zhang, Y. How Do Smart Villages Become a Way to Achieve Sustainable Development in Rural Areas? Smart Village Planning and Practices in China. Sustainability 2020, 12, 10510. [Google Scholar] [CrossRef]
- Zavratnik, V.; Kos, A.; Stojmenova Duh, E. Smart Villages: Comprehensive Review of Initiatives and Practices. Sustainability 2018, 10, 2559. Available online: https://www.researchgate.net/publication/326575837_Smart_Villages_Comprehensive_Review_of_Initiatives_and_Practices (accessed on 10 December 2025). [CrossRef]
- Komorowski, Ł.; Stanny, M. Smart Villages: Where Can They Happen? Land 2020, 9, 151. [Google Scholar] [CrossRef]
- Kowalska, M.; Chomać-Pierzecka, E. Sustainable Development through the Lens of Climate Change: A Diagnosis of Attitudes in Southeastern Rural Poland. Sustainability 2025, 17, 5568. [Google Scholar] [CrossRef]
- Urząd Marszałkowski Województwa Małopolskiego. Regionalny Plan Działań dla Klimatu i Energii dla Województwa Małopolskiego; Urząd Marszałkowski Województwa Małopolskiego: Kraków, Poland, 2020; Available online: https://www.krakow.pl/getPdf?dok_id=249197 (accessed on 10 December 2025).
- Województwo Małopolskie. LIFE-IP EKOMAŁOPOLSKA–Wdrażanie Regionalnego Planu Działań dla Klimatu i Energii dla Województwa Małopolskiego; Województwo Małopolskie: Kraków, Poland, 2020; Available online: https://klimat.ekomalopolska.pl/life-ip-ekomalopolska/ (accessed on 10 December 2025).
- Ministerstwo Funduszy i Polityki Regionalnej. Działania dla Klimatu i Energii–LIFE EKOMAŁOPOLSKA; Ministerstwo Funduszy i Polityki Regionalnej: Warsaw, Poland, 2021. Available online: https://www.gov.pl/web/rozwoj/dzialania-dla-klimatu-i-energii—life-ekomalopolska (accessed on 10 December 2025).
- Lyczko, P. Energy Transition in the Malopolska Region; LIFE IP EkoMałopolska: Kraków, Poland, 2020; Available online: https://klimat.ekomalopolska.pl/wp-content/uploads/2022/01/Malopolska-Region-16-11-2020.pdf (accessed on 10 December 2025).
- Województwo Małopolskie. Realizacja Projektu LIFE-IP EkoMałopolska–Podsumowanie 2022; Województwo Małopolskie: Kraków, Poland, 2022; Available online: https://klimat.ekomalopolska.pl/wp-content/uploads/2023/02/2022-Podsumowanie-LIFE-EKOMALOPOLSKA_5-02.pdf (accessed on 10 December 2025).
- Gmina Miejska Kraków. Plan Adaptacji Miasta Krakowa do Zmian Klimatu; Gmina Miejska Kraków: Kraków, Poland, 2019; Available online: https://www.bip.krakow.pl/_inc/rada/show_pdfdoc.php?id=111621 (accessed on 10 December 2025).
- Sun, H.; Wu, S.; Zhang, B. Energy Literacy of Residents in Rural Communities: Comparison of Tourism and Non-Tourism Villages. Energies 2023, 16, 7135. [Google Scholar] [CrossRef]
- Taromboli, G.; Campagna, L.; Bergonzi, C.; Bovera, F.; Trovato, V.; Merlo, M.; Rancilio, G. Renewable Energy Communities: Frameworks and Implementation of Regulatory, Technical, and Social Aspects across EU Member States. Sustainability 2025, 17, 4195. [Google Scholar] [CrossRef]
| Wadowicki | Miechowski | Krakowski | Limanowski | Tarnowski | Total | ||
|---|---|---|---|---|---|---|---|
| strongly disagree | N | 3 | 7 | 2 | 8 | 5 | 25 |
| % | 5.10% | 11.70% | 3.30% | 13.30% | 8.30% | 8.40% | |
| disagree | N | 11 | 10 | 7 | 8 | 7 | 43 |
| % | 18.60% | 16.70% | 11.70% | 13.30% | 11.70% | 14.40% | |
| hard to say | N | 7 | 12 | 7 | 7 | 13 | 46 |
| % | 11.90% | 20.00% | 11.70% | 11.70% | 21.70% | 15.40% | |
| agree | N | 17 | 17 | 25 | 22 | 22 | 103 |
| % | 28.80% | 28.30% | 41.70% | 36.70% | 36.70% | 34.40% | |
| strongly agree | N | 21 | 14 | 19 | 15 | 13 | 82 |
| % | 35.60% | 23.30% | 31.70% | 25.00% | 21.70% | 27.40% |
| Wadowicki | Miechowski | Krakowski | Limanowski | Tarnowski | |||
|---|---|---|---|---|---|---|---|
| littering | N | 40 | 36 | 36 | 40 | 38 | χ2(4) = 1.15 p = 0.887 |
| % | 66.70% | 60.00% | 60.00% | 66.70% | 63.30% | ||
| air pollution | N | 35 | 26 | 43 | 30 | 25 | χ2(4) = 14.64 p = 0.006 V = 0.22 |
| % | 58.30% | 43.30% | 71.70% | 50.00% | 41.70% | ||
| water pollution | N | 28 | 35 | 13 | 23 | 17 | χ2(4) = 21.42 p < 0.001 V = 0.27 |
| % | 46.70% | 58.30% | 21.70% | 38.30% | 28.30% | ||
| institutional negligence, such as waste sorting | N | 18 | 20 | 4 | 13 | 15 | χ2(4) = 14.35 p = 0.006 V = 0.22 |
| % | 30.00% | 33.30% | 6.70% | 21.70% | 25.00% | ||
| industry, such as land degradation and emissions from farms | N | 11 | 9 | 4 | 2 | 12 | χ2(4) = 11.63 p = 0.020 V = 0.20 |
| % | 18.30% | 15.00% | 6.70% | 3.30% | 20.00% | ||
| lack of greenery | N | 15 | 13 | 5 | 1 | 5 | χ2(4) = 20.75 p < 0.001 V = 0.26 |
| % | 25.00% | 21.70% | 8.30% | 1.70% | 8.30% | ||
| excess traffic | N | 18 | 26 | 25 | 13 | 17 | χ2(4) = 9.26 p = 0.055 |
| % | 30.00% | 43.30% | 41.70% | 21.70% | 28.30% | ||
| other | N | 0 | 3 | 0 | 0 | 0 | Fisher’s exact test p = 0.035 V = 0.20 |
| % | 0.00% | 5.00% | 0.00% | 0.00% | 0.00% | ||
| there are no such problems | N | 0 | 1 | 2 | 5 | 3 | Fisher’s exact test p = 0.151 |
| % | 0.00% | 1.70% | 3.30% | 8.30% | 5.00% |
| Wadowicki | Miechowski | Krakowski | Limanowski | Tarnowski | Total | ||
|---|---|---|---|---|---|---|---|
| very rarely | N | 5 | 8 | 13 | 15 | 13 | 54 |
| % | 10.90% | 15.70% | 29.50% | 35.70% | 22.80% | 22.50% | |
| rather rarely | N | 19 | 19 | 13 | 20 | 26 | 97 |
| % | 41.30% | 37.30% | 29.50% | 47.60% | 45.60% | 40.40% | |
| quite often | N | 16 | 18 | 15 | 7 | 16 | 72 |
| % | 34.80% | 35.30% | 34.10% | 16.70% | 28.10% | 30.00% | |
| very often | N | 6 | 6 | 3 | 0 | 2 | 17 |
| % | 13.00% | 11.80% | 6.80% | 0.00% | 3.50% | 7.10% |
| Wadowicki | Miechowski | Krakowski | Limanowski | Tarnowski | Total | ||
|---|---|---|---|---|---|---|---|
| Not selected | N | 46 | 52 | 44 | 42 | 57 | 241 |
| % | 76.70% | 86.70% | 73.30% | 70.00% | 95.00% | 80.30% | |
| Selected | N | 14 | 8 | 16 | 18 | 3 | 59 |
| % | 23.30% | 13.30% | 26.70% | 30.00% | 5.00% | 19.70% |
| Wadowicki | Miechowski | Krakowski | Limanowski | Tarnowski | Total | ||
|---|---|---|---|---|---|---|---|
| very bad | N | 0 | 1 | 0 | 0 | 4 | 5 |
| % | 0.00% | 2.30% | 0.00% | 0.00% | 8.20% | 2.20% | |
| bad | N | 14 | 9 | 14 | 11 | 9 | 57 |
| % | 29.20% | 20.90% | 28.00% | 26.20% | 18.40% | 24.60% | |
| adequate | N | 26 | 22 | 28 | 21 | 26 | 123 |
| % | 54.20% | 51.20% | 56.00% | 50.00% | 53.10% | 53.00% | |
| good | N | 8 | 11 | 8 | 10 | 9 | 46 |
| % | 16.70% | 25.60% | 16.00% | 23.80% | 18.40% | 19.80% | |
| very good | N | 0 | 0 | 0 | 0 | 1 | 1 |
| % | 0.00% | 0.00% | 0.00% | 0.00% | 2.00% | 0.40% |
| Wadowicki | Miechowski | Krakowski | Limanowski | Tarnowski | Total | ||
|---|---|---|---|---|---|---|---|
| none | N | 9 | 12 | 4 | 11 | 3 | 39 |
| % | 17.00% | 22.60% | 7.80% | 22.90% | 6.00% | 15.30% | |
| little | N | 29 | 24 | 31 | 23 | 24 | 131 |
| % | 54.70% | 45.30% | 60.80% | 47.90% | 48.00% | 51.40% | |
| large | N | 15 | 17 | 16 | 14 | 23 | 85 |
| % | 28.30% | 32.10% | 31.40% | 29.20% | 46.00% | 33.30% |
| Wadowicki | Miechowski | Krakowski | Limanowski | Tarnowski | |||
|---|---|---|---|---|---|---|---|
| Coal-fired boilers | N | 24 | 11 | 13 | 28 | 24 | χ2(4) = 16.95 p = 0.002 V = 0.24 |
| % | 40.0% | 18.3% | 21.7% | 46.7% | 40.0% | ||
| Electric heating | N | 2 | 12 | 4 | 4 | 7 | χ2(4) = 11.61 p = 0.021 V = 0.20 |
| % | 3.3% | 20.0% | 6.7% | 6.7% | 11.7% | ||
| Gas heating | N | 23 | 16 | 33 | 17 | 17 | χ2(4) = 14.94 p = 0.005 V = 0.22 |
| % | 38.3% | 26.7% | 55.0% | 28.3% | 28.3% | ||
| Heat pumps | N | 8 | 16 | 7 | 8 | 3 | χ2(4) = 12.35 p = 0.015 V = 0.20 |
| % | 13.3% | 26.7% | 11.7% | 13.3% | 5.0% | ||
| Fireplace with a heat distribution system | N | 1 | 10 | 1 | 1 | 5 | Fisher’s exact test p = 0.001 V = 0.25 |
| % | 1.7% | 16.7% | 1.7% | 1.7% | 8.3% | ||
| Other | N | 2 | 1 | 3 | 3 | 11 | Fisher’s exact test p = 0.004 V = 0.24 |
| % | 3.3% | 1.7% | 5.0% | 5.0% | 18.3% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Kowalska, M.; Chomać-Pierzecka, E.; Bogusz, M.; Dąbrowski, A.; Kęsy, I. Individuals’ Climate Change and Course of Energy Transition Process Efforts for Local Communities in Rural Poland. Energies 2026, 19, 534. https://doi.org/10.3390/en19020534
Kowalska M, Chomać-Pierzecka E, Bogusz M, Dąbrowski A, Kęsy I. Individuals’ Climate Change and Course of Energy Transition Process Efforts for Local Communities in Rural Poland. Energies. 2026; 19(2):534. https://doi.org/10.3390/en19020534
Chicago/Turabian StyleKowalska, Magdalena, Ewa Chomać-Pierzecka, Małgorzata Bogusz, Adam Dąbrowski, and Izabella Kęsy. 2026. "Individuals’ Climate Change and Course of Energy Transition Process Efforts for Local Communities in Rural Poland" Energies 19, no. 2: 534. https://doi.org/10.3390/en19020534
APA StyleKowalska, M., Chomać-Pierzecka, E., Bogusz, M., Dąbrowski, A., & Kęsy, I. (2026). Individuals’ Climate Change and Course of Energy Transition Process Efforts for Local Communities in Rural Poland. Energies, 19(2), 534. https://doi.org/10.3390/en19020534

