Dynamic Behaviour of Energy Transfer Station Real Field Performance Compared to Ideal Laboratory Conditions
Abstract
1. Introduction
- Better efficiency of sources; for instance, CHP is more efficient than a traditional power plant.
- Enable usage of renewable sources and, above all, waste heat.
- Relatively easy energy shift between energy production and usage.
2. Difference Between Substations
3. Influences on Gain in Temperature Control
- Valve stroke,
- Difference in pressure over control valve,
- Input signal to actuator,
- Error signal to the proportional integral controller,
- Temperature drop on the primary side;
- Inverse mass flow on the secondary side;
- Square root of pressure differential on the primary side (on control valve);
- Gradient of valve inherent characteristics;
- Inverse valve range ability;
- Amplification of proportional parameters.
4. Dynamic Response of Different Control Setups in Laboratory Environment
5. Case Study—Field Measurements in Four Locations with Swedish District Heating Systems
- Temperature on the primary side, by performing the test in winter on days with little outside temperature variation;
- Pressure differential on the primary side, by using the integrated pressure-independent valve of cases A, C and D;
- Gradient of valve inherent characteristics and valve range ability, by using the same type of valves.
- Four temperatures (both inlets and outlets on the primary and secondary sides);
- Four pressures (both inlets and outlets on the primary and secondary sides);
- Mass flow on the primary side.
6. Comparison Between Laboratory and Field Results
7. Discussions
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| work, J | |
| specific heat capacity of fluid, J/(kg K) | |
| h | valve stroke, m |
| flow coefficient, | |
| control parameter, proportional amplification, m | |
| constant | |
| mass flow rate, | |
| time, s | |
| number of instances | |
| heat, J | |
| temperature, K; °C | |
| temperature difference, K; °C | |
| number of bins | |
| bin width | |
| pressure, Pa | |
| pressure difference, Pa | |
| R | valve range ability |
| W | energy, J |
| variable | |
| e | error K, °C |
| Greek symbols | |
| gradient of inherent valve characteristics, | |
| density, kg/m3 | |
| time constant, s | |
| Subscripts | |
| o | outlet |
| i | inlet |
| l | loss |
| valve | |
| maximum | |
| j | counter |
| Superscripts | |
| hot fluid, the primary side | |
| cold fluid, the secondary side | |
| Abbreviations | |
| A, B, C, D | Cases in the field |
| AI | Artificial intelligence |
| CHP | Combined heat and power plant |
| ROM | Reduced-order models |
| SISO | Single-input single-output |
| PI | Proportional-integral control algorithm |
| DP | Differential control algorithm |
References
- Lund, H.; Werner, S.; Wiltshire, R.; Svendsen, S.; Thorsen, J.E.; Hvelplund, F.; Mathiesen, B.V. 4th Generation District Heating (4GDH): Integrating Smart Thermal Grids into Future Sustainable Energy Systems. Energy 2014, 68, 1–11. [Google Scholar] [CrossRef]
- Mathiesen, B.V.; Bertelsen, N.; Schneider, N.C.A.; García, L.S.; Paardekooper, S.; Thellufsen, J.Z.; Djørup, S.R. Towards a Decarbonised Heating and Cooling Sector in Europe: Unlocking the Potential of Energy Efficiency and District Energy; Aalborg University: Aalborg, Denmark, 2019. [Google Scholar]
- Bajsić, I.; Bobič, M. Modelling and Experimental Validation of a Hot Water Supply Substation. Energy Build. 2006, 38, 327–333. [Google Scholar] [CrossRef]
- Cai, W. Nonlinear Dynamics of Thermal-Hydraulic Networks. Ph.D. Thesis, University of Notre Dame, Notre Dame, IN, USA, 2006. [Google Scholar]
- Cai, W.; Franco, W.; Arimany, G.; Sen, M.; Yang, K.T.; McClain, R.L. Interaction Between Secondaries in a Thermal-Hydraulic Network. J. Dyn. Syst. Meas. Control 2006, 128, 820–828. [Google Scholar] [CrossRef]
- Bobič, M. Razvoj Merilnega Sistema Za Preizkušanje Sklopljenega Krmilnega Sistema Tlačno-Temperaturne Regulacije. Ph.D. Thesis, University of Ljubljana, Faculty of Mechanical Engineering, Ljubljana, Slovenia, 2021. [Google Scholar]
- Ivančić, A.; Romaní, J.; Salom, J.; Cambronero, M.V. Performance Assessment of District Energy Systems with Common Elements for Heating and Cooling. Energies 2021, 14, 2334. [Google Scholar] [CrossRef]
- Lazarević, S.L.; Čongradac, V.D.; Andjelković, A.S.; Kljajić, M.V.; Kanović, Ž.S. District Heating Substation Elements Modeling for the Development of the Real-Time Model. Therm. Sci. 2019, 23, 2061–2070. [Google Scholar] [CrossRef]
- Vandermeulen, A.; Van Oevelen, T.; van der Heijde, B.; Helsen, L. A Simulation-Based Evaluation of Substation Models for Network Flexibility Characterisation in District Heating Networks. Energy 2020, 201, 117650. [Google Scholar] [CrossRef]
- Brum, M.; Erickson, P.; Jenkins, B.; Kornbluth, K. A Comparative Study of District and Individual Energy Systems Providing Electrical-Based Heating, Cooling, and Domestic Hot Water to a Low-Energy Use Residential Community. Energy Build. 2015, 92, 306–312. [Google Scholar] [CrossRef]
- Lazarević, S.; Čongradac, V.; Anđelković, A.S.; Čapko, D.; Kanović, Ž. A Novel Approach to Real-Time Modelling of the District Heating Substation System Using LabVIEW. J. Clean. Prod. 2019, 217, 360–370. [Google Scholar] [CrossRef]
- Kiss, G.R.; Horváth, M.; Szánthó, Z. MATLAB Simulink-Based Modelling and Performance Analysis of District Heating Substations for Renewable Energy Integration. Energies 2025, 18, 2370. [Google Scholar] [CrossRef]
- Rupnik, K.; Kutin, J.; Bajsić, I. Identification and Prediction of the Dynamic Properties of Resistance Temperature Sensors. Sens. Actuators A Phys. 2013, 197, 69–75. [Google Scholar] [CrossRef]
- Bajsič, I.; Bobič, M. Time Response of a Sheathed Temperature Measurement Probe. Instrum. Sci. Technol. 2008, 36, 543–551. [Google Scholar] [CrossRef]
- Bobič, M.; Gjerek, B.; Golobič, I.; Bajsić, I. Dynamic Behaviour of a Plate Heat Exchanger: Influence of Temperature Disturbances and Flow Configurations. Int. J. Heat Mass Transf. 2020, 163, 120439. [Google Scholar] [CrossRef]
- Genić, S.B.; Jaćimović, B.M.; Mandić, D.; Petrović, D. Experimental Determination of Fouling Factor on Plate Heat Exchangers in District Heating System. Energy Build. 2012, 50, 204–211. [Google Scholar] [CrossRef]
- Arendt, K.; Ionesi, A.; Jradi, M.; Singh, A.K.; Kjærgaard, M.B.; Veje, C.; Jørgensen, B.N. A Building Model Framework for a Genetic Algorithm Multi-Objective Model Predictive Control. In Proceedings of the 12th REHVA World Congress CLIMA 2016, Aalborg, Denmark, 22–25 May 2016; p. 186. [Google Scholar]
- Ionesi, A.; Jouffroy, J. On-Line Parameter Estimation of Reduced-Order Models for Buildings Energy Dynamics Using the Modulating Function Method. In Proceedings of the Winter Simulation Conference 2018, Gothenburg, Sweden, 9–12 December 2018; pp. 503–514. [Google Scholar] [CrossRef]
- Wehkamp, S.; Schmeling, L.; Vorspel, L.; Roelcke, F.; Windmeier, K.L. District Energy Systems: Challenges and New Tools for Planning and Evaluation. Energies 2020, 13, 2967. [Google Scholar] [CrossRef]
- Neumann, H.M.; Hainoun, A.; Stollnberger, R.; Etminan, G.; Schaffler, V. Analysis and Evaluation of the Feasibility of Positive Energy Districts in Selected Urban Typologies in Vienna Using a Bottom-Up District Energy Modelling Approach. Energies 2021, 14, 4449. [Google Scholar] [CrossRef]
- Kozlowska, A.; Guarino, F.; Volpe, R.; Bisello, A.; Gabaldòn, A.; Rezaei, A.; Albert-Seifried, V.; Alpagut, B.; Vandevyvere, H.; Reda, F.; et al. Positive Energy Districts: Fundamentals, Assessment Methodologies, Modeling and Research Gaps. Energies 2024, 17, 4425. [Google Scholar] [CrossRef]
- Bruck, A.; Díaz Ruano, S.; Auer, H. A Critical Perspective on Positive Energy Districts in Climatically Favoured Regions: An Open-Source Modelling Approach Disclosing Implications and Possibilities. Energies 2021, 14, 4864. [Google Scholar] [CrossRef]
- Civiero, P.; Turci, G.; Alpagut, B.; Kuzmic, M.; Soutullo, S.; Sánchez, M.N.; Seco, O.; Bossi, S.; Haase, M.; Massa, G.; et al. Operational Insights and Future Potential of the Database for Positive Energy Districts. Energies 2024, 17, 899. [Google Scholar] [CrossRef]
- Tran, T.T.D.; Smith, A.D. Stochastic Optimization for Integration of Renewable Energy Technologies in District Energy Systems for Cost-Effective Use. Energies 2019, 12, 533. [Google Scholar] [CrossRef]
- Sarbu, I.; Mirza, M.; Muntean, D. Integration of Renewable Energy Sources into Low-Temperature District Heating Systems: A Review. Energies 2022, 15, 6523. [Google Scholar] [CrossRef]
- Khlebnikova, E.; Pothof, I.; van der Zwan, S.; Loverdou, L. On the design of 5GDHC substation control systems. Int. J. Sustain. Energy 2024, 43, 1–16. [Google Scholar] [CrossRef]
- Chicherin, S. Conversion to Fourth-Generation District Heating (4GDH): Heat Accumulation Within Building Envelopes. Energies 2025, 18, 2307. [Google Scholar] [CrossRef]
- Żurawski, M.; Mika, Ł.; Kuś, J. A Review of Existing Hybrid District Heating Substations and Their Application Potential. Energies 2025, 18, 5093. [Google Scholar] [CrossRef]
- Su, J.; Zhang, J.; Li, G.; Zhang, W.; Yu, H.; Kang, L.; Zhang, L.; Zhang, X.; Wang, J. Research on Dynamic Simulation and Optimization of Building Energy Consumption of Substations in Cold Regions Based on DeST: A Case Study of an Indoor Substation in Shijiazhuang. Buildings 2025, 15, 3706. [Google Scholar] [CrossRef]
- Friedrich, P.; Kuroptev, K.; Huynh, T.; Niessen, S. Stability Analysis and Mitigation of Thermo-Hydraulic Oscillations in Multi-Supplier District Heating Systems. Energies 2025, 18, 1126. [Google Scholar] [CrossRef]









| Test Name | Differential Pressure Bar | Flow Temperature °C | With or Without Differential Pressure Controller |
|---|---|---|---|
| γ | from 0.35 to 6 | 100 | without |
| δ | from 0.35 to 6 | 100 | with |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Bobič, M.; Povalej, M.; Kitanovski, A. Dynamic Behaviour of Energy Transfer Station Real Field Performance Compared to Ideal Laboratory Conditions. Energies 2026, 19, 101. https://doi.org/10.3390/en19010101
Bobič M, Povalej M, Kitanovski A. Dynamic Behaviour of Energy Transfer Station Real Field Performance Compared to Ideal Laboratory Conditions. Energies. 2026; 19(1):101. https://doi.org/10.3390/en19010101
Chicago/Turabian StyleBobič, Miha, Mojca Povalej, and Andrej Kitanovski. 2026. "Dynamic Behaviour of Energy Transfer Station Real Field Performance Compared to Ideal Laboratory Conditions" Energies 19, no. 1: 101. https://doi.org/10.3390/en19010101
APA StyleBobič, M., Povalej, M., & Kitanovski, A. (2026). Dynamic Behaviour of Energy Transfer Station Real Field Performance Compared to Ideal Laboratory Conditions. Energies, 19(1), 101. https://doi.org/10.3390/en19010101

