A Review of Subdomain Models for Design of Electric Machines: Opportunities and Challenges
Abstract
1. Introduction
2. Partitioning
3. Analytical Modeling
3.1. Electromagnetic Modeling
3.2. Structural Modeling
3.3. Thermal Modeling
4. Numerical Methods
4.1. Finite Difference Method
4.2. Fourier-Based Methods
5. Techniques for Including 3D Effects
6. Convergence Challenges
7. Coupling Techniques
8. Next-Generation Subdomain Models
9. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stockton, C.A.; McElveen, R.F.; Chastain, E. The integral role of electric motors in achieving sustainability. IEEE Trans. Ind. Appl. 2024, 60, 7949–7957. [Google Scholar] [CrossRef]
- Gadiyar, N.; Wang, B. Topology Optimization of Electric Machines: A Review. In Proceedings of the 2022 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 9–13 October 2022; pp. 1–8. [Google Scholar]
- Sprangers, R. Towards Increased Understanding of Low-Power Induction and Synchronous Reluctance Machines. Ph.D. Thesis, Eindhoven University of Technology, Eindhoven, The Netherlands, 2015. [Google Scholar]
- Devillers, E.; Le Besnerais, J.; Lubin, T.; Hecquet, M.; Lecointe, J.P. A review of subdomain modeling techniques in electrical machines: Performances and applications. In Proceedings of the 2016 XXII International Conference on Electrical Machines (ICEM), Lausanne, Switzerland, 4–7 September 2016; pp. 86–92. [Google Scholar]
- Xiong, Z. Domain decomposition for 3D electromagnetic modeling. Earth Planets Space 1999, 51, 1013–1018. [Google Scholar] [CrossRef]
- Ren, Z.; Kalscheuer, T.; Greenhalgh, S.; Maurer, H. A finite-element-based domain-decomposition approach for plane wave 3D electromagnetic modeling. Geophysics 2014, 79, E255–E268. [Google Scholar] [CrossRef]
- Gierczynski, M.; Grzesiak, L.M. Comparative analysis of the steady-state model including non-linear flux linkage surfaces and the simplified linearized model when applied to a highly-saturated permanent magnet synchronous machine—Evaluation based on the example of the BMW i3 traction motor. Energies 2021, 14, 2343. [Google Scholar]
- Alvarenga, B.P.; Alves, R.S.; Paula, G.T.; Marra, E.G.; Chabu, I.E.; Cardoso, J.R.; Mecrow, B.C.; Smith, A.C. Anisotropic layer model theory applied to synchronous machine analysis. IET Electr. Power Appl. 2020, 14, 2873–2880. [Google Scholar] [CrossRef]
- Hannon, B. Fourier-Based Modeling of Permanent-Magnet Synchronous Machines Operating at High Speed. Ph.D. Thesis, Ghent University, Ghent, Belgium, 2017. [Google Scholar]
- Hannon, B.; Sergeant, P.; Dupré, L.; Pfister, P.D. Two-dimensional Fourier-based modeling of electric machines—An overview. IEEE Trans. Magn. 2019, 55, 8107217. [Google Scholar] [CrossRef]
- Roubache, L.; Boughrara, K.; Dubas, F.; Ibtiouen, R. New subdomain technique for electromagnetic performances calculation in radial-flux electrical machines considering finite soft-magnetic material permeability. IEEE Trans. Magn. 2018, 54, 8103315. [Google Scholar] [CrossRef]
- Liu, J.; Wang, X.; Li, X.; Yan, B.; Xiong, L.; Zhang, X. Electromagnetic and stress performance analysis for synchronous reluctance motor using a new hybrid subdomain method. IEEE Trans. Ind. Electron. 2023, 71, 8548–8559. [Google Scholar] [CrossRef]
- Kim, U.; Lieu, D.K. Magnetic field calculation in permanent magnet motors with rotor eccentricity: With slotting effect considered. IEEE Trans. Magn. 1998, 34, 2253–2266. [Google Scholar] [CrossRef]
- Boughrara, K.; Dubas, F.; Ibtiouen, R. 2-D exact analytical method for steady-state heat transfer prediction in rotating electrical machines. IEEE Trans. Magn. 2018, 54, 8104519. [Google Scholar] [CrossRef]
- Zhou, P.B. Numerical Analysis of Electromagnetic Fields; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Jamali-Fard, A.; Mirsalim, M. Calculation of the Air-Gap Field Distribution in Surface-Mounted Permanent-Magnet Synchronous Motors Using the Finite Difference Method. In Proceedings of the 2023 3rd International Conference on Electrical Machines and Drives (ICEMD), Tehran, Iran, 20–21 December 2023; pp. 1–9. [Google Scholar]
- Vuković, M.; Žarko, D. Finite Difference Model for the Calculation of Eddy Current Losses in Foil Windings of Distribution Transformers. In Proceedings of the 2024 International Conference on Electrical Machines (ICEM), Torino, Italy, 1–4 September 2024; pp. 1–7. [Google Scholar]
- Zhou, H.; Wang, X.; Zhao, W.; Liu, J.; Xing, Z.; Peng, Y. Rapid Prediction of Magnetic and Temperature Field Based on Hybrid Subdomain Method and Finite-Difference Method for the Interior Permanent Magnet Synchronous Motor. IEEE Trans. Transp. Electrif. 2023, 10, 6634–6651. [Google Scholar] [CrossRef]
- Liu, J.; Wang, X.; Zhao, W.; Xing, Z.; Zhou, H. An Enhanced Hybrid Subdomain Method towards Electromagnetic-Thermal Performance Analysis of Synchronous Reluctance Motor. IEEE Trans. Transp. Electrif. 2025, 11, 2851–2865. [Google Scholar] [CrossRef]
- Behnke, H.; Mertins, U.; Plum, M.; Wieners, C. Eigenvalue inclusions via domain decomposition. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2000, 456, 2717–2730. [Google Scholar] [CrossRef]
- Devillers, E.; Le Besnerais, J.; Lubin, T.; Hecquet, M.; Lecointe, J.P. An improved 2-D subdomain model of squirrel-cage induction machine including winding and slotting harmonics at steady state. IEEE Trans. Magn. 2018, 54, 8100612. [Google Scholar] [CrossRef]
- Du, Y.; Huang, Y.; Guo, B.; Peng, F.; Yao, Y.; Dong, J. Magnetic field prediction of U-shaped interior permanent magnet motor considering magnetic bridge saturation. IEEE Trans. Magn. 2023, 60, 8200304. [Google Scholar] [CrossRef]
- Sun, C.; Fang, Y.; Pfister, P.D. Comparison of two finite-permeability subdomain models for surface-mounted permanent-magnet machines. IEEE Access 2023, 11, 73470–73477. [Google Scholar] [CrossRef]
- Jalali, E.; Rahideh, A.; Javanmardi, M.H. Two-Dimensional Analytical Modeling for Slotless Spoke Type Permanent Magnet Synchronous Machines Considering Ferromagnetic Parts Permeability. IEEE Trans. Magn. 2024, 60, 8101110. [Google Scholar] [CrossRef]
- Zhang, H.; Fan, M.; Qiao, J.; He, X.; Yang, M.; Tuo, J. Analytical prediction of electromagnetic performance for surface-embedded permanent magnet in-wheel machines considering iron’s nonlinearity. Sci. Rep. 2024, 14, 26353. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, M.; Zhang, Y.; Tuo, J.; Luo, S.; Xu, J. Analytical field model of segmented Halbach array permanent magnet machines considering iron nonlinearity. IET Electr. Power Appl. 2021, 15, 717–727. [Google Scholar] [CrossRef]
- Javanmardi, M.; Rahideh, A. 2-D analytical electromagnetic modeling for slotless tubular surface magnet machines considering end-effect. IEEE Trans. Energy Convers. 2023, 39, 205–213. [Google Scholar] [CrossRef]
- Guo, B.; Du, Y.; Djelloul-Khedda, Z.; Peng, F.; Dong, J.; Huang, Y.; Dubas, F.; Boughrara, K. Nonlinear semianalytical model for axial flux permanent-magnet machine. IEEE Trans. Ind. Electron. 2022, 69, 9804–9816. [Google Scholar] [CrossRef]
- Dorget, R.; Lubin, T.; Ayat, S.; Lévêque, J. 3-D Semi-analytical model of a superconducting axial flux modulation machine. IEEE Trans. Magn. 2021, 57, 9000415. [Google Scholar] [CrossRef]
- Shin, K.H.; Wang, B. Semi-analytical modeling for interior permanent magnet synchronous machines considering permeability of rotor core. In Proceedings of the 2020 23rd International Conference on Electrical Machines and Systems (ICEMS), Hamamatsu, Japan, 24–27 November 2020; pp. 19–22. [Google Scholar]
- Li, S.; Tong, W.; Hou, M.; Wu, S.; Tang, R. Analytical model for no-load electromagnetic performance prediction of V-shape IPM motors considering nonlinearity of magnetic bridges. IEEE Trans. Energy Convers. 2021, 37, 901–911. [Google Scholar] [CrossRef]
- Wang, B.; Shin, K.H.; Hidaka, Y.; Kondo, S.; Arita, H.; Ito, K. Analytical magnetic model for variable-flux interior permanent magnet synchronous motors. In Proceedings of the 2021 IEEE Energy Conversion Congress and Exposition (ECCE), Vancouver, BC, Canada, 10–14 October 2021; pp. 4142–4148. [Google Scholar]
- Liu, F.; Wang, X.; Wei, H. Fast magnetic field prediction based on hybrid subdomain method and multiobjective optimization design for interior permanent magnet synchronous machines. IEEE Trans. Energy Convers. 2023, 38, 2045–2060. [Google Scholar] [CrossRef]
- Xing, Z.; Wang, X.; Zhao, W.; Chen, A.; Yu, S. Fast Evaluation and Suppression of Electromagnetic Vibrations in Interior Permanent Magnet Synchronous Motors Based on Improved Subdivision Subdomain Models. IEEE Trans. Energy Convers. 2025, 40, 1600–1613. [Google Scholar] [CrossRef]
- Wu, P.; Sun, Y. A novel analytical model for on-load performance prediction of delta-type IPM motors based on rotor simplification. IEEE Trans. Ind. Electron. 2023, 71, 6841–6851. [Google Scholar] [CrossRef]
- An, Y.; Ma, C.; Zhang, N.; Guo, Y.; Degano, M.; Gerada, C.; Li, Q.; Zhou, S. Open-circuit air-gap magnetic field calculation of interior permanent magnet synchronous motor with V-shaped segmented skewed poles using hybrid analytical method. IEEE Trans. Magn. 2021, 57, 8108309. [Google Scholar] [CrossRef]
- Cui, Z.; Zhou, Y.; Zhang, J.; Liu, W. Modeling and analysis of dual-winding bearingless flux-switching permanent magnet motor considering magnetic saturation based on subdomain model. IEEE Trans. Energy Convers. 2021, 37, 132–144. [Google Scholar] [CrossRef]
- Ullah, B.; Khan, F.; Qasim, M. Subdomain modeling of linear hybrid excited flux switching machine. COMPEL- Int. J. Comput. Math. Electr. Electron. Eng. 2022, 41, 1584–1603. [Google Scholar] [CrossRef]
- Fang, Y.; Ji, J.; Zhao, W. Modeling of fault-tolerant flux-switching permanent-magnet machines for predicting magnetic and armature reaction fields. CES Trans. Electr. Mach. Syst. 2022, 6, 413–421. [Google Scholar] [CrossRef]
- Ni, Y.; Cao, B.; Chen, Q.; Huang, Y.; Wang, Q. Subdomain Model of Consequent-Pole Flux Reversal Machine With Halbach Magnets Over Tooth-Tips. IEEE Trans. Transp. Electrif. 2023, 10, 2936–2944. [Google Scholar] [CrossRef]
- Ni, Y.; Wang, P.; Xiao, B.; Lin, Y.; Wang, Q. Analytical Model of Consequent-Pole Flux Reversal Machine With Segmented Magnet Arrangement. IEEE Trans. Magn. 2025, 61, 8100814. [Google Scholar] [CrossRef]
- Liu, W.; Yang, H.; Lin, H.; Qin, L. Hybrid analytical modeling of air-gap magnetic field in asymmetric-stator-pole flux reversal permanent magnet machine considering slotting effect. IEEE Trans. Ind. Electron. 2021, 69, 1739–1749. [Google Scholar] [CrossRef]
- Yang, K.; Zhao, F.; Yu, J.; Zhang, C.; Wang, Y. Nonlinear analytical model of a double-stator flux reversal Halbach array permanent magnet machine. IEEE Trans. Energy Convers. 2023, 39, 493–503. [Google Scholar] [CrossRef]
- Zhu, X.; Zhao, M.; Wang, H.; Shen, Y.; Zhou, Y.; He, Y.; Lee, C.H. Design and Investigation of Flux-Reversal Permanent-Magnet Motor with Less Rare-Earth Magnet for Low-Cost Application. IEEE Trans. Transp. Electrif. 2025, 11, 4133–4144. [Google Scholar] [CrossRef]
- Tong, W.; Cai, D.; Wu, S. An Improved Subdomain Model for Optimizing Electromagnetic Performance of AFPM Machines. IEEE Trans. Ind. Appl. 2024, 60, 8745–8754. [Google Scholar] [CrossRef]
- Wu, Q.; Yang, G.; Yang, Y.; Li, W. Optimization Design of Tubular Permanent Magnet Synchronous Linear Motors Considering Machining and Assembly Errors. In Proceedings of the 2024 IEEE International Magnetic Conference-Short Papers (INTERMAG Short Papers), Rio de Janeiro, Brazil, 5–10 May 2024; pp. 1–2. [Google Scholar]
- Chen, C.; Wu, X.; Yuan, X.; Zheng, X. A new technique for the subdomain method in predicting electromagnetic performance of surface-mounted permanent magnet motors with shaped magnets and a quasi-regular polygon rotor core. IEEE Trans. Energy Convers. 2022, 38, 1396–1409. [Google Scholar] [CrossRef]
- Shirzad, E.; Pirouz, H.M.; Shirzad, M.T. Subdomain method for brushless double-rotor flux-switching permanent magnet machines with yokeless stator. Electr. Eng. 2024, 106, 1475–1485. [Google Scholar] [CrossRef]
- Roubache, L.; Boughrara, K.; Dubas, F.; Ibtiouen, R. Elementary subdomain technique for magnetic field calculation in rotating electrical machines with local saturation effect. COMPEL- Int. J. Comput. Math. Electr. Electron. Eng. 2019, 38, 24–45. [Google Scholar] [CrossRef]
- Holm, S.; Polinder, H.; Ferreira, J. Analytical modeling of a permanent-magnet synchronous machine in a flywheel. IEEE Trans. Magn. 2007, 43, 1955–1967. [Google Scholar] [CrossRef]
- Guo, J.; Queval, L.; Roucaries, B.; Vido, L.; Liu, L.; Trillaud, F.; Berriaud, C. Nonlinear Current Sheet Model of Electrical Machines. IEEE Trans. Magn. 2019, 56, 7502904. [Google Scholar] [CrossRef]
- Zhang, W.; Xia, D.; Zhang, D.; Zhang, G. Parameter design by a novel method and optimization of the field coil for a 500 kW air-gap HTS generator. IEEE Trans. Appl. Supercond. 2013, 24, 5201704. [Google Scholar] [CrossRef]
- Atallah, K.; Howe, D.; Mellor, P.H.; Stone, D.A. Rotor loss in permanent-magnet brushless AC machines. IEEE Trans. Ind. Appl. 2002, 36, 1612–1618. [Google Scholar]
- Paulides, J.J.; Meessen, K.J.; Lomonova, E.A. Eddy-current losses in laminated and solid steel stator back iron in a small rotary brushless permanent-magnet actuator. IEEE Trans. Magn. 2008, 44, 4373–4376. [Google Scholar] [CrossRef]
- Markovic, M.; Perriard, Y. Analytical solution for rotor eddy-current losses in a slotless permanent-magnet motor: The case of current sheet excitation. IEEE Trans. Magn. 2008, 44, 386–393. [Google Scholar] [CrossRef]
- Mortezaei, S.R.; Aliabadi, M.H.; Javadi, S. Eccentricity fault detection in surface-mounted permanent magnet synchronous motors by analytical prediction, FEM evaluation, and experimental magnetic sensing of the stray flux density. J. Magn. Magn. Mater. 2024, 589, 171441. [Google Scholar] [CrossRef]
- Zheng, B.; Zhang, Z.; Yan, D.; Shi, T.; Xia, C. Electromagnetic performance analysis of dual-stator permanent magnet motors based on hybrid subdomain model. IEEE Trans. Magn. 2024, 60, 8205012. [Google Scholar] [CrossRef]
- Roshandel, E.; Mahmoudi, A.; Kahourzade, S.; Soong, W. Analytical model and performance prediction of induction motors using subdomain technique. In Proceedings of the 2020 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 11–15 October 2020; pp. 3815–3822. [Google Scholar]
- Pfister, P.D.; Tang, C.; Fang, Y. A multi-objective finite-element method optimization that reduces computation resources through subdomain model assistance, for surface-mounted permanent-magnet machines used in motion systems. IEEE Access 2023, 11, 8609–8621. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, X.; Zhao, W.; Xing, Z.; Liu, J. Research on Magnetic Field Prediction of Synchronous Reluctance Motor Considering Structure of Multi-layer Flux Barrier and Saturation of Rotor Core. IEEE Trans. Transp. Electrif. 2025, 11, 5983–5998. [Google Scholar] [CrossRef]
- Boughrara, K.; Takorabet, N.; Ibtiouen, R.; Touhami, O.; Dubas, F. Analytical analysis of cage rotor induction motors in healthy, defective, and broken bars conditions. IEEE Trans. Magn. 2014, 51, 8200317. [Google Scholar] [CrossRef]
- Wu, Q.; Xu, B.; Liu, X.; Qiu, L.; Ma, J.; Yan, C.; Yin, X.; Fang, Y. Modeling and Optimization for Submersible Pump Tubular Linear Motor Based on Dynamic Load Analysis. IEEE Access 2024, 12, 177160–177172. [Google Scholar] [CrossRef]
- Sun, L.; Kang, H.; Wang, J.; Li, Z.; Liu, J.; Ma, Y.; Zhou, L. Analytical Model and Topology Optimization of Doubly-Fed Induction Generator. CES Trans. Electr. Mach. Syst. 2024, 8, 162–169. [Google Scholar] [CrossRef]
- Su, X.; Zhao, H.; Ou, Z.; Yu, J.; Liu, C. Subdomain Analytical Modeling of a Double-Stator Spoke-Type Permanent Magnet Vernier Machine. Energies 2024, 17, 1114. [Google Scholar] [CrossRef]
- Hu, J.; Liu, F.; Li, Y. An improved sub-domain model of flux switching permanent magnet machines considering harmonic analysis and slot shape. IEEE Access 2021, 9, 55260–55270. [Google Scholar] [CrossRef]
- Roshandel, E.; Mahmoudi, A.; Kahourzade, S. 2D subdomain model of the ladder linear induction machine with considering saturation effect. In Proceedings of the 2021 IEEE Energy Conversion Congress and Exposition (ECCE), Vancouver, BC, Canada, 10–14 October 2021; pp. 4127–4134. [Google Scholar]
- Lubin, T.; Mezani, S.; Rezzoug, A. Analytic calculation of eddy currents in the slots of electrical machines: Application to cage rotor induction motors. IEEE Trans. Magn. 2011, 47, 4650–4659. [Google Scholar] [CrossRef]
- Roubache, L.; Boughrara, K.; Ibtiouen, R. Analytical electromagnetic analysis of multi-phases cage rotor induction motors in healthy, broken bars and open phases conditions. Prog. Electromagn. Res. B 2016, 70, 113–130. [Google Scholar] [CrossRef]
- Li, S.; Tong, W.; Wu, S.; Tang, R. Analytical model for electromagnetic performance prediction of IPM motors considering different rotor topologies. IEEE Trans. Ind. Appl. 2023, 59, 4045–4055. [Google Scholar] [CrossRef]
- Ghahfarokhi, M.M.; Faradonbeh, V.Z.; Amiri, E.; Bafrouei, S.M.M.; Aliabad, A.D.; Boroujeni, S.T. Computationally efficient analytical model of interior permanent magnet machines considering stator slotting effects. IEEE Trans. Ind. Appl. 2022, 58, 4587–4601. [Google Scholar] [CrossRef]
- Lee, M.; Nam, K. Subdomain approach for IPMSM via an equivalent SPMSM model. In Proceedings of the 2018 21st International Conference on Electrical Machines and Systems (ICEMS), Jeju, Republic of Korea, 7–10 October 2018; pp. 2719–2724. [Google Scholar]
- Hao, X.; Cai, X.; Nie, Y. Analytical computation of magnetic field distribution in double-stator hybrid-excitation vernier motor based on an accurate subdomain model. Adv. Mech. Eng. 2024, 16, 16878132241256026. [Google Scholar] [CrossRef]
- Pourahmadi-Nakhli, M.; Daryanavard, S.H.; Jokar-Kohanjani, M.; Soltani, S. Fast Subdomain Approximation of Brushless Electrical Machines with Spoke-Hub Permanent Magnets. In Proceedings of the 2024 32nd International Conference on Electrical Engineering (ICEE), Tehran, Iran, 14–16 May 2024; pp. 1–6. [Google Scholar]
- Kumar, R.; Kar, N.C. Sub-domain model for induction motor with more accurate realization of tooth-saturation. IEEE Trans. Energy Convers. 2024, 39, 1673–1685. [Google Scholar] [CrossRef]
- Ishak, D.; Zhu, Z.; Howe, D. Eddy-current loss in the rotor magnets of permanent-magnet brushless machines having a fractional number of slots per pole. IEEE Trans. Magn. 2005, 41, 2462–2469. [Google Scholar] [CrossRef]
- Wu, P.; Sun, Y. An improved subdomain method for air gap flux density of interior permanent magnet machines based on rotor reconstruction and flux equivalence. IET Electr. Power Appl. 2023, 17, 1447–1458. [Google Scholar] [CrossRef]
- Bao, G.; Chang, Y.; Zhang, A. An improved subdomain modeling technique for surface-mounted permanent magnet Vernier motor. Int. J. Appl. Electromagn. Mech. 2024, 75, 297–317. [Google Scholar] [CrossRef]
- Deng, F. Commutation-caused eddy-current losses in permanent-magnet brushless DC motors. IEEE Trans. Magn. 1997, 33, 4310–4318. [Google Scholar] [CrossRef]
- Soresini, F.; Barri, D.; Ballo, F.; Gobbi, M.; Mastinu, G. Noise and Vibration Modeling of Permanent Magnet Synchronous Motors: A Review. IEEE Trans. Transp. Electrif. 2024, 10, 8728–8745. [Google Scholar] [CrossRef]
- Zhao, S.; Chen, J.; Zhang, C.; Gao, Y. Vibration Prediction Based on Hybrid Model of Surface-Mounted PMSM Considering Different Topologies and Tooth Modulation. IEEE Trans. Ind. Appl. 2025, 61, 6172–6182. [Google Scholar] [CrossRef]
- Guo, R.; Yu, H.; Xia, T.; Shi, Z.; Zhong, W.; Liu, X. A simplified subdomain analytical model for the design and analysis of a tubular linear permanent magnet oscillation generator. IEEE Access 2018, 6, 42355–42367. [Google Scholar] [CrossRef]
- Williamson, S.; Flack, T.J.; Volschenk, A.F. Representation of skew in time-stepped two-dimensional finite-element models of electrical machines. IEEE Trans. Ind. Appl. 2002, 31, 1009–1015. [Google Scholar] [CrossRef]
- Meessen, K.; Gysen, B.; Paulides, J.; Lomonova, E. General formulation of fringing fields in 3-D cylindrical structures using Fourier analysis. IEEE Trans. Magn. 2012, 48, 2307–2323. [Google Scholar] [CrossRef]
- Hannon, B.; Sergeant, P.; Dupré, L. Evaluation of the rotor eddy-current losses in high-speed PMSMs with a shielding cylinder for different stator sources. IEEE Trans. Magn. 2019, 55, 8101010. [Google Scholar] [CrossRef]
- Shi, M.; Wang, Q.; Li, G.; Zhou, R.; Liu, Y.; Gao, S. A new analytical method for modelling of a spherical reluctance motor based on a small amount of measured flux linkage. Measurement 2023, 208, 112447. [Google Scholar] [CrossRef]
- Meessen, K.J. Electromagnetic Fields and Interactions in 3D Cylindrical Structures: MODELING and Application. Ph.D. Thesis, Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands, 2012. [Google Scholar]
- Heister, C.; Henke, M. Improvements on hybrid analytical modeling by using Fourier subdomains in slot regions. In Proceedings of the 2019 IEEE International Electric Machines & Drives Conference (IEMDC), San Diego, CA, USA, 12–15 May 2019; pp. 461–467. [Google Scholar]
- Azzouzi, J.; Barakat, G.; Dakyo, B. Quasi-3-D analytical modeling of the magnetic field of an axial flux permanent-magnet synchronous machine. IEEE Trans. Energy Convers. 2005, 20, 746–752. [Google Scholar] [CrossRef]
- Tiegna, H.; Bellara, A.; Amara, Y.; Barakat, G. Analytical modeling of the open-circuit magnetic field in axial flux permanent-magnet machines with semi-closed slots. IEEE Trans. Magn. 2011, 48, 1212–1226. [Google Scholar] [CrossRef]
- Hemeida, A.; Sergeant, P. Analytical modeling of surface PMSM using a combined solution of Maxwell–s equations and magnetic equivalent circuit. IEEE Trans. Magn. 2014, 50, 7027913. [Google Scholar] [CrossRef]
- Zhao, H.; Chau, K.; Yang, T.; Song, Z.; Liu, C. A novel quasi-3D analytical model for axial flux motors considering magnetic saturation. IEEE Trans. Energy Convers. 2021, 37, 1358–1368. [Google Scholar] [CrossRef]
- Kahourzade, S.; Mahmoudi, A.; Roshandel, E.; Cao, Z. Optimal design of Axial-Flux Induction Motors based on an improved analytical model. Energy 2021, 237, 121552. [Google Scholar] [CrossRef]
- Ding, Z.; Wu, X.; Chen, C.; Yuan, X. Magnetic field analysis of surface-mounted permanent magnet motors based on an improved conformal mapping method. IEEE Trans. Ind. Appl. 2022, 59, 1689–1698. [Google Scholar] [CrossRef]
- Dolisy, B.; Mezani, S.; Lubin, T.; Lévêque, J. A new analytical torque formula for axial field permanent magnets coupling. IEEE Trans. Energy Convers. 2015, 30, 892–899. [Google Scholar] [CrossRef]
- Lubin, T.; Rezzoug, A. 3-D analytical model for axial-flux eddy-current couplings and brakes under steady-state conditions. IEEE Trans. Magn. 2015, 51, 8203712. [Google Scholar] [CrossRef]
- Boldea, I. Linear Electric Machines, Drives, and MAGLEVs Handbook; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar]
- Dubas, F.; Boughrara, K. New scientific contribution on the 2-D subdomain technique in Cartesian coordinates: Taking into account of iron parts. Math. Comput. Appl. 2017, 22, 17. [Google Scholar] [CrossRef]
- Olivo, M.; Tessarolo, A.; Bortolozzi, M. On the use of conformai mapping in the analysis of electric machines. In Proceedings of the 2016 XXII International Conference on Electrical Machines (ICEM), Lausanne, Switzerland, 4–7 September 2016; pp. 492–498. [Google Scholar]
- Encica, L.; Paulides, J.; Lomonova, E. Space-mapping optimization in electromechanics: An overview of algorithms and applications. COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 2009, 28, 1216–1226. [Google Scholar] [CrossRef]
- Starschich, E.; Muetze, A.; Hameyer, K. An alternative approach to analytic force computation in permanent-magnet machines. IEEE Trans. Magn. 2009, 46, 986–995. [Google Scholar] [CrossRef]
- Tessarolo, A. Modeling and analysis of synchronous reluctance machines with circular flux barriers through conformal mapping. IEEE Trans. Magn. 2014, 51, 8104411. [Google Scholar] [CrossRef]
- O’Connell, T.C.; Krein, P.T. A Schwarz–Christoffel-based analytical method for electric machine field analysis. IEEE Trans. Energy Convers. 2009, 24, 565–577. [Google Scholar] [CrossRef]
- Jung, S.W.; Kim, J.H.; Min, J.; Yoon, H.M.; Kwon, Y.S.; Song, W.; Yoon, J.Y. 3-D integrated sub-domain model for on-load magnetic field and force analysis of 6-DoF screw-motion permanent magnet synchronous motor. IEEE Trans. Energy Convers. 2023, 38, 2487–2498. [Google Scholar] [CrossRef]
- Gysen, B.L.J. Generalized Harmonic Modeling Technique for 2D Electromagnetic Problems: Applied to the Design of a Direct-Drive Active Suspension System. Ph.D. Thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands, 2011. [Google Scholar]
- Li, Y.; Lu, Q.; Zhu, Z.; Wu, L.; Li, G.; Wu, D. Analytical synthesis of air-gap field distribution in permanent magnet machines with rotor eccentricity by superposition method. IEEE Trans. Magn. 2015, 51, 8110404. [Google Scholar] [CrossRef]
- Fu, J.; Zhu, C. Subdomain model for predicting magnetic field in slotted surface mounted permanent-magnet machines with rotor eccentricity. IEEE Trans. Magn. 2011, 48, 1906–1917. [Google Scholar] [CrossRef]
- Granet, G.; Guizal, B. Efficient implementation of the coupled-wave method for metallic lamellar gratings in TM polarization. J. Opt. Soc. Am. A 1996, 13, 1019–1023. [Google Scholar] [CrossRef]
- Li, L. Use of Fourier series in the analysis of discontinuous periodic structures. J. Opt. Soc. Am. A 1996, 13, 1870–1876. [Google Scholar] [CrossRef]
- Lalanne, P.; Morris, G.M. Highly improved convergence of the coupled-wave method for TM polarization. J. Opt. Soc. Am. A 1996, 13, 779–784. [Google Scholar] [CrossRef]
- Hannon, B.; Sergeant, P.; Dupré, L. Computational-time reduction of Fourier-based analytical models. IEEE Trans. Energy Convers. 2017, 33, 281–289. [Google Scholar] [CrossRef]
- Garhuom, W.; Usman, K.; Düster, A. An eigenvalue stabilization technique to increase the robustness of the finite cell method for finite strain problems. Comput. Mech. 2022, 69, 1225–1240. [Google Scholar] [CrossRef]
- Roubache, L.; Boughrara, K.; Dubas, F.; Ibtiouen, R. Semi-analytical modeling of spoke-type permanent-magnet machines considering the iron core relative permeability: Subdomain technique and Taylor polynomial. Prog. Electromagn. Res. B 2017, 77, 85–101. [Google Scholar] [CrossRef]
- Sprangers, R.; Paulides, J.; Gysen, B.; Waarma, J.; Lomonova, E. Semianalytical framework for synchronous reluctance motor analysis including finite soft-magnetic material permeability. IEEE Trans. Magn. 2015, 51, 8110504. [Google Scholar] [CrossRef]
- Chikouche, B.L. Analytical model for PMSM analysis including finite soft-magnetic material permeability. In Proceedings of the 2019 11th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 28–30 November 2019; pp. 200–204. [Google Scholar]
- Mollaeian, A.; Kundu, A.; Toulabi, M.S.; Thamm, M.U.; Kim, S.; Tjong, J.; Kar, N.C. Fourier-based modeling of an induction machine considering the finite permeability and nonlinear magnetic properties. IEEE Trans. Energy Convers. 2021, 36, 3427–3437. [Google Scholar] [CrossRef]
- Mollaeian, A.; Sangdehi, S.M.; Balamurali, A.; Feng, G.; Tjong, J.; Kar, N.C. Reduction of space harmonics in induction machines incorporating rotor bar optimization through a coupled IPSO and 3-D FEA algorithm. In Proceedings of the 2016 XXII International Conference on Electrical Machines (ICEM), Lausanne, Switzerland, 4–7 September 2016; pp. 557–563. [Google Scholar]
- Elhaminia, P.; Yazdanian, M.; Zolghadri, M.; Fardmanesh, M. An analytical approach for optimal design of rotor iron for superconducting synchronous machine. In Proceedings of the IECON 2011-37th Annual Conference of the IEEE Industrial Electronics Society, Melbourne, VIC, Australia, 7–10 November 2011; pp. 1741–1745. [Google Scholar]
- Yazdanian, M.; Elhaminia, P.; Zolghadri, M.R.; Fardmanesh, M. Analytical modeling of magnetic flux in superconducting synchronous machine. IEEE Trans. Appl. Supercond. 2013, 23, 5200406. [Google Scholar] [CrossRef]
- Djelloul-Khedda, Z.; Boughrara, K.; Dubas, F.; Ibtiouen, R. Nonlinear analytical prediction of magnetic field and electromagnetic performances in switched reluctance machines. IEEE Trans. Magn. 2017, 53, 8107311. [Google Scholar] [CrossRef]
- Madescu, G.; Boldea, I.; Miller, T. An analytical iterative model (AIM) for induction motor design. In Proceedings of the IAS’96, Conference Record of the 1996 IEEE Industry Applications Conference Thirty-First IAS Annual Meeting, San Diego, CA, USA, 6–10 October 1996; Volume 1, pp. 566–573. [Google Scholar]
- Liu, Z.; Li, J. Analytical solution of air-gap field in permanent-magnet motors taking into account the effect of pole transition over slots. IEEE Trans. Magn. 2007, 43, 3872–3883. [Google Scholar] [CrossRef]
- Amara, Y.; Reghem, P.; Barakat, G. Analytical prediction of eddy-current loss in armature windings of permanent magnet brushless AC machines. IEEE Trans. Magn. 2010, 46, 3481–3484. [Google Scholar] [CrossRef]
- Pfister, P.D.; Yin, X.; Fang, Y. Slotted permanent-magnet machines: General analytical model of magnetic fields, torque, eddy currents, and permanent-magnet power losses including the diffusion effect. IEEE Trans. Magn. 2015, 52, 8103013. [Google Scholar] [CrossRef]
- Pfister, P.D.; Perriard, Y. Slotless permanent-magnet machines: General analytical magnetic field calculation. IEEE Trans. Magn. 2011, 47, 1739–1752. [Google Scholar] [CrossRef]
- Sprangers, R.; Motoasca, T.; Lomonova, E. Extended anisotropic layer theory for electrical machines. IEEE Trans. Magn. 2013, 49, 2217–2220. [Google Scholar] [CrossRef]
- Kim, U.; Lieu, D.K. Magnetic field calculation in permanent magnet motors with rotor eccentricity: Without slotting effect. IEEE Trans. Magn. 1998, 34, 2243–2252. [Google Scholar] [CrossRef]
- Wu, L.; Zhu, Z.; Chen, J.; Xia, Z. An analytical model of unbalanced magnetic force in fractional-slot surface-mounted permanent magnet machines. IEEE Trans. Magn. 2010, 46, 2686–2700. [Google Scholar] [CrossRef]
- Abbas, A.; Iqbal, A. A subdomain model for armature reaction field and open-circuit field prediction in consequent pole permanent magnet machines. Int. J. Numer. Model. Electron. Netw. Devices Fields 2022, 35, e3023. [Google Scholar] [CrossRef]
- Liang, Z.; Liang, D.; Kou, P.; Jia, S. Electromagnetic Performance Prediction for the Symmetrical Dual Three-phase Surface-mounted PMSM under Open-phase Faults Based on Accurate Subdomain Model. CES Trans. Electr. Mach. Syst. 2022, 6, 422–437. [Google Scholar] [CrossRef]
- Gysen, B.; Meessen, K.; Paulides, J.; Lomonova, E. General formulation of the electromagnetic field distribution in machines and devices using Fourier analysis. IEEE Trans. Magn. 2009, 46, 39–52. [Google Scholar] [CrossRef]
- Guo, L.; Zhou, Q.; Galea, M.; Lu, W. Cogging force optimization of double-sided tubular linear machine with tooth-cutting. IEEE Trans. Ind. Electron. 2021, 69, 7161–7169. [Google Scholar] [CrossRef]
- Nguyen, M.D.; Jung, W.S.; Hoang, D.T.; Kim, Y.J.; Shin, K.H.; Choi, J.Y. Fast Analysis and Optimization of a Magnetic Gear Based on Subdomain Modeling. Mathematics 2024, 12, 2922. [Google Scholar] [CrossRef]
- Sakamoto, Y.; Xu, Y.; Wang, B.; Yamamoto, T.; Nishimura, Y. Electric Motor Surrogate Model Combining Subdomain Method and Neural Network. In Proceedings of the 2023 24th International Conference on the Computation of Electromagnetic Fields (COMPUMAG), Kyoto, Japan, 22–26 May 2023; pp. 1–4. [Google Scholar]
- Hidaka, Y.; Sato, T.; Igarashi, H. Topology optimization method based on on–off method and level set approach. IEEE Trans. Magn. 2014, 50, 617–620. [Google Scholar] [CrossRef]
- Sun, X.; Yu, L.; Yue, L.; Zhou, K.; Demoly, F.; Zhao, R.R.; Qi, H.J. Machine learning and sequential subdomain optimization for ultrafast inverse design of 4D-printed active composite structures. J. Mech. Phys. Solids 2024, 186, 105561. [Google Scholar] [CrossRef]
- Shuaibu, I.; Wei, E.H.T.; Kannan, R.; Samaila, Y.A. Advancements in axial flux permanent magnet machines utilizing coreless technology: A systematic review. Ain Shams Eng. J. 2024, 15, 103091. [Google Scholar] [CrossRef]
- Yang, X.; Kou, B.; Luo, J.; Zhang, H. A novel dual-consequent-pole transverse flux motor and its analytical modeling. IEEE Trans. Ind. Electron. 2020, 68, 4141–4152. [Google Scholar] [CrossRef]
- Cao, Y.; Zhu, S.; Yu, J.; Liu, C. Optimization design and performance evaluation of a hybrid excitation claw pole machine. Processes 2022, 10, 541. [Google Scholar] [CrossRef]
- Dajaku, G.; Lehner, B.; Dajaku, X.; Pretzer, A.; Gerling, D. Hybrid excited claw pole rotor for high power density automotive alternators. In Proceedings of the 2016 XXII International Conference on Electrical Machines (ICEM), Lausanne, Switzerland, 4–7 September 2016; pp. 2536–2543. [Google Scholar]
- Guo, Y.; Ba, X.; Liu, L.; Lu, H.; Lei, G.; Yin, W.; Zhu, J. A review of electric motors with soft magnetic composite cores for electric drives. Energies 2023, 16, 2053. [Google Scholar] [CrossRef]









| Parameter | Accuracy | Computation Time | ||
|---|---|---|---|---|
| (%) | Reduction (%) | |||
| Minimum | Maximum | Minimum | Maximum | |
| Magnetic Flux Density | 90 | 97 | 20 | 30 |
| Torque | 70 | 95 | ||
| Losses | 85 | 33 | ||
| Stress and Displacement | 90 | 32 | ||
| Parameter | PM | SynRM |
|---|---|---|
| Magnetic Flux Linkage | - | - |
| Magnetic Flux Density | [18] | [12,19] |
| Back EMF | - | - |
| Inductance | ||
| Torque | [12,19] | |
| Cogging Torque | - | |
| Losses | [14,19] | |
| NVH | - | |
| Stress & Displacement | [12] |
| Parameter | PM | MGM | LPM | AFM | IM |
|---|---|---|---|---|---|
| Magnetic Flux Linkage | - | - | - | - | [21] |
| Magnetic Flux Density | [22,23,24,25] | [26] | [27] | [28,29] | - |
| Back EMF | [24,30,31,32,33,34,35,36,37,38] | [37,38,39,40,41,42,43,44] | [45] | [46] | [21] |
| Inductance | [24,31,47] | [48] | - | - | [21] |
| Torque | [22,23,24,25] | - | [27] | [28,29] | - |
| Cogging Torque | [25] | - | [28] | ||
| Losses | - | [28,29] |
| Parameter | Accuracy | Computation Time | ||
|---|---|---|---|---|
| (%) | Reduction (%) | |||
| Minimum | Maximum | Minimum | Maximum | |
| Magnetic Flux Density | 90 | 98 | 5 | 95 |
| Torque | 95 | 90 | ||
| Cogging Torque | 96 | 7 | ||
| Losses | 95 | 95 | ||
| Magnetic Flux Linkage | 98 | 92 | ||
| Back EMF | 97 | 5 | 95 | |
| Inductance | 96 | 10 | 90 | |
| Parameter | PM | SynRM |
|---|---|---|
| Magnetic Flux Linkage | - | - |
| Magnetic Flux Density | [50] | [51,52] |
| Back EMF | - | - |
| Inductance | ||
| Torque | ||
| Cogging Torque | ||
| Losses | [53,54,55] | |
| NVH | [13,56] | |
| Stress & Displacement | - |
| Parameter | Accuracy | Computation Time | ||
|---|---|---|---|---|
| (%) | Reduction (%) | |||
| Minimum | Maximum | Minimum | Maximum | |
| Magnetic Flux Density | 85 | 95 | 90 | 97 |
| Losses | 90 | |||
| NVH | 80 | 90 | ||
| Parameter | PM | SynRM | MGM | LPM | AFM | IM |
|---|---|---|---|---|---|---|
| Magnetic Flux Linkage | [31,33,34,57] | - | [26,37,38,39,44] | - | [45] | [58] |
| Magnetic Flux Density | [59] | [60] | [45] | |||
| [31,33,34,57] | [37,38,39] | [58] | ||||
| [24,37,38] | [44] | [46] | [61] | |||
| [32,35,36] | [40,41,42,43] | [62] | [63] | |||
| [47,64] | [48,65] | [66,67,68] | ||||
| [69,70,71,72,73] | [74] | |||||
| [75,76,77] | ||||||
| Back EMF | [31,33,34] | - | [37,38,39] | [46] | [45] | [58] |
| [30,37,38] | [44] | |||||
| [32,35,36,64] | [40,41,42,43] | |||||
| Inductance | [24,31,47] | [48] | - | - | [58] | |
| Torque | [33,57,59] | [60] | [45] | [58,74] | ||
| [24,37,38] | [26,37,38,39,44] | |||||
| [30,32,35] | [40,41,42] | [46] | ||||
| [36,47,64] | [48] | [62] | ||||
| [69,70,71] | [65] | |||||
| [72,73] | ||||||
| Cogging Torque | [31,33] | - | - | [45] | [63] | |
| [36,57] | [39,40] | |||||
| [47,69] | [42] | |||||
| [70,71,72] | [65] | |||||
| Losses | [75,78] | - | - | [58] | ||
| NVH | [79,80] | [81] | - | |||
| Stress & Displacement | - | - |
| Parameter | Accuracy | Computation Time | ||
|---|---|---|---|---|
| (%) | Reduction (%) | |||
| Minimum | Maximum | Minimum | Maximum | |
| Magnetic Flux Density | 90 | 98 | 80 | 90 |
| Torque | ||||
| Cogging Torque | 95 | |||
| Losses | 98 | 75 | ||
| Magnetic Flux Linkage | 80 | |||
| Back EMF | 75 | |||
| Inductance | 97 | 80 | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Madovi, O.; Foster, S.N. A Review of Subdomain Models for Design of Electric Machines: Opportunities and Challenges. Energies 2026, 19, 222. https://doi.org/10.3390/en19010222
Madovi O, Foster SN. A Review of Subdomain Models for Design of Electric Machines: Opportunities and Challenges. Energies. 2026; 19(1):222. https://doi.org/10.3390/en19010222
Chicago/Turabian StyleMadovi, Orwell, and Shanelle N. Foster. 2026. "A Review of Subdomain Models for Design of Electric Machines: Opportunities and Challenges" Energies 19, no. 1: 222. https://doi.org/10.3390/en19010222
APA StyleMadovi, O., & Foster, S. N. (2026). A Review of Subdomain Models for Design of Electric Machines: Opportunities and Challenges. Energies, 19(1), 222. https://doi.org/10.3390/en19010222

