Design Implications of Headspace Ratio on Pressure Stability, Gas Composition and Methane Productivity—A Systematic Review
Abstract
1. Introduction
2. Systematic Review Methodology
2.1. Search Strategy and Databases
2.1.1. For Scopus
2.1.2. For PubMed
2.2. Inclusion and Exclusion Criteria
2.2.1. Inclusion Criteria
- Peer-reviewed scientific articles published between 2015 and 2025.
- Experimental, comparative or modeling studies that explicitly report the headspace fraction () or related parameters (pressure, gas volume, CH4 yield). For this review, batch anaerobic digesters are operationally defined as systems loaded once with substrate and inoculum, hermetically sealed during fermentation without continuous feeding or discharge. Semi-continuous and continuous systems (e.g., CSTR, UASB) are not considered batch but are referenced in comparative analyses to provide context on headspace dynamics at larger scales, without expanding the primary scope.
- Publications that present verifiable data on pressure, temperature, volume or composition of biogas. For the purposes of this review, “verifiable data” were defined as quantitative information explicitly reported in the publication (in text, tables, or figures), consistent throughout the manuscript, and traceable to original sources through valid DOIs or accessible full-text references, enabling cross-validation during data extraction.
- Book reviews or chapters with active DOI and verifiable access.
2.2.2. Exclusion Criteria
- Documents without quantitative information related to headspace: absence of (), volume/gas phase ratio, measured pressure, or its impact on biogas/methane yield.
- Theses, technical reports or gray literature without peer review or verifiable DOI/URL, or without access to the full text.
- Duplicate records or studies with verifiable inconsistencies between text, tables and/or figures (e.g., discrepancies in (), pressure or units).
- Studies evaluating aerobic digestion, composting, nitrification/denitrification, photofermentative processes, oxy-fermentations, or other non-anaerobic technologies; or anaerobic studies that do not address the measurement or effect of headspace on pressure, gas–liquid equilibrium, or CH4 yield.
2.3. Study Selection Process
2.4. Data Extraction and Validation
- Scale and type of reactor (BMP, laboratory, pilot, industrial).
- Primary substrate type.
- Volumetric fraction of headspace ().
- Operating pressure and temperature.
- Biogas monitoring method (GC, NDIR, flow meters).
- Specific methane production (mL CH4·g−1 VS. or L CH4·L−1·d−1).
2.5. Analysis and Synthesis of Information
2.6. Limitations of the Review
3. Technical Fundamentals of Headspace
| Category | Parameter/Relationship | Typical Value/Expression | Technical Comment | References |
|---|---|---|---|---|
| Gas status | Equation of state | PVHS = ng RT | Ideal gas equation valid at moderate pressures; it is recommended to correct for water vapor when normalizing dry biogas | [24] |
| Gaseous capacitance | Ce = (∂ng/∂ P)T | Ce = VHS/(RT) | Capacitance increases with dome volume; it reduces pressure variation . Flexible domes increase effective capacitance. | [25] |
| Partial pressure | Dalton’s Law | Pi = yiP | Determine the equilibrium concentration using Henry’s Law and the mass transfer driving force | [26] |
| Henry’s constant (CO2) | HCO2 (25 °C) ≈ 29 bar·m3·kmol−1; d(ln H)/d(1/T) ≈ ΔHsol/R. | It decreases with temperature, increasing “stripping” in thermophilic. | [27] | |
| Henry’s constant (H2S) | HH2S (25 °C) ≈ 1.0 bar·m3·kmol−1 | It exhibits high solubility. Speciation depends on pH (H2S/HS− equilibrium). | [27] | |
| Balance | pKa, | pKa ≈ 9.25 (25 °C), decrece con T | The fractionation of free increases with pH and temperature; risk of biological inhibition at high values. | [28] |
| Gas–liquid transfer | Gas–liquid mass transfer flow | Ni = kLa(C − C∗) | kLa~10−3–10−2 s−1 in sludge with solids; intermittent agitation improves but may induce foaming. | [29] |
| Carbonate system | pKa1/pKa2 | pKa1 ≈ 6.35; pKa2 ≈ 10.33 (25 °C) | “Stripping” raises pH and alkalinity; it interacts with the free ammonia balance. | [30] |
| Ranges VHS/Vtot | Laboratory vs. pilot/farm | BMP: 0.30–0.50; Pilot/farm: 0.10–0.25 | Compromise between metrological safety and structural compactness. | [31] |
| Materials | Chemical compatibility | Stainless steel, GRP, EPDM/PTFE | Materials resistant to H2S and NH3; attention to permeability and thermal or UV aging of membranes. | [32] |
| Security | Relief and venting | Setpoint < Pdesign; non-return valve and torch. | Compliance with NFPA/ATEX regulations; CH4 and H2S monitoring; gas line condensate management. | [33] |
4. Influence of Headspace on Process Performance
5. Influence of Headspace on Anaerobic Digestion According to the Scale of Operation
5.1. Influence on Physicochemical and Kinetic Processes on a Laboratory Scale
5.2. Operational Functions of the Headspace in Pilot Reactors and Their Impact on the Stability and Quality of the Biogas
5.3. Headspace Behavior in Industrial Digesters and Operational Control and Energy Efficiency
| Reactor Scale/Type | Type of Substrate | VHS/Vtot (-) | Pressure (kPa) | CH4 Production (Unit) | References |
|---|---|---|---|---|---|
| BMP (500 mL) | Bovine manure | 0.25–0.35 (compiled) | ≈101–130 | 129–366 mL CH4·g−1 VS (compiled) | [31] |
| BMP (1 L) | Anaerobic sludge | 0.30–0.40 (compiled) | ≈101–130 | 140–230 mL CH4·g−1 VS (compiled) | [8] |
| Laboratory (5 L) | Food waste | 0.20–0.30 (reported) | 110–150 | 0.6–1.2 L CH4·L−1·d−1 (reported) | [80] |
| Pilot (20 L) | Pig slurry | 0.15–0.25 (reported) | 120–160 | 0.9–1.3 L CH4·L−1·d−1 (reported) | [81] |
| Pilot (50 L) | Plant residues | 0.20–0.30 (filled) | 110–140 | 0.7–1.2 L CH4·L−1·d−1 (compiled) | [82] |
| Semi-industrial (200 L) | Sewage | 0.10–0.20 (reported) | 150–180 | 0.5–1.0 L CH4·L−1·d−1 (reported) | [83] |
| Industrial (1000 L) | Mixed substrate | 0.05–0.10 (filled) | 160–200 | 0.8–1.6 L CH4·L−1·d−1 (compiled) | [84] |
| UASB reactor | Wastewater/vinasse | 0.10–0.15 (reported) | 120–140 | 0.2–3.1 L CH4·L−1·d−1 (reported) | [85] |
| CSTR (2 m3) | Co-digested | 0.08–0.12 (compiled) | 150–180 | 1.0–1.6 L CH4·L−1·d−1 (compiled) | [75] |
| Thermophilic (10 m3) | Agricultural waste | 0.05–0.10 (compiled) | 180–220 | 1.2–2.2 L CH4·L−1·d−1 (compiled) | [86] |
6. Headspace Design and Operation
7. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; He, P.; Peng, W.; Zhang, H.; Lü, F. Biochemical Methane Potential Database: A Public Platform. Bioresour. Technol. 2024, 393, 130111. [Google Scholar] [CrossRef]
- Mekwichai, P.; Chutivisut, P.; Tuntiwiwattanapun, N. Enhancing Biogas Production from Palm Oil Mill Effluent through the Synergistic Application of Surfactants and Iron Supplements. Heliyon 2024, 10, e29617. [Google Scholar] [CrossRef]
- Hmaissia, A.; Hernández, E.M.; Boivin, S.; Vaneeckhaute, C. Start-Up Strategies for Thermophilic Semi-Continuous Anaerobic Digesters: Assessing the Impact of Inoculum Source and Feed Variability on Efficient Waste-to-Energy Conversion. Sustainability 2025, 17, 5020. [Google Scholar] [CrossRef]
- Liao, J.; Liang, H.; Li, G. Solubility and Exsolution Behavior of CH4 and CO2 in Reservoir Fluids: Implications for Fluid Compositional Evolution—A Case Study of Ledong 10 Area, Yinggehai. Processes 2025, 13, 2979. [Google Scholar] [CrossRef]
- Mihi, M.; Ouhammou, B.; Aggour, M.; Daouchi, B.; Naaim, S.; El Mers, E.M.; Kousksou, T. Modeling and Forecasting Biogas Production from Anaerobic Digestion Process for Sustainable Resource Energy Recovery. Heliyon 2024, 10, e38472. [Google Scholar] [CrossRef]
- Wani, S.S.; Parveez, M. Synergistic Effects of Anaerobic Digestion for Diverse Feedstocks: A Holistic Study on Feedstock Properties, Process Efficiency, Biogas Yield, and Economic Viability. Energy Sustain. Dev. 2025, 87, 101755. [Google Scholar] [CrossRef]
- Raposo, F.; Borja, R.; Ibelli-Bianco, C. Predictive Regression Models for Biochemical Methane Potential Tests of Biomass Samples: Pitfalls and Challenges of Laboratory Measurements. Renew. Sustain. Energy Rev. 2020, 127, 109890. [Google Scholar] [CrossRef]
- Filer, J.; Ding, H.H.; Chang, S. Biochemical Methane Potential (BMP) Assay Method for Anaerobic Digestion Research. Water 2019, 11, 921. [Google Scholar] [CrossRef]
- Stan, C.; Collaguazo, G.; Streche, C.; Apostol, T.; Cocarta, D.M. Pilot-Scale Anaerobic Co-Digestion of the OFMSW: Improving Biogas Production and Startup. Sustainability 2018, 10, 1939. [Google Scholar] [CrossRef]
- Naji, A.; Dujany, A.; Guerin Rechdaoui, S.; Rocher, V.; Pauss, A.; Ribeiro, T. Optimization of Liquid-State Anaerobic Digestion by Defining the Optimal Composition of a Complex Mixture of Substrates Using a Simplex Centroid Design. Water 2024, 16, 1953. [Google Scholar] [CrossRef]
- Catenacci, A.; Carecci, D.; Leva, A.; Guerreschi, A.; Ferretti, G.; Ficara, E. Towards Maximization of Parameters Identifiability: Development of the CalOpt Tool and Its Application to the Anaerobic Digestion Model. Chem. Eng. J. 2024, 499, 155743. [Google Scholar] [CrossRef]
- Karsten, T.; Ortiz, A.P.; Schomäcker, R.; Repke, J.-U. Performance Evaluation of Different Reactor Concepts for the Oxidative Coupling of Methane on Miniplant Scale. Methane 2025, 4, 25. [Google Scholar] [CrossRef]
- Li, J.; Peng, L.; Zhang, J.; Wang, Y.; Li, Z.; Yan, Y.; Zhang, S.; Li, M.; Xie, K. Synergetic Mitigation of Air Pollution and Carbon Emissions of Coal-Based Energy: A Review and Recommendations for Technology Assessment, Scenario Analysis, and Pathway Planning. Energy Strategy Rev. 2025, 59, 101698. [Google Scholar] [CrossRef]
- Yepes-Nuñez, J.J.; Urrútia, G.; Romero-García, M.; Alonso-Fernández, S. Declaración PRISMA 2020: Una Guía Actualizada Para La Publicación de Revisiones Sistemáticas. Rev. Esp. Cardiol. 2021, 74, 790–799. [Google Scholar] [CrossRef]
- Awasthi, M.K.; Ganeshan, P.; Gohil, N.; Kumar, V.; Singh, V.; Rajendran, K.; Harirchi, S.; Solanki, M.K.; Sindhu, R.; Binod, P.; et al. Advanced Approaches for Resource Recovery from Wastewater and Activated Sludge: A Review. Bioresour. Technol. 2023, 384, 129250. [Google Scholar] [CrossRef] [PubMed]
- Siciliano, A.; Limonti, C.; Curcio, G.M. Performance Evaluation of Pressurized Anaerobic Digestion (PDA) of Raw Compost Leachate. Fermentation 2021, 8, 15. [Google Scholar] [CrossRef]
- Gao, J.; Zhi, Y.; Huang, Y.; Shi, S.; Tan, Q.; Wang, C.; Han, L.; Yao, J. Effects of Benthic Bioturbation on Anammox in Nitrogen Removal at the Sediment-Water Interface in Eutrophic Surface Waters. Water Res. 2023, 243, 120287. [Google Scholar] [CrossRef] [PubMed]
- Meybodi, M.K.; Vazquez, O.; Sorbie, K.S.; Mackay, E.J.; Jarrahian, K. Equilibrium Modelling of Interactions in DETPMP-Carbonate System. In Proceedings of the Society of Petroleum Engineers—SPE Oilfield Scale Symposium, OSS 2024, Aberdeen, UK, 5–6 June 2024. [Google Scholar] [CrossRef]
- Tzenos, C.A.; Kalamaras, S.D.; Economou, E.A.; Romanos, G.E.; Veziri, C.M.; Mitsopoulos, A.; Menexes, G.C.; Sfetsas, T.; Kotsopoulos, T.A. The Multifunctional Effect of Porous Additives on the Alleviation of Ammonia and Sulfate Co-Inhibition in Anaerobic Digestion. Sustainability 2023, 15, 9994. [Google Scholar] [CrossRef]
- Strömberg, S.; Nistor, M.; Liu, J. Towards Eliminating Systematic Errors Caused by the Experimental Conditions in Biochemical Methane Potential (BMP) Tests. Waste Manag. 2014, 34, 1939–1948. [Google Scholar] [CrossRef]
- Scarlat, N.; Dallemand, J.F.; Fahl, F. Biogas: Developments and Perspectives in Europe. Renew. Energy 2018, 129, 457–472. [Google Scholar] [CrossRef]
- Situmorang, Y.A.; Zhao, Z.; Yoshida, A.; Abudula, A.; Guan, G. Small-Scale Biomass Gasification Systems for Power Generation (<200 kW Class): A Review. Renew. Sustain. Energy Rev. 2020, 117, 109486. [Google Scholar] [CrossRef]
- Bhowmik, P.K.; Sabharwall, P. Sizing and Selection of Pressure Relief Valves for High-Pressure Thermal–Hydraulic Systems. Processes 2023, 12, 21. [Google Scholar] [CrossRef]
- Angelidaki, I.; Treu, L.; Tsapekos, P.; Luo, G.; Campanaro, S.; Wenzel, H.; Kougias, P.G. Biogas Upgrading and Utilization: Current Status and Perspectives. Biotechnol. Adv. 2018, 36, 452–466. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Larsen, O.C.; Muhayodin, F.; Hu, J.; Xue, B.; Rotter, V.S. Review of Anaerobic Digestion Models for Organic Solid Waste Treatment with a Focus on the Fates of C, N, and P. Energy Ecol. Environ. 2024, 10, 1–14. [Google Scholar] [CrossRef]
- Su, M.J.; Luo, Y.; Chu, G.W.; Cai, Y.; Le, Y.; Zhang, L.L.; Chen, J.F. Dispersion Behaviors of Droplet Impacting on Wire Mesh and Process Intensification by Surface Micro/Nano-Structure. Chem. Eng. Sci. 2020, 219, 115593. [Google Scholar] [CrossRef]
- Sander, R. Compilation of Henry’s Law Constants (Version 4.0) for Water as Solvent. Atmos. Chem. Phys. 2015, 15, 4399–4981. [Google Scholar] [CrossRef]
- Yirong, C.; Zhang, W.; Heaven, S.; Banks, C.J. Influence of Ammonia in the Anaerobic Digestion of Food Waste. J. Environ. Chem. Eng. 2017, 5, 5131–5142. [Google Scholar] [CrossRef]
- Prata, A.A.; Santos, J.M.; Timchenko, V.; Stuetz, R.M. A Critical Review on Liquid-Gas Mass Transfer Models for Estimating Gaseous Emissions from Passive Liquid Surfaces in Wastewater Treatment Plants. Water Res. 2018, 130, 388–406. [Google Scholar] [CrossRef] [PubMed]
- Sapunov, V.N.; Saveljev, E.A.; Voronov, M.S.; Valtiner, M.; Linert, W. The Basic Theorem of Temperature-Dependent Processes. Thermo 2021, 1, 45–60. [Google Scholar] [CrossRef]
- Hafner, S.D.; de Laclos, H.F.; Koch, K.; Holliger, C. Improving Inter-Laboratory Reproducibility in Measurement of Biochemical Methane Potential (BMP). Water 2020, 12, 1752. [Google Scholar] [CrossRef]
- Pilarski, K.; Pilarska, A.A.; Pietrzak, M.B. Biogas Production in Agriculture: Technological, Environmental, and Socio-Economic Aspects. Energies 2025, 18, 5844. [Google Scholar] [CrossRef]
- Luo, M.; Zhang, H.; Zhou, P.; Xiong, Z.; Huang, B.; Peng, J.; Liu, R.; Liu, W.; Lai, B. Efficient Activation of Ferrate (VI) by Colloid Manganese Dioxide: Comprehensive Elucidation of the Surface-Promoted Mechanism. Water Res. 2022, 215, 118243. [Google Scholar] [CrossRef]
- Himanshu, H.; Voelklein, M.A.; Murphy, J.D.; Grant, J.; O’Kiely, P. Factors Controlling Headspace Pressure in a Manual Manometric BMP Method Can Be Used to Produce a Methane Output Comparable to AMPTS. Bioresour. Technol. 2017, 238, 633–642. [Google Scholar] [CrossRef]
- Valero, D.; Montes, J.A.; Rico, J.L.; Rico, C. Influence of Headspace Pressure on Methane Production in Biochemical Methane Potential (BMP) Tests. Waste Manag. 2016, 48, 193–198. [Google Scholar] [CrossRef]
- Yan, B.H.; Selvam, A.; Wong, J.W.C. Influence of Acidogenic Headspace Pressure on Methane Production under Schematic of Diversion of Acidogenic Off-Gas to Methanogenic Reactor. Bioresour. Technol. 2017, 245, 1000–1007. [Google Scholar] [CrossRef]
- Hafner, S.D.; Astals, S. Systematic Error in Manometric Measurement of Biochemical Methane Potential: Sources and Solutions. Waste Manag. 2019, 91, 147–155. [Google Scholar] [CrossRef]
- Koch, K.; Bajón Fernández, Y.; Drewes, J.E. Influence of Headspace Flushing on Methane Production in Biochemical Methane Potential (BMP) Tests. Bioresour. Technol. 2015, 186, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Elsayed, M.; Andres, Y.; Blel, W. Modeling of Sludge and Flax Anaerobic Co-Digestion Based on Combination of First Order and Modified Gompertz Models: Influence of C/N Ratio and Headspace Gas Volume. Desalination Water Treat. 2022, 250, 136–147. [Google Scholar] [CrossRef]
- Di Leto, Y.; Mineo, A.; Capri, F.C.; Gallo, G.; Mannina, G.; Alduina, R. The Effects of Headspace Volume Reactor on the Microbial Community Structure during Fermentation Processes for Volatile Fatty Acid Production. Environ. Sci. Pollut. Res. Int. 2024, 31, 61781–61794. [Google Scholar] [CrossRef] [PubMed]
- Cabrita, T.M.; Santos, M.T. Biochemical Methane Potential Assays for Organic Wastes as an Anaerobic Digestion Feedstock. Sustainability 2023, 15, 11573. [Google Scholar] [CrossRef]
- Ramos, I.; Díaz, I.; Fdz-Polanco, M. The Role of the Headspace in Hydrogen Sulfide Removal during Microaerobic Digestion of Sludge. Water Sci. Technol. 2012, 66, 2258–2264. [Google Scholar] [CrossRef] [PubMed]
- Mahmoodi-Eshkaftakia, M.; Mockaitis, G. Structural Optimization of Biohydrogen Production: Impact of Pretreatments on Volatile Fatty Acids and Biogas Parameters. Int. J. Hydrogen Energy 2022, 47, 7072–7081. [Google Scholar] [CrossRef]
- Aworanti, O.A.; Agbede, O.O.; Agarry, S.E.; Ajani, A.O.; Ogunkunle, O.; Laseinde, O.T.; Rahman, S.M.A.; Fattah, I.M.R. Decoding Anaerobic Digestion: A Holistic Analysis of Biomass Waste Technology, Process Kinetics, and Operational Variables. Energies 2023, 16, 3378. [Google Scholar] [CrossRef]
- Yılmaz, V. The Effects of Incubation and Operational Conditions on Biogas Production Karaelmas Fen Müh. Zonguldak Bülent Ecevit Üniversitesi 2017, 7, 597–601. [Google Scholar]
- Song, Y.; Mahdy, A.; Hou, Z.; Lin, M.; Stinner, W.; Qiao, W.; Dong, R. Air Supplement as a Stimulation Approach for the In Situ Desulfurization and Methanization Enhancement of Anaerobic Digestion of Chicken Manure. Energy Fuels 2020, 34, 12606–12615. [Google Scholar] [CrossRef]
- Liu, C.; Dong, W.; Yang, Y.; Zhao, W.; Zeng, W.; Litti, Y.; Liu, C.; Yan, B. The Effect of CO2 Sparging on High-Solid Acidogenic Fermentation of Food Waste. Waste Dispos. Sustain. Energy 2025, 7, 27–39. [Google Scholar] [CrossRef]
- Kouzi, A.I.; Puranen, M.; Kontro, M.H. Evaluation of the Factors Limiting Biogas Production in Full-Scale Processes and Increasing the Biogas Production Efficiency. Environ. Sci. Pollut. Res. 2020, 27, 28155–28168. [Google Scholar] [CrossRef]
- Sharma, A.; Salhotra, S.; Rathour, R.K.; Solanki, P.; Putatunda, C.; Hans, M.; Walia, A.; Bhatia, R.K. Recent Developments in Separation and Storage of Lignocellulosic Biomass-Derived Liquid and Gaseous Biofuels: A Comprehensive Review. Biomass Bioenergy 2026, 204, 108417. [Google Scholar] [CrossRef]
- Qian, S.; Chen, L.; Xu, S.; Zeng, C.; Lian, X.; Xia, Z.; Zou, J. Research on Methane-Rich Biogas Production Technology by Anaerobic Digestion Under Carbon Neutrality: A Review. Sustainability 2025, 17, 1425. [Google Scholar] [CrossRef]
- Wu, Y.; Ye, X.; Wang, Y.; Wang, L. Methane Production from Biomass by Thermochemical Conversion: A Review. Catalysts 2023, 13, 771. [Google Scholar] [CrossRef]
- Holliger, C.; Alves, M.; Andrade, D.; Angelidaki, I.; Astals, S.; Baier, U.; Bougrier, C.; Buffière, P.; Carballa, M.; De Wilde, V.; et al. Towards a Standardization of Biomethane Potential Tests. Water Sci. Technol. 2016, 74, 2515–2522. [Google Scholar] [CrossRef]
- Mlinar, S.; Weig, A.R.; Freitag, R. Influence of Mixing and Sludge Volume on Stability, Reproducibility, and Productivity of Laboratory-Scale Anaerobic Digestion. Bioresour. Technol. Rep. 2020, 11, 100444. [Google Scholar] [CrossRef]
- Farghali, M.; Mohamed, I.M.A.; Hassan, D.; Iwasaki, M.; Yoshida, G.; Umetsu, K.; Ihara, I. Kinetic Modeling of Anaerobic Co-Digestion with Glycerol: Implications for Process Stability and Organic Overloads. Biochem. Eng. J. 2023, 199, 109061. [Google Scholar] [CrossRef]
- Leite, S.A.F.; Leite, B.S.; Ferreira, D.J.O.; Baêta, B.E.L.; Dangelo, J.V.H. The Effects of Agitation in Anaerobic Biodigesters Operating with Substrates from Swine Manure and Rice Husk. Chem. Eng. J. 2023, 451, 138533. [Google Scholar] [CrossRef]
- Lauzurique, Y.; Segura, S.; Guerra, S.; Carvajal, A.; Huiliñir, C.; Poblete-Castro, I. Enhancing Methane Production Using Various Forms of Steel Shavings and Their Effect on Microbial Consortia during Anaerobic Digestion of Swine Wastewater. J. Environ. Chem. Eng. 2024, 12, 113764. [Google Scholar] [CrossRef]
- Dhaouefi, Z.; Taktek, S.; Bélanger, F.; Fortin, P.; Charbonneau, J.; Lange, S.; Horchani, H. Optimized Biogas Yield and Safe Digestate Valorization Through Intensified Anaerobic Digestion of Invasive Plant Biomass. Energies 2025, 18, 5151. [Google Scholar] [CrossRef]
- Liang, Z.; Wilkinson, D.W.; Wang, C.; Wilkinson, S.J. Pressurised Anaerobic Digestion for Reducing the Costs of Biogas Upgrading. BioEnergy Res. 2023, 16, 2539–2548. [Google Scholar] [CrossRef]
- Sengur, O.; Akgul, D.; Calli, B. In Situ Methane Enrichment with Vacuum Application to Produce Biogas with Higher Methane Content. Environ. Sci. Pollut. Res. 2024, 2024, 28307–28318. [Google Scholar] [CrossRef]
- Di Mario, J.; Montegiove, N.; Gambelli, A.M.; Brienza, M.; Zadra, C.; Gigliotti, G. Waste Biomass Pretreatments for Biogas Yield Optimization and for the Extraction of Valuable High-Added-Value Products: Possible Combinations of the Two Processes toward a Biorefinery Purpose. Biomass 2024, 4, 865–885. [Google Scholar] [CrossRef]
- DelaVega-Quintero, J.C.; Nuñez-Pérez, J.; Lara-Fiallos, M.; Barba, P.; Burbano-García, J.L.; Espín-Valladares, R. Advances and Challenges in Anaerobic Digestion for Biogas Production: Policy, Technological, and Microbial Perspectives. Processes 2025, 13, 3648. [Google Scholar] [CrossRef]
- Kougias, P.G.; Boe, K.; O-Thong, S.; Kristensen, L.A.; Angelidaki, I. Anaerobic Digestion Foaming in Full-Scale Biogas Plants: A Survey on Causes and Solutions. Water Sci. Technol. 2014, 69, 889–895. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, J.; Krooneman, J.; Euverink, G.J.W. Strategies to Boost Anaerobic Digestion Performance of Cow Manure: Laboratory Achievements and Their Full-Scale Application Potential. Sci. Total Environ. 2021, 755, 142940. [Google Scholar] [CrossRef]
- Di Costanzo, N.; Di Capua, F.; Cesaro, A.; Carraturo, F.; Salamone, M.; Guida, M.; Esposito, G.; Giordano, A. Headspace Micro-Oxygenation as a Strategy for Efficient Biogas Desulfurization and Biomethane Generation in a Centralized Sewage Sludge Digestion Plant. Biomass Bioenergy 2024, 183, 107151. [Google Scholar] [CrossRef]
- Wang, L.; Long, F.; Liao, W.; Liu, H. Prediction of Anaerobic Digestion Performance and Identification of Critical Operational Parameters Using Machine Learning Algorithms. Bioresour. Technol. 2020, 298, 122495. [Google Scholar] [CrossRef]
- Paladino, O. Data Driven Modelling and Control Strategies to Improve Biogas Quality and Production from High Solids Anaerobic Digestion: A Mini Review. Sustainability 2022, 14, 16467. [Google Scholar] [CrossRef]
- Iglesias, R.; Muñoz, R.; Polanco, M.; Díaz, I.; Susmozas, A.; Moreno, A.D.; Guirado, M.; Carreras, N.; Ballesteros, M. Biogas from Anaerobic Digestion as an Energy Vector: Current Upgrading Development. Energies 2021, 14, 2742. [Google Scholar] [CrossRef]
- Simeonov, I.; Chorukova, E.; Kabaivanova, L. Two-Stage Anaerobic Digestion for Green Energy Production: A Review. Processes 2025, 13, 294. [Google Scholar] [CrossRef]
- Neuner, T.; Meister, M.; Pillei, M.; Senfter, T.; Draxl-Weiskopf, S.; Ebner, C.; Winkler, J.; Rauch, W. Impact of Design and Mixing Strategies on Biogas Production in Anaerobic Digesters. Water 2024, 16, 2205. [Google Scholar] [CrossRef]
- Nayeri, D.; Mohammadi, P.; Bashardoust, P.; Eshtiaghi, N. A Comprehensive Review on the Recent Development of Anaerobic Sludge Digestions: Performance, Mechanism, Operational Factors, and Future Challenges. Results Eng. 2024, 22, 102292. [Google Scholar] [CrossRef]
- Mahmudul, H.M.; Rasul, M.G.; Narayanan, R.; Akbar, D.; Hasan, M.M. Technoeconomic Assessment of Biogas Production from Organic Waste via Anaerobic Digestion in Subtropical Central Queensland, Australia. Energies 2025, 18, 4505. [Google Scholar] [CrossRef]
- Vakili, M.; Koutník, P.; Kohout, J. Addressing Hydrogen Sulfide Corrosion in Oil and Gas Industries: A Sustainable Perspective. Sustainability 2024, 16, 1661. [Google Scholar] [CrossRef]
- Fu, S.; Angelidaki, I.; Cetecioglu, Z.; Kong, Q.; Zheng, Y.; Tsapekos, P. Editorial: Biological Strategies to Enhance the Anaerobic Digestion Performance: Fundamentals and Process Development. Front. Microbiol. 2021, 12, 762875. [Google Scholar] [CrossRef]
- Alavi-Borazjani, S.A.; da Cruz Tarelho, L.A.; Capela, M.I. Biohythane Production via Anaerobic Digestion Process: Fundamentals, Scale-up Challenges, and Techno-Economic and Environmental Aspects. Environ. Sci. Pollut. Res. 2024, 31, 49935–49984. [Google Scholar] [CrossRef] [PubMed]
- Neri, A.; Hummel, F.; Benalia, S.; Zimbalatti, G.; Gabauer, W.; Mihajlovic, I.; Bernardi, B. Use of Continuous Stirred Tank Reactors for Anaerobic Co-Digestion of Dairy and Meat Industry By-Products for Biogas Production. Sustainability 2024, 16, 4346. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, J.; Du, X.; Gao, T.; Cheng, Z.; Fu, W.; Wang, S. Ammonia Inhibition in Anaerobic Digestion of Organic Waste: A Review. Int. J. Environ. Sci. Technol. 2024, 22, 3927–3942. [Google Scholar] [CrossRef]
- Vasiliadou, I.A.; Gioulounta, K.; Stamatelatou, K. Production of Biogas via Anaerobic Digestion. In Handbook of Biofuels Production; Woodhead Publishing: Cambridge, UK, 2023; pp. 253–311. [Google Scholar] [CrossRef]
- Ellacuriaga, M.; Cascallana, J.G.; González, R.; Gómez, X. High-Solid Anaerobic Digestion: Reviewing Strategies for Increasing Reactor Performance. Environments 2021, 8, 80. [Google Scholar] [CrossRef]
- Gao, Q.; Li, L.; Wang, K.; Zhao, Q. Mass Transfer Enhancement in High-Solids Anaerobic Digestion of Organic Fraction of Municipal Solid Wastes: A Review. Bioengineering 2023, 10, 1084. [Google Scholar] [CrossRef] [PubMed]
- Xiang, T.; Qiang, F.; Liu, G.; Liu, C.; Liu, Y.; Ai, N.; Ma, H. Soil Quality Evaluation of Typical Vegetation and Their Response to Precipitation in Loess Hilly and Gully Areas. Forests 2023, 14, 1909. [Google Scholar] [CrossRef]
- Vanegas, M.; Romani, F.; Jiménez, M. Pilot-Scale Anaerobic Digestion of Pig Manure with Thermal Pretreatment: Stability Monitoring to Improve the Potential for Obtaining Methane. Processes 2022, 10, 1602. [Google Scholar] [CrossRef]
- Maragkaki, A.; Tsompanidis, C.; Velonia, K.; Manios, T. Pilot-Scale Anaerobic Co-Digestion of Food Waste and Polylactic Acid. Sustainability 2023, 15, 10944. [Google Scholar] [CrossRef]
- Naji, A.; Rechdaoui, S.G.; Jabagi, E.; Lacroix, C.; Azimi, S.; Rocher, V. Pilot-Scale Anaerobic Co-Digestion of Wastewater Sludge with Lignocellulosic Waste: A Study of Performance and Limits. Energies 2023, 16, 6595. [Google Scholar] [CrossRef]
- Kovalev, A.A.; Mikheeva, E.R.; Kovalev, D.A.; Katraeva, I.V.; Zueva, S.; Innocenzi, V.; Panchenko, V.; Zhuravleva, E.A.; Litti, Y.V. Feasibility Study of Anaerobic Codigestion of Municipal Organic Waste in Moderately Pressurized Digesters: A Case for the Russian Federation. Appl. Sci. 2022, 12, 2933. [Google Scholar] [CrossRef]
- Estrada-Arriaga, E.B.; Reynoso-Deloya, M.G.; Guillén-Garcés, R.A.; Falcón-Rojas, A.; García-Sánchez, L. Enhanced Methane Production and Organic Matter Removal from Tequila Vinasses by Anaerobic Digestion Assisted via Bioelectrochemical Power-to-Gas. Bioresour. Technol. 2021, 320, 124344. [Google Scholar] [CrossRef]
- Liu, Y.; Wachemo, A.C.; Yuan, H.R.; Li, X.J. Anaerobic Digestion Performance and Microbial Community Structure of Corn Stover in Three-Stage Continuously Stirred Tank Reactors. Bioresour. Technol. 2019, 287, 121339. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Huang, G.; Zhang, J.; Han, T.; Tian, P.; Li, G.; Li, Y. Optimization of Anaerobic Co-Digestion Parameters for Vinegar Residue and Cattle Manure via Orthogonal Experimental Design. Fermentation 2025, 11, 493. [Google Scholar] [CrossRef]
- Hilgert, J.E.; Herrmann, C.; Petersen, S.O.; Dragoni, F.; Amon, T.; Belik, V.; Ammon, C.; Amon, B. Assessment of the Biochemical Methane Potential of In-House and Outdoor Stored Pig and Dairy Cow Manure by Evaluating Chemical Composition and Storage Conditions. Waste Manag. 2023, 168, 14–24. [Google Scholar] [CrossRef]
- Díaz-Domínguez, E.; Rubio, J.Á.; Lyng, J.; Toro, E.; Estévez, F.; García-Morales, J.L. Anaerobic Co-Digestion of Sewage Sludge and Organic Solid By-Products from Table Olive Processing: Influence of Substrate Mixtures on Overall Process Performance. Energies 2025, 18, 3812. [Google Scholar] [CrossRef]
- Jiang, W.; Tao, J.; Luo, J.; Xie, W.; Zhou, X.; Cheng, B.; Guo, G.; Ngo, H.H.; Guo, W.; Cai, H.; et al. Pilot-Scale Two-Phase Anaerobic Digestion of Deoiled Food Waste and Waste Activated Sludge: Effects of Mixing Ratios and Functional Analysis. Chemosphere 2023, 329, 138653. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Guldberg, L.B.; Hansen, M.J.; Feng, L.; Petersen, S.O. Frequent Export of Pig Slurry for Outside Storage Reduced Methane but Not Ammonia Emissions in Cold and Warm Seasons. Waste Manag. 2023, 169, 223–231. [Google Scholar] [CrossRef]
- Wang, L.; Shen, F.; Yuan, H.; Zou, D.; Liu, Y.; Zhu, B.; Li, X. Anaerobic Co-Digestion of Kitchen Waste and Fruit/Vegetable Waste: Lab-Scale and Pilot-Scale Studies. Waste Manag. 2014, 34, 2627–2633. [Google Scholar] [CrossRef]
- Sani, K.; Jariyaboon, R.; O-Thong, S.; Cheirsilp, B.; Kaparaju, P.; Wang, Y.; Kongjan, P. Performance of Pilot Scale Two-Stage Anaerobic Co-Digestion of Waste Activated Sludge and Greasy Sludge under Uncontrolled Mesophilic Temperature. Water Res. 2022, 221, 118736. [Google Scholar] [CrossRef]
- Alqaralleh, R.M.; Kennedy, K.; Delatolla, R. Improving Biogas Production from Anaerobic Co-Digestion of Thickened Waste Activated Sludge (TWAS) and Fat, Oil and Grease (FOG) Using a Dual-Stage Hyper-Thermophilic/Thermophilic Semi-Continuous Reactor. J. Environ. Manag. 2018, 217, 416–428. [Google Scholar] [CrossRef]
- Barbosa, M.Y.U.; Alves, I.; Del Nery, V.; Sakamoto, I.K.; Pozzi, E.; Damianovic, M.H.R.Z. Methane Production in a UASB Reactor from Sugarcane Vinasse: Shutdown or Exchanging Substrate for Molasses during the off-Season? J. Water Process Eng. 2022, 47, 102664. [Google Scholar] [CrossRef]
- Park, J.H.; Kumar, G.; Yun, Y.M.; Kwon, J.C.; Kim, S.H. Effect of Feeding Mode and Dilution on the Performance and Microbial Community Population in Anaerobic Digestion of Food Waste. Bioresour. Technol. 2018, 248, 134–140. [Google Scholar] [CrossRef]
- Tran, J.T.; Warren, K.J.; Wilson, S.A.; Muhich, C.L.; Musgrave, C.B.; Weimer, A.W. An Updated Review and Perspective on Efficient Hydrogen Generation via Solar Thermal Water Splitting. Wiley Interdiscip. Rev. Energy Environ. 2024, 13, e528. [Google Scholar] [CrossRef]
- Schaffka, F.T.S.; Behainne, J.J.R.; Parise, M.R.; De Castilho, G.J. Dynamics of the Pressure Fluctuation in the Riser of a Small Scale Circulating Fluidized Bed: Effect of the Solids Inventory and Fluidization Velocity Under the Absolute Mean Deviation Analysis. Mech. Mach. Sci. 2021, 95, 419–430. [Google Scholar] [CrossRef]
- Couto, N.; Silva, V.B.; Bispo, C.; Rouboa, A. From Laboratorial to Pilot Fluidized Bed Reactors: Analysis of the Scale-up Phenomenon. Energy Convers. Manag. 2016, 119, 177–186. [Google Scholar] [CrossRef]
- Ibarra-Esparza, J.; Ibarra-Esparza, F.E.; González-López, M.E.; Garcia-Gonzalez, A.; Gradilla-Hernández, M.S. Instrumentation and Continuous Monitoring for the Anaerobic Digestion Process: A Systematic Review. IEEE Access 2025, 13, 193820–193837. [Google Scholar] [CrossRef]
- Song, S.; Ginige, M.P.; Cheng, K.Y.; Qie, T.; Peacock, C.S.; Kaksonen, A.H. Dynamics of Gas Distribution in Batch-Scale Fermentation Experiments: The Unpredictive Distribution of Biogas between Headspace and Gas Collection Device. J. Clean. Prod. 2023, 400, 136641. [Google Scholar] [CrossRef]
- Jang, H.M.; Choi, Y.K.; Kan, E. Effects of Dairy Manure-Derived Biochar on Psychrophilic, Mesophilic and Thermophilic Anaerobic Digestions of Dairy Manure. Bioresour. Technol. 2018, 250, 927–931. [Google Scholar] [CrossRef] [PubMed]
- EN 13445:2021; Unfired Pressure Vessels. European Committee for Standardization (CEN): Brussels, Belgium, 2021.
- Albiter, A.; Albiter, A. Sulfide Stress Cracking Assessment of Carbon Steel Welding with High Content of H2S and CO2 at High Temperature: A Case Study. Engineering 2020, 12, 863–885. [Google Scholar] [CrossRef]
- De Crescenzo, C.; Marzocchella, A.; Karatza, D.; Molino, A.; Ceron-Chafla, P.; Lindeboom, R.E.F.; van Lier, J.B.; Chianese, S.; Musmarra, D. Modelling of Autogenerative High-Pressure Anaerobic Digestion in a Batch Reactor for the Production of Pressurised Biogas. Biotechnol. Biofuels Bioprod. 2022, 15, 20. [Google Scholar] [CrossRef] [PubMed]
- Gholizadeh, T.; Ghiasirad, H.; Skorek-Osikowska, A. Life Cycle and Techno-Economic Analyses of Biofuels Production via Anaerobic Digestion and Amine Scrubbing CO2 Capture. Energy Convers. Manag. 2024, 321, 119066. [Google Scholar] [CrossRef]

| Headspace Conditions | Relevant Results | Comment | Reference |
|---|---|---|---|
| BMP bottles: headspace 50, 90 and 180 mL (constant medium 70 mL) | Larger headspace volume means less pressure buildup; better biogas yield; relatively stable methane yield. | Methodological approach for BMP trials, showing free volume effect. | [34] |
| Tests with coffee residues, cocoa husks and manure; headspace overpressures > 600 mbar | In coffee waste, overpressure > 600 mbar reduced methane input; for other substrates there was no adverse effect in the 600–1000—mbar range. | Evidence that headspace pressure impacts depending on the type of substrate. | [35] |
| Headspace pressure: 12.6 psi (~0.87 bar), 6.3 psi (~0.43 bar), 3.3 psi (~0.23 bar) and ambient | Pressure ~3–6 psi improved COD production ~22–36%, solubles ~9–43%, volatile solids reduction ~14–19% and methane +10–31% vs. control. | It shows that a moderate headspace pressure favors the hydrolytic/acidogenic phase and improves methanogenesis. | [36] |
| BMP trials: headspace fraction 0.25 (40 mL in 160 mL bottle) versus 0.75 | Measurement error up to ~24% with headspace fraction 0.25; ~3% with fraction 0.75. Relative error in CH4 increased with headspace pressure. | Evidence that free volume/headspace fraction has an impact on the accuracy of measurements. | [37] |
| Headspace flushing test: N2, N2/CO2 (80/20), without flushing | Flushing with 20% CO2 increased methane production > 20% in inoculum alone compared to pure N2 flushing. | The effect of gas composition on headspace is more important than volume/pressure. | [38] |
| Study of working volume-headspace ratio in BMP assays | They mention that headspace conditions affect biogas production, although they do not provide much numerical quantification. | Recognition of the HSVF) as a design variable remains limited. | [39] |
| 225 L reactor: headspace volume 40% versus 60% | At 40% headspace, VFA production is ten times greater than at 60%; changes in microbial community. | Although focused on VFA, it shows the impact of headspace volume on microbiology and performance. | [40] |
| BMP review: headspace in typical tests 10 mL to 1400 mL; headspace volume fraction % varies widely | It indicates that headspace varies between ~10 to ~76% of the total volume and that this variable should be considered in design. | It reinforces that literature considers headspace as a variable, but with scattered data. | [41] |
| Pilot reactor 265 L: headspace volume 50.0 L, 9.5 L, 1.5 L; micro-oxygenation for H2S removal | H2S removal of 99% with headspace 50 L or 9.5 L; fell to ≈15% when headspace reduced to 1.5 L. | It shows that the available volume of gas-headspace impacts H2S transfer and removal. | [42] |
| Test with relative pressure in the range 300–800 mbar (≈0.3–0.8 bar) in biogas/hydrogen | CH4 > 3.9 mmol/L when relative pressure between 300 and 800 mbar; indirect pressure/headspace contributions. | Although focused on hydrogen, it provides data on the relative pressure of the gas-headspace in digestion. | [43] |
| General review: digesting internal pressure, including headspace, is noted as a variable. | It indicates that the solubility of the gases (CO2/CH4) increases with pressure, which can increase CH4 in free gas; but it also warns of negative effects of high pressure. | It supports the physical -and chemical basis of the pressure effect on headspace. | [44] |
| 500 mL bottles: working volumes 125, 200, 300, 400 mL → corresponding headspace 80%, 60%, 40%, 20% | Reactors with lower working volume (greater headspace) produced a higher percentage of methane (~14–23% more than those with greater liquid volume) | It indicates that a larger volume of free gas (greater headspace) favors biogas/methane production in BMP. | [45] |
| Chicken manure digestion batch; air injection into the headspace (technique variation) | H2S removal down to ~1015 ppm and CH4 increase by 6.4% with air injection into the headspace. | Operational example of how headspace (gas) management improves biogas quality. | [46] |
| Food waste fermentation bed: headspace conditions T1 (self-generated), T2 (30% CO2 + 70% N2), T3 (90% CO2 + 10% N2) | T3 (90% CO2 in headspace) gave a soluble yield of 0.81 g COD/g VS removal, significantly higher than others | Although it does not directly analyze methane, it shows that headspace composition (CO2) affects acid and biogas yield. | [47] |
| Full-scale plant review mentions that headspace conditions influence the fermentation process, including headspace volume and pressure. | He points out that, although these effects are recognized, the literature does not quantify them well; he calls for research into the relationship between headspace volume/pressure and biogas production. | It serves as an argument for the research gap in the topic. | [48] |
| Reactor Scale/Type | Type of Substrate | Typical Range VHS/Vtot (-) | Operating Pressure (kPa) | T (°C) | Agitation | Monitoring Method | CH4 Production (Unit) (Reported/Compiled) | Materials | Reference (DOI) |
|---|---|---|---|---|---|---|---|---|---|
| BMP (500 mL bottle) | Bovine manure | 0.25–0.35 | 101–120 | 37 | Intermittent | Displacement/manometric | ~129–366 mL CH4.g−1 VS (experimental range reported in BMP literature for cow manure (compiled). | Glass | [88] |
| BMP (1 L) | Anaerobic sludge | 0.30–0.40 | 101–130 | 35 | Intermittent | GC–TCD | ~100–230 mL CH4·g−1 VS (ranges reported in reviews/BMP studies; compiled). | Plastic/PP | [89] |
| Laboratory reactor (5 L) | Food waste | 0.20–0.30 | 110–150 | 38 | Continue | NDIR | 0.6–1.2 L CH4·L−1·d−1 (experimental ranges on bench-scale) food waste reactors; compiled). | Stainless steel | [90] |
| Pilot reactor (20 L) | Pig slurry | 0.15–0.25 | 120–160 | 37 | Intermittent | Flow meter + GC | ~0.6–1.3 L CH4·L−1·d−1 (ranges obtained in pilot tests with pig slurry (compiled). | Stainless steel | [91] |
| Pilot reactor (50 L) | Plant waste | 0.20–0.35 | 110–140 | 35 | Continuous mechanics | NDIR | 0.7–1.2 L CH4·L−1·d−1 (reported in pilot studies of co-digestion/food waste; compiled). | Stainless steel | [92] |
| Semi-industrial reactor (200 L) | Sewage | 0.10–0.20 | 150–180 | 36 | Continue | GC + pressure | 0.5–1.0 L CH4·L−1·d−1 (ranges in semi-industrial plants; compiled). | Carbon steel | [93] |
| Industrial reactor (1000 L) | Mixed substrate | 0.05–0.10 | 160–200 | 37 | Continue | NDIR + H2S | 0.8–1.6 L CH4·L−1·d−1 (industrial ranges reported in reviews/case studies; compiled). | Stainless steel | [94] |
| UASB reactor | Urban wastewater | 0.10–0.15 | 120–140 | 35 | Without agitation | Flow meter | 0.2–3.1 L CH4·L−1·d−1 (high variability; maximum values reported under specific conditions as vinasse; reported/compiled). | Coated concrete | [95] |
| CSTR reactor (2 m3) | Co-digestion | 0.08–0.12 | 150–180 | 38 | Mechanical + recirculation | GC-TCD | 1.0–1.6 L CH4·L−1·d−1 (ranges reported for CSTR co-digestion a pilot) scale (compiled). | Stainless steel | [75] |
| Mesophilic reactor (5 m3) | Poultry manure | 0.10–0.15 | 160–190 | 37 | Mechanics | NDIR + flow meter | 0.9–1.3 L CH4·L−1·d−1 (mesophilic full-scale reports ranges; compiled). | Fiberglass | [89] |
| Thermophilic reactor (10 m3) | Agricultural waste | 0.05–0.10 | 180–220 | 55 | Mechanics | GC + P/T | 1.2–2.2 L CH4·L−1·d−1 (best thermophilic performance in several studies; compiled). | Stainless steel | [96] |
| Industrial reactor (20 m3) | Mixed urban sludge | 0.05–0.08 | 180–240 | 38 | Mechanics | GC + H2S | 1.0–1.6 L CH4·L−1·d−1 (ranges compiled from plant case studies; compiled). | Stainless steel | [97] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Orlando, M.-Q.
Design Implications of Headspace Ratio
Orlando M-Q.
Design Implications of Headspace Ratio
Orlando, Meneses-Quelal.
2026. "Design Implications of Headspace Ratio
Orlando, M.-Q.
(2026). Design Implications of Headspace Ratio

