Towards a Generalized Tidal Turbine Wake Analytical Model for Turbine Placement in Array Accounting for Added Turbulence †
Abstract
:1. Introduction
Turbulence in Tidal Farm
- Added turbulence model—calculated for the wake after a single turbulence;
- Added turbulence model—calculated for all nearby turbines;
- Total turbulence model—calculated for the wake after a single turbulence;
- Total turbulence model—calculated for all nearby turbines.
2. Methodology
2.1. Numerical Model
2.1.1. Actuator Disc Model
2.1.2. Numerical Domain
2.2. Empirical Model
2.2.1. Wake Radius Model
2.2.2. Velocity Deficit Model
2.2.3. Turbulence Intensity Model
3. Tidal Farm
3.1. Wake Interaction in Tidal Farm
3.2. Description of Generic Model in Tidal Farm
3.3. Description of Cases Studied
4. Analysis and Discussion
4.1. Turbine Array in Tandem Configuration
4.2. Power Production in Different Array Configuration
4.3. Effect of Rotor DH Ratio in Tidal Farm
4.4. Effect of Ambient Turbulence on Tidal Farm
4.5. Effect of Command Strategies on Farm Power
4.6. Application on Large Tidal Farm
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- EMEC. Tidal Clients: EMEC: European Marine Energy Centre. Available online: https://www.emec.org.uk/about-us/our-tidal-clients/ (accessed on 7 July 2024).
- IRENA. Innovation Outlook: Ocean Energy Technologies; Technical Report; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2020. [Google Scholar]
- Noble, D.R.; Draycott, S.; Nambiar, A.; Sellar, B.G.; Steynor, J.; Kiprakis, A. Experimental Assessment of Flow, Performance, and Loads for Tidal Turbines in a Closely-Spaced Array. Energies 2020, 13, 1977. [Google Scholar] [CrossRef]
- Mycek, P.; Gaurier, B.; Germain, G.; Pinon, G.; Rivoalen, E. Experimental study of the turbulence intensity effects on marine current turbines behaviour. Part II: Two interacting turbines. Renew. Energy 2014, 68, 876–892. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z.; Zheng, J.; Zhang, J.; Zheng, Y.; Zang, W.; Lin, X.; Fernandez-Rodriguez, E. Experimental investigation into effects of boundary proximity and blockage on horizontal-axis tidal turbine wake. Ocean Eng. 2021, 225, 108829. [Google Scholar] [CrossRef]
- Bai, G.; Li, J.; Fan, P.; Li, G. Numerical investigations of the effects of different arrays on power extractions of horizontal axis tidal current turbines. Renew. Energy 2013, 53, 180–186. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Santa Cruz, A.; Guillou, S.S.; Shiekh Elsouk, M.N.; Thiébot, J. Effects of the Current Direction on the Energy Production of a Tidal Farm: The Case of Raz Blanchard (France). Energies 2019, 12, 2478. [Google Scholar] [CrossRef]
- Djama Dirieh, N.; Thiébot, J.; Guillou, S.; Guillou, N. Blockage Corrections for Tidal Turbines—Application to an Array of Turbines in the Alderney Race. Energies 2022, 15, 3475. [Google Scholar] [CrossRef]
- Turnock, S.R.; Phillips, A.B.; Banks, J.; Nicholls-Lee, R. Modelling tidal current turbine wakes using a coupled RANS-BEMT approach as a tool for analysing power capture of arrays of turbines. Ocean Eng. 2011, 38, 1300–1307. [Google Scholar] [CrossRef]
- Jensen, N.O. A Note on Wind Generator Interaction; Technical Report 2411; Risø National Laboratory: Roskilde, Denmark, 1983. [Google Scholar]
- Ti, Z.; Deng, X.W.; Zhang, M. Artificial Neural Networks based wake model for power prediction of wind farm. Renew. Energy 2021, 172, 618–631. [Google Scholar] [CrossRef]
- Li, C.; Liu, B.; Wang, S.; Yuan, P.; Lang, X.; Tan, J.; Si, X. Tidal turbine hydrofoil design and optimization based on deep learning. Renew. Energy 2024, 226, 120460. [Google Scholar] [CrossRef]
- Lo Brutto, O.A.; Thiébot, J.; Guillou, S.S.; Gualous, H. A semi-analytic method to optimize tidal farm layouts – Application to the Alderney Race (Raz Blanchard), France. Appl. Energy 2016, 183, 1168–1180. [Google Scholar] [CrossRef]
- Pyakurel, P.; Tian, W.; VanZwieten, J.H.; Dhanak, M. Characterization of the mean flow field in the far wake region behind ocean current turbines. J. Ocean Eng. Mar. Energy 2017, 3, 113–123. [Google Scholar] [CrossRef]
- Wang, Z.; Hou, E.; Wu, H. Semi-Empirical Model Based on the Influence of Turbulence Intensity on the Wake of Vertical Axis Turbines. Energies 2024, 17, 4535. [Google Scholar] [CrossRef]
- Liu, X.; Lu, J.; Ren, T.; Yu, F.; Cen, Y.; Li, C.; Yuan, S. Review of research on wake characteristics in horizontal-axis tidal turbines. Ocean Eng. 2024, 312, 119159. [Google Scholar] [CrossRef]
- Lam, W.H.; Chen, L.; Hashim, R. Analytical wake model of tidal current turbine. Energy 2015, 79, 512–521. [Google Scholar] [CrossRef]
- Maganga, F.; Germain, G.; King, J.; Pinon, G.; Rivoalen, E. Experimental characterisation of flow effects on marine current turbine behaviour and on its wake properties. IET Renew. Power Gener. 2010, 4, 498. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Zhang, Z.; Feng, C.; Fernandez-Rodriguez, E. Analysis of wake and power fluctuation of a tidal current turbine under variable wave periods. Energy 2024, 304, 132059. [Google Scholar] [CrossRef]
- Stallard, T.; Feng, T.; Stansby, P. Experimental study of the mean wake of a tidal stream rotor in a shallow turbulent flow. J. Fluids Struct. 2015, 54, 235–246. [Google Scholar] [CrossRef]
- Guerra, M.; Hay, A.E. Field observations of the wake from a full-scale tidal turbine array. Renew. Energy 2024, 226, 120315. [Google Scholar] [CrossRef]
- Pucci, M.; Zanforlin, S. Tidal Farms: Optimising site-specific layouts by combining analytical methods and fluid dynamic simulations. In Proceedings of the 2024 International Conference on Artificial Intelligence, Computer, Data Sciences and Applications (ACDSA), Victoria, Seychelles, 1–2 February 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1–6. [Google Scholar]
- Zhang, Z.; Sotiropoulos, F.; Khosronejad, A. Predicting turbulent wake flow of marine hydrokinetic turbine arrays in large-scale waterways via physics-enhanced convolutional neural networks. Phys. Fluids 2024, 36, 045156. [Google Scholar] [CrossRef]
- Shariff, K.B.; Guillou, S.S. An empirical model accounting for added turbulence in the wake of a full-scale turbine in realistic tidal stream conditions. Appl. Ocean Res. 2022, 128, 103329. [Google Scholar] [CrossRef]
- Shariff, K.B.; Guillou, S.S. A comparative study of power production using a generic empirical model in a tidal farm. In Proceedings of the 15th European Wave and Tidal Energy, Bilbao, Spain, 3–7 September 2024; 199. 8 p. [Google Scholar] [CrossRef]
- Shamshirband, S.; Petković, D.; Anuar, N.B.; Gani, A. Adaptive neuro-fuzzy generalization of wind turbine wake added turbulence models. Renew. Sustain. Energy Rev. 2014, 36, 270–276. [Google Scholar] [CrossRef]
- Frandsen, S.; Thøgersen, M.L. Integrated Fatigue Loading for Wind Turbines in Wind Farms by Combining Ambient Turbulence and Wakes. Wind Eng. 1999, 23, 327–339. [Google Scholar]
- Niayifar, A.; Porté-Agel, F. Analytical Modeling of Wind Farms: A New Approach for Power Prediction. Energies 2016, 9, 741. [Google Scholar] [CrossRef]
- Crespo, A.; Hernandez, J. Turbulence characteristics in wind-turbine wakes. J. Wind Eng. Ind. Aerodyn. 1996, 61, 71–85. [Google Scholar] [CrossRef]
- Qian, G.W.; Ishihara, T. Wind farm power maximization through wake steering with a new multiple wake model for prediction of turbulence intensity. Energy 2021, 220, 119680. [Google Scholar] [CrossRef]
- Ishihara, T.; Qian, G.W. A new Gaussian-based analytical wake model for wind turbines considering ambient turbulence intensities and thrust coefficient effects. J. Wind Eng. Ind. Aerodyn. 2018, 177, 275–292. [Google Scholar] [CrossRef]
- Harrison, M.E.; Batten, W.M.J.; Myers, L.E.; Bahaj, A.S. Comparison between CFD simulations and experiments for predicting the far wake of horizontal axis tidal turbines. IET Renew. Power Gener. 2010, 4, 613–627. [Google Scholar] [CrossRef]
- Thiébot, J.; Bailly du Bois, P.; Guillou, S. Numerical modeling of the effect of tidal stream turbines on the hydrodynamics and the sediment transport—Application to the Alderney Race (Raz Blanchard), France. Renew. Energy 2015, 75, 356–365. [Google Scholar] [CrossRef]
- Shariff, K.B.; Guillou, S.S. A generalized empirical model for velocity deficit and turbulent intensity in tidal turbine wake accounting for the effect of rotor-diameter-to-depth ratio. Energies 2024, 17, 2065. [Google Scholar] [CrossRef]
- Lo Brutto, O.A.; Nguyen, V.T.; Guillou, S.S.; Thiébot, J.; Gualous, H. Tidal farm analysis using an analytical model for the flow velocity prediction in the wake of a tidal turbine with small diameter-to-depth ratio. Renew. Energy 2016, 99, 347–359. [Google Scholar] [CrossRef]
- Quarton, D.C.; Ainslie, J.F. Turbulence in Wind Turbine Wakes. Wind Eng. 1990, 14, 10. [Google Scholar]
- Stallard, T.; Collings, R.; Feng, T.; Whelan, J. Interactions between tidal turbine wakes: Experimental study of a group of three-bladed rotors. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2013, 371, 20120159. [Google Scholar] [CrossRef] [PubMed]
- Pookpunt, S.; Ongsakul, W. Optimal placement of wind turbines within wind farm using binary particle swarm optimization with time-varying acceleration coefficients. Renew. Energy 2013, 55, 266–276. [Google Scholar] [CrossRef]
- Lissaman, P.B.S. Energy Effectiveness of Arbitrary Arrays of Wind Turbines. J. Energy 1979, 3, 323–328. [Google Scholar] [CrossRef]
- Yang, K.; Kwak, G.; Cho, K.; Huh, J. Wind farm layout optimization for wake effect uniformity. Energy 2019, 183, 983–995. [Google Scholar] [CrossRef]
- Mycek, P.; Gaurier, B.; Germain, G.; Pinon, G.; Rivoalen, E. Experimental study of the turbulence intensity effects on marine current turbines behaviour. Part I: One single turbine. Renew. Energy 2014, 66, 729–746. [Google Scholar] [CrossRef]
- Neunaber, I.; Hölling, M.; Stevens, R.J.A.M.; Schepers, G.; Peinke, J. Distinct Turbulent Regions in the Wake of a Wind Turbine and Their Inflow-Dependent Locations: The Creation of a Wake Map. Energies 2020, 13, 5392. [Google Scholar] [CrossRef]
- Thiébaut, M.; Filipot, J.F.; Maisondieu, C.; Damblans, G.; Jochum, C.; Kilcher, L.F.; Guillou, S. Characterization of the vertical evolution of the three-dimensional turbulence for fatigue design of tidal turbines. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2020, 378, 20190495. [Google Scholar] [CrossRef]
D/H | 20% | 40% | 60% | |
---|---|---|---|---|
H (m) | ||||
50 | 10 | 20 | 30 |
Power (MW) | |||||
---|---|---|---|---|---|
5% | 10% | 15% | 20% | ||
2.04 | 2.04 | 2.04 | 2.04 | ||
1.10 | 1.30 | 1.39 | 1.45 | ||
0.95 | 1.18 | 1.26 | 1.32 | ||
0.87 | 1.12 | 1.19 | 1.24 | ||
4.96 | 5.64 | 5.88 | 6.05 | ||
60.80% | 69.20% | 72.10% | 74.10% |
(m/s) | (MW) | |||
---|---|---|---|---|
0.89 | 2.78 | 2.00 | ||
0.89 | 2.39 | 1.27 | ||
0.89 | 2.32 | 1.16 | ||
0.89 | 2.27 | 1.10 | ||
Row1 | 5.53 | |||
0.70 | 2.78 | 1.83 | ||
0.70 | 2.51 | 1.35 | ||
0.70 | 2.46 | 1.27 | ||
0.70 | 2.44 | 1.23 | ||
Row2 | 5.68 | |||
0.75 | 2.78 | 1.90 | ||
0.89 | 2.49 | 1.43 | ||
0.89 | 2.34 | 1.20 | ||
0.89 | 2.29 | 1.12 | ||
Row3 | 5.65 | |||
0.70 | 2.78 | 1.83 | ||
0.75 | 2.51 | 1.40 | ||
0.85 | 2.44 | 1.34 | ||
0.89 | 2.35 | 1.21 | ||
Row4 | 5.78 |
5% | 10% | 15% | |||
---|---|---|---|---|---|
(m/s) | |||||
1.0 | (MW) | 0.773 | 0.872 | 0.894 | |
2.0 | (MW) | 6.187 | 6.976 | 7.151 | |
3.0 | (MW) | 20.881 | 23.545 | 24.135 | |
[%] | 79.13 | 89.22 | 91.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shariff, K.B.; Guillou, S.S. Towards a Generalized Tidal Turbine Wake Analytical Model for Turbine Placement in Array Accounting for Added Turbulence. Energies 2025, 18, 2257. https://doi.org/10.3390/en18092257
Shariff KB, Guillou SS. Towards a Generalized Tidal Turbine Wake Analytical Model for Turbine Placement in Array Accounting for Added Turbulence. Energies. 2025; 18(9):2257. https://doi.org/10.3390/en18092257
Chicago/Turabian StyleShariff, Kabir Bashir, and Sylvain S. Guillou. 2025. "Towards a Generalized Tidal Turbine Wake Analytical Model for Turbine Placement in Array Accounting for Added Turbulence" Energies 18, no. 9: 2257. https://doi.org/10.3390/en18092257
APA StyleShariff, K. B., & Guillou, S. S. (2025). Towards a Generalized Tidal Turbine Wake Analytical Model for Turbine Placement in Array Accounting for Added Turbulence. Energies, 18(9), 2257. https://doi.org/10.3390/en18092257