Scenarios of Carbon Capture and Storage Importance in the Process of Energy System Transformation in Poland
Abstract
:1. Introduction
2. Literature Review
- Low, e.g., due to increased energy efficiency, use of energy-efficient machines and devices in industry, economic slowdown, and increased share of renewable energy sources;
- Average—as a result of the balance achieved between demand and supply of EUA allowances and macroeconomic stability;
- High—due to increased demand for energy caused by, for example, dynamic economic growth, natural increase, and reduction of available allowances due to tightening of EU energy policy, taking into account new sectors, e.g., construction.
- Low, e.g., due to high energy efficiency, increasing amount of renewable energy in the energy mix, reduced energy demand, use of low-emission technologies, and rising EU ETS prices;
- Average—moderate pace of modernisation and implementation of low-emission technologies, and moderate economic development;
- High—which may be caused by increased demand for energy, low energy efficiency, economic development, and high prices for fuels and energy from alternative sources;
- Ten experts participated in the survey, which was anonymous. The experts invited to the study were selected based on their knowledge of the analysed phenomenon. These were scientists engaged in research in the field of CCS, clean coal technologies, energy, economics, energy security, and energy transformation. The experts were professors (60%) and PhDs (40%). The group of experts included 60% women, and their age range was 40–64 years.
3. Materials and Methods
4. Results
4.1. Neutral Likely Scenario
4.2. Pessimistic Scenario
4.3. Optimistic Scenario
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kyoto Protocol. UNFCCC Website. 1997, pp. 230–240. Available online: http://unfccc.int/kyoto_protocol/items/2830.php (accessed on 1 January 2025).
- Savaresi, A. The Paris Agreement: A new beginning? J. Energy Nat. Resour. Law 2016, 34, 16–26. [Google Scholar]
- Paris agreement. Report of the Conference of the Parties to the United Nations Framework Convention on Climate Change (21st Session, 2015: Paris); HeinOnline: Getzville, NY, USA, 2015; Volume 4, p. 2. [Google Scholar]
- Eurostat. Available online: https://ec.europa.eu/eurostat/web/main/data/database (accessed on 5 December 2024).
- Riečan, B. Analysis of fuzzy logic models. In Intelligent Systems; Intech: London, UK, 2012; pp. 219–244. [Google Scholar]
- Rockström, J.; Gaffney, O.; Rogelj, J.; Meinshausen, M.; Nakicenovic, N.; Schellnhuber, H.J. A roadmap for rapid decarbonization. Science 2017, 355, 1269–1271. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.energyinst.org/statistical-review/resources-and-data-downloads (accessed on 12 March 2025).
- Cormos, A.M.; Cormos, C.C. Reducing the carbon footprint of cement industry by post-combustion CO2 capture: Techno-economic and environmental assessment of a CCS project in Romania. Chem. Eng. Res. Des. 2017, 123, 230–239. [Google Scholar] [CrossRef]
- Available online: https://eur-lex.europa.eu/legal-content/PL/ALL/?uri=CELEX%3A32009L0031 (accessed on 20 March 2025).
- Available online: https://single-market-economy.ec.europa.eu/industry/sustainability/net-zero-industry-act_en (accessed on 20 March 2025).
- Roggenkamp, M.M. CCUS in the Netherlands. In Carbon Capture Utilization and Storage: Law, Policy and Standardization Perspectives; Springer Nature: Cham, Switzerland, 2025; pp. 423–446. [Google Scholar]
- Available online: https://greensandfuture.com/ (accessed on 22 March 2025).
- Available online: https://www.rwe.com/en/research-and-development/rwe-innovation-centre/e-fuels/align-ccus/ (accessed on 23 March 2025).
- Available online: https://c4u-project.eu/ (accessed on 21 March 2025).
- Available online: https://strategyccus.brgm.fr/about-project (accessed on 22 March 2025).
- Available online: https://www.orlen.pl/pl/o-firmie/media/komunikaty-prasowe/2025/Marzec-2025/ORLEN-i-Equinor-beda-wspolpracowac-przy-technologiach-CCS (accessed on 19 March 2025).
- Available online: https://www.go4ecoplanet.com/o-projekcie (accessed on 19 March 2025).
- Ringrose, P.S. The CCS hub in Norway: Some insights from 22 years of saline aquifer storage. Energy Procedia 2018, 146, 166–172. [Google Scholar] [CrossRef]
- Steen, M.; Andersen, A.D.; Finstad, J.; Hansen, T.; Hanson, J.; Jordal, K.; Makitie, T.; Nordholm, A.; Ryghaug, M.; Santoalha, A. CCS technological innovation system dynamics in Norway. Int. J. Greenh. Gas Control. 2024, 136, 104171. [Google Scholar] [CrossRef]
- Brüggemeier, F.J. The Age of Coal: A History of Europe, 1750 to the Present; Oxford University Press: Oxford, UK, 2024. [Google Scholar]
- Nieć, M.; Sermet, E.; Chećko, J. Hard (bituminous) coal resources in Poland–expectations and reality. Gospod. Surowcami Miner. 2017, 33, 5–26. [Google Scholar]
- PSG. Available online: https://www.pgi.gov.pl/images/surowce/2023/bilans_2023.pdf (accessed on 1 January 2025).
- Wojtaszek, H.; Miciuła, I.; Modrzejewska, D.; Stecyk, A.; Sikora, M.; Wójcik-Czerniawska, A.; Smolarek, M.; Kowalczyk, A.; Chojnacka, M. Energy Policy until 2050—Comparative Analysis between Poland and Germany. Energies 2024, 17, 421. [Google Scholar] [CrossRef]
- Mrozowska, S.; Wendt, J.A.; Tomaszewski, K. The challenges of Poland’s energy transition. Energies 2021, 14, 8165. [Google Scholar] [CrossRef]
- Forsal. Available online: https://forsal.pl/swiat/niemcy/artykuly/9705262,niemcy-bez-pradu-maja-przestac-prac-gotowac-i-ladowac-swe-elektryki.html (accessed on 1 January 2025).
- Farmer. Available online: https://www.farmer.pl/energia/niemcy-na-potege-importuja-energie-elektryczna-m-in-z-polski-w-efekcie-rosna-ceny-pradu-w-europie,155244.html#:~:text=Zgni%C5%82a%20pogoda%20wykolei%C5%82a%20Niemcy&text=A%20elektrowni%20konwencjonalnych%20jest%20coraz,wi%C4%99cej%20pr%C4%85du%2C%20ni%C5%BC%20sami%20wytwarzali (accessed on 1 January 2025).
- Wolf, S.; Teitge, J.; Mielke, J.; Schütze, F.; Jaeger, C. The European Green Deal—More than climate neutrality. Intereconomics 2021, 56, 99–107. [Google Scholar] [CrossRef]
- Wiese, F.; Thema, J.; Cordroch, L. Strategies for climate neutrality. Lessons from a meta-analysis of German energy scenarios. Renew. Sustain. Energy Transit. 2022, 2, 100015. [Google Scholar] [CrossRef]
- Cintas, O.; Berndes, G.; Hansson, J.; Poudel, B.C.; Bergh, J.; Börjesson, P.; Egnell, G.; Lundmark, T.; Nordin, A. The potential role of forest management in Swedish scenarios towards climate neutrality by mid century. For. Ecol. Manag. 2017, 383, 73–84. [Google Scholar] [CrossRef]
- Dupont, C.; Moore, B.; Boasson, E.L.; Gravey, V.; Jordan, A.; Kivimaa, P.; Kulovesi, K.; Kuzomko, C.; Oberthur, S.; Panchuk, D.; et al. Three decades of EU climate policy: Racing toward climate neutrality? Wiley Interdiscip. Rev. Clim. Change 2024, 15, e863. [Google Scholar] [CrossRef]
- Flori, A.; Borghesi, S.; Marin, G. The environmental-financial performance nexus of EU ETS firms: A quantile regression approach. Energy Econ. 2024, 131, 107328. [Google Scholar] [CrossRef]
- Available online: https://climate.ec.europa.eu/eu-action/eu-emissions-trading-system-eu-ets_en (accessed on 12 March 2025).
- Błażejowska, M.; Czarny, A.; Kowalska, I.; Michalczewski, A.; Stępień, P. The Effectiveness of the EU ETS Policy in Changing the Energy Mix in Selected European Countries. Energies 2024, 17, 4243. [Google Scholar] [CrossRef]
- Chen, W.; Xu, R. Clean coal technology development in China. Energy Policy 2010, 38, 2123–2130. [Google Scholar] [CrossRef]
- Mohammed, S.; Eljack, F.; Al-Sobhi, S.; Kazi, M.K. A systematic review: The role of emerging carbon capture and conversion technologies for energy transition to clean hydrogen. J. Clean. Prod. 2024, 447, 141506. [Google Scholar] [CrossRef]
- Blaschke, W.; Nycz, R. Clean coal-preparation barriers in Poland. Appl. Energy 2003, 74, 343–348. [Google Scholar] [CrossRef]
- Peres, C.B.; Resende, P.M.; Nunes, L.J.; Morais, L.C.D. Advances in carbon capture and use (CCU) technologies: A comprehensive review and CO2 mitigation potential analysis. Clean Technol. 2022, 4, 1193–1207. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Aslani, A.; Kasaeian, A. Life cycle cost and environmental assessment of CO2 utilization in the beverage industry: A natural gas-fired power plant equipped with post-combustion CO2 capture. Energy Rep. 2023, 9, 414–436. [Google Scholar] [CrossRef]
- Prakash, S.; Joshi, D.; Ojha, K.; Mandal, A. Enhanced Oil Recovery Using Polymer Alternating CO2 Gas Injection: Mechanisms, Efficiency, and Environmental Benefits. Energy Fuels 2024, 38, 5676–5689. [Google Scholar] [CrossRef]
- Liu, Y.; Hou, J.; Zhao, H.; Liu, X.; Xia, Z. A method to recover natural gas hydrates with geothermal energy conveyed by CO2. Energy 2018, 144, 265–278. [Google Scholar] [CrossRef]
- Ling, Z.; Pan, J.; Kontchouo, F.M.B.; Liu, S.; Lu, X.; Guo, X.; Penzik, M.V.; Kozlov, A.N.; Huang, Y.; Zhang, S. Current situation of marine CO2 sequestration and analysis of related environmental issues. Fuel 2024, 366, 131288. [Google Scholar] [CrossRef]
- Bui, M.; Adjiman, C.S.; Bardow, A.; Anthony, E.J.; Boston, A.; Brown, S.; Mac Dowell, N. Carbon capture and storage (CCS): The way forward. Energy Environ. Sci. 2018, 11, 1062–1176. [Google Scholar]
- Hardisty, P.E.; Sivapalan, M.; Brooks, P. The Environmental and Economic Sustainability of Carbon Capture and Storage. Int. J. Environ. Res. Public Health 2011, 8, 1460–1477. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.W.; Yoon, H.C.; Lee, J.Y. Review on carbon capture and storage (CCS) from source to sink; Part 1: Essential aspects for CO2 pipeline transportation. Int. J. Greenh. Gas Control 2024, 137, 104208. [Google Scholar] [CrossRef]
- Kopacz, M.; Matuszewska, D.; Olczak, P. Carbon Capture and Storage (CCS) Implementation as a Method of Reducing Emissions from Coal Thermal Power Plants in Poland. Energies 2024, 17, 6342. [Google Scholar] [CrossRef]
- Carrasco-García, A.; Vali, S.A.; Ben-Abbou, Z.; Moral-Vico, J.; Abo Markeb, A.; Sánchez, A. Synthesis of Cobalt-based nanoparticles as catalysts for methanol synthesis from CO2 hydrogenation. Materials 2024, 17, 697. [Google Scholar] [CrossRef]
- KOBiZE Analiza Rynku CO2 Czerwiec 2024. Available online: https://www.kobize.pl/uploads/materialy/materialy_do_pobrania/raport_co2/2024/KOBiZE_Analiza_rynku_CO2_czerwiec_2024.pdf (accessed on 20 January 2025).
- Instrat. Available online: https://energy.instrat.pl/ceny/eu-ets/ (accessed on 1 January 2025).
- Bartnik, R.; Buryn, Z.; Hnydiuk-Stefan, Z. Opłacalność Modernizacji Oraz Budowy Nowych Bloków Węglowych na Parametry Nadkrytyczne w Technologii ccs. Available online: http://46.242.185.119/off_ptzp.org.pl/files/konferencje/kzz/artyk_pdf_2018/T1/2018_t1_265.pdf (accessed on 12 March 2025).
- Zuwała, J.; Babiarz, M.; Ściążko, M. Zintegrowany układ oksyspalania i zgazowania węgla. Rynek Energii 2011, 3, 41–46. [Google Scholar]
- Uliasz-Misiak, B.; Tarkowski, R. Koszty geologicznego składowania CO2. Zesz. Nauk. Inst. Gospod. Surowcami Miner. I Energią PAN 2009, 75, 21–34. [Google Scholar]
- Available online: https://www.globalccsinstitute.com/resources/publications-reports-research/global-status-of-ccs-2021/ (accessed on 12 March 2025).
- David, J.; Herzog, H. The cost of carbon capture. In Proceedings of the Fifth International Conference on Greenhouse Gas Control Technologies, Cairns, Australia, 13–16 August 2000; pp. 13–16. [Google Scholar]
- Available online: https://pie.net.pl/wp-content/uploads/2024/07/Polski-CCS-co2.pdf (accessed on 5 March 2025).
- Govindan, K.; Kannan, D.; Jørgensen, T.B.; Nielsen, T.S. Supply Chain 4.0 performance measurement: A systematic literature review, framework development, and empirical evidence. Transp. Res. Part E Logist. Transp. Rev. 2022, 164, 102725. [Google Scholar] [CrossRef]
- Dua, R.; Guzman, A.F. A perspective on emerging energy policy and economic research agenda for enabling aviation climate action. Energy Res. Soc. Sci. 2024, 117, 103725. [Google Scholar] [CrossRef]
- Harer, J.B.; Cole, B.R. The importance of the stakeholder in performance measurement: Critical processes and performance measures for assessing and improving academic library services and programs. Coll. Res. Libr. 2005, 66, 149–170. [Google Scholar] [CrossRef]
- McLeod, J.; Childs, S. Consulting records management oracles—A Delphi in practice. Arch. Sci. 2007, 7, 147–166. [Google Scholar] [CrossRef]
- Bishop, P.; Hines, A.; Collins, T. The current state of scenario development: An overview of techniques. Foresight 2007, 9, 2–5. [Google Scholar] [CrossRef]
- Kahn, H.; Wiener, A.J. The next thirty-three years: A framework for speculation. Daedalus 1967, 96, 705–732. [Google Scholar]
- Hejden, K. Planowanie Scenariuszowe w Zarządzaniu Strategicznym; Oficyna Ekonomiczna Oddział PWP: Kraków, Poland, 2000. [Google Scholar]
- Van der Heijden, K. Scenarios: The Art of Strategic Conversation; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Chermack, T.J. Scenario Planning in Organizations: How to Create, Use, and Assess Scenarios; Berrett-Koehler Publishers: Oakland, CA, USA, 2011. [Google Scholar]
- Jerab, D. Navigating in Turbulence: Leadership & Decision-making, Strategies Effectiveness in Turbulent Work Environments. SSRN Electron. J. 2024, 1–15. [Google Scholar] [CrossRef]
- Narkhede, G.; Samuel, C.; Mahajan, S.; Verma, D.; Sakhare, N.; Chaudhari, T. Beyond traditional supply chain management: Addressing sociopolitical challenges in increasingly turbulent global trade landscape. Bus. Strategy Dev. 2024, 7, e397. [Google Scholar] [CrossRef]
- Zimmermann, H.J. Fuzzy set theory. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 317–332. [Google Scholar] [CrossRef]
- Aggoune, A. Intelligent data integration from heterogeneous relational databases containing incomplete and uncertain information. Intell. Data Anal. 2022, 26, 75–99. [Google Scholar] [CrossRef]
- Matulin, M.; Mrvelj, Š. Modelling user quality of experience from objective and subjective data sets using fuzzy logic. Multimed. Syst. 2018, 24, 645–667. [Google Scholar] [CrossRef]
- Dutta, S. Fuzzy logic applications: Technological and strategic issues. IEEE Trans. Eng. Manag. 1993, 40, 237–254. [Google Scholar] [CrossRef]
- Ai, A.I. Fuzzy logic and artificial intelligence: A special issue on emerging techniques and their applications. IEEE Trans. Fuzzy Syst. 2020, 28, 3063. [Google Scholar]
- Sakunthala, S.; Kiranmayi, R.; Mandadi, P.N. A review on artificial intelligence techniques in electrical drives: Neural networks, fuzzy logic, and genetic algorithm. In Proceedings of the 2017 International Conference on Smart Technologies for Smart Nation (SmartTechCon), IEEE, Bengaluru, India, 17–19 August 2017; pp. 11–16. [Google Scholar]
- Tabbussum, R.; Dar, A.Q. Performance evaluation of artificial intelligence paradigms—Artificial neural networks, fuzzy logic, and adaptive neuro-fuzzy inference system for flood prediction. Environ. Sci. Pollut. Res. 2021, 28, 25265–25282. [Google Scholar] [CrossRef]
- Boltürk, E. Fuzzy sets theory and applications in engineering economy. J. Intell. Fuzzy Syst. 2021, 42, 37–46. [Google Scholar] [CrossRef]
- Zaitseva, N.V.; Zemlyanova, M.A.; May, I.V.; Alekseev, V.B.; Trusov, P.V.; Khrushcheva, E.V.; Savochkina, A.A. Efficiency of health risk mitigation: Complex assessment based on fuzzy sets theory and applied in planning activities aimed at ambient air protection. Health Risk Anal. 2020, 1, 25–37. [Google Scholar] [CrossRef]
- Vineis, P. Methodological insights: Fuzzy sets in medicine. J. Epidemiol. Community Health 2008, 62, 273–278. [Google Scholar] [CrossRef]
- Zahid, K.; Akram, M. Multi-criteria group decision-making for energy production from municipal solid waste in Iran based on spherical fuzzy sets. Granul. Comput. 2023, 8, 1299–1323. [Google Scholar] [CrossRef]
- Hsueh, S.L. A fuzzy logic enhanced environmental protection education model for policies decision support in green community development. Sci. World J. 2013, 2013, 250374. [Google Scholar] [CrossRef] [PubMed]
- Cornelis, C.; Deschrijver, G.; Kerre, E.E. Advances and challenges in interval-valued fuzzy logic. Fuzzy Sets Syst. 2006, 157, 622–627. [Google Scholar] [CrossRef]
- Varshney, A.; Goyal, V. Re-evaluation on fuzzy logic controlled system by optimizing the membership functions. Mater. Today Proc. 2023; in proof. [Google Scholar]
- Babuška, R. Fuzzy Modeling for Control; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 12. [Google Scholar]
- Arji, G.; Ahmadi, H.; Nilashi, M.; Rashid, T.A.; Ahmed, O.H.; Aljojo, N.; Zainol, A. Fuzzy logic approach for infectious disease diagnosis: A methodical evaluation, literature and classification. Biocybern. Biomed. Eng. 2019, 39, 937–955. [Google Scholar] [CrossRef]
- Piegat, A. Modelowanie i Sterowanie Rozmyte; Akademicka Oficyna Wydawnicza EXIT: Warszawa, Poland, 2003. [Google Scholar]
- Khairuddin, S.H.; Hasan, M.H.; Hashmani, M.A.; Azam, M.H. Generating clustering-based interval fuzzy type-2 triangular and trapezoidal membership functions: A structured literature review. Symmetry 2021, 13, 239. [Google Scholar] [CrossRef]
- Driankov, D.; Hellendoorn, H.; Reinfrank, M. Wprowadzenie do Sterowania Rozmytego; WNT: Warszawa, Poland, 1993. [Google Scholar]
- Hisdal, E. The IF THEN ELSE statement and interval-valued fuzzy sets of higher type. Int. J. Man-Mach. Stud. 1981, 15, 385–455. [Google Scholar] [CrossRef]
- Almseidin, M.; Kovacs, S. Intrusion detection mechanism using fuzzy rule interpolation. arXiv 2019, arXiv:1904.08790. [Google Scholar]
- Kazeminezhad, M.H.; Etemad-Shahidi, A.; Mousavi, S.J. Application of fuzzy inference system in the prediction of wave parameters. Ocean. Eng. 2005, 32, 1709–1725. [Google Scholar] [CrossRef]
- Tanaka, Y. An overview of fuzzy logic. In Proceedings of the WESCON’93, San Francisco, CA, USA, 28–30 September 1993; pp. 446–450. [Google Scholar]
- Williams, J.K. Introduction to fuzzy logic. In Artificial Intelligence Methods in the Environmental Sciences; Springer: Dordrecht, The Netherlands, 2009; pp. 127–151. [Google Scholar]
- Go4EcoPlanet. Available online: https://www.go4ecoplanet.com/en/home (accessed on 23 January 2025).
- Lex. Available online: https://sip.lex.pl/akty-prawne/dzu-dziennik-ustaw/prawo-geologiczne-i-gornicze-17724218 (accessed on 1 March 2025).
- Lubaś, J. Pierwsza europejska przemysłowa instalacja sekwestracji CO2. Nafta-Gaz 2008, 64, 49–51. [Google Scholar]
- PGI. Available online: https://skladowanie.pgi.gov.pl/twiki/pub/CO2/WebHome/Podziemne_sk%B3adowanie_CO2_w_Polsce.pdf (accessed on 10 March 2025).
CCS Weight | Experts | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Variable state combination | EU ETS prices | CO2 emissions | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
1 | M | M | N | N | N | W | N | N | N | N | N | N |
2 | M | S | N | N | N | W | N | N | N | N | N | N |
3 | M | D | S | S | N | W | S | S | S | S | S | S |
4 | S | M | N | N | N | W | S | S | S | N | N | S |
5 | S | D | S | S | N | W | S | S | S | S | S | S |
6 | D | M | S | S | N | W | S | N | W | S | S | S |
7 | D | D | W | W | N | W | W | W | S | W | W | W |
8 | S | S | S | S | N | W | S | S | W | W | S | S |
9 | D | S | W | S | N | W | W | S | W | W | S | S |
CCS Weight | Experts | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Variable state combination | EU ETS prices | CO2 emissions | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
1 | M | M | S | S | N | W | N | S | S | S | N | N |
2 | M | S | S | S | S | W | N | S | S | S | N | S |
3 | M | D | W | W | S | W | S | S | W | W | N | S |
4 | S | M | S | S | N | W | S | S | S | S | N | S |
5 | S | D | W | W | W | W | W | W | W | W | S | S |
6 | D | M | W | W | S | W | W | S | W | S | N | S |
7 | D | D | W | W | W | W | W | W | W | W | W | W |
8 | S | S | S | W | S | W | W | W | W | S | S | S |
9 | D | S | W | W | W | W | W | W | W | W | S | S |
CCS Weight | Experts | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Variable state combination | EU ETS prices | CO2 emissions | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
1 | M | M | N | N | N | W | S | N | N | N | N | N |
2 | M | S | N | N | S | W | S | N | N | N | S | N |
3 | M | D | S | N | S | W | S | S | N | N | W | S |
4 | S | M | N | N | N | W | S | N | N | N | S | N |
5 | S | D | S | S | W | W | W | S | S | S | W | S |
6 | D | M | S | S | S | W | W | S | S | S | S | S |
7 | D | D | W | S | W | W | W | S | S | W | W | S |
8 | S | S | S | S | S | W | W | S | S | S | S | S |
9 | D | S | S | S | W | W | W | S | S | S | W | S |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rybak, A.; Joostberens, J. Scenarios of Carbon Capture and Storage Importance in the Process of Energy System Transformation in Poland. Energies 2025, 18, 2278. https://doi.org/10.3390/en18092278
Rybak A, Joostberens J. Scenarios of Carbon Capture and Storage Importance in the Process of Energy System Transformation in Poland. Energies. 2025; 18(9):2278. https://doi.org/10.3390/en18092278
Chicago/Turabian StyleRybak, Aurelia, and Jarosław Joostberens. 2025. "Scenarios of Carbon Capture and Storage Importance in the Process of Energy System Transformation in Poland" Energies 18, no. 9: 2278. https://doi.org/10.3390/en18092278
APA StyleRybak, A., & Joostberens, J. (2025). Scenarios of Carbon Capture and Storage Importance in the Process of Energy System Transformation in Poland. Energies, 18(9), 2278. https://doi.org/10.3390/en18092278