Impact Investigation of Structural Parameters and Inlet Exhaust Gas Boundary Conditions on Particles Trapping Efficiency of Carrier Wall in GPF Based on a Non-Homogeneous Dynamic Extended Capture Model
Abstract
:1. Introduction
2. Non-Homogeneous Dynamic Extended Capture Model of GPFs
2.1. Non-Homogeneous Filter Wall Sub-Model
2.2. Filter Wall Temperature Sub-Model
- (1)
- The gas inside the GPF is assumed to be an ideal gas, and intermolecular interactions are ignored.
- (2)
- The oxidative regeneration process inside the GPF is not considered; only the heat exchange between the gas and the GPF wall is considered.
- (3)
- The gas inside the GPF is considered to be an incompressible fluid.
- (4)
- Neglecting the difference in flow rate in different micropores of GPF [30].
2.3. Particle Size Distribution Sub-Model
2.4. Capture Unit Sub-Model
- (1)
- The average porosity of the spherical capture volume is equal to the porosity of the porous medium.
- (2)
- The sphere-filled bed has the same surface area to pore volume ratio as a pore of the mean pore diameter.
2.4.1. Brownian Diffusion
2.4.2. Direct Interception
2.4.3. Inertial Collision
2.5. Non-Homogeneous Dynamic Extended Capture Model
2.5.1. Growth of Trapping Units
2.5.2. Filter Wall
2.5.3. The Whole GPF
2.6. Model Validation
2.6.1. Experimental Setup
2.6.2. Non-Homogeneous Filter Wall Sub-Model Validation
2.6.3. Filter Wall Temperature Sub-Model Validation
2.6.4. Particle Size Distribution Sub-Model Validation
2.6.5. Filtration Efficiency Validation
3. Results and Discussion
3.1. Impact of Structural Parameters of Carrier Wall on Its Filtration Efficiency
3.2. Influence of Inlet Tail Gas Boundary Conditions on Filtration Efficiency of Carrier Wall
3.3. Influence of Inlet Particles’ Properties on Filtration Efficiency of Carrier Wall
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kittelson, D.; Khalek, I.; McDonald, J.; Stevens, J.; Giannelli, R. Particle Emissions from Mobile Sources: Discussion of Ultrafine Particle Emissions and Definition. J. Aerosol Sci. 2022, 159, 105881. [Google Scholar] [CrossRef] [PubMed]
- Lee, Z.; Kim, T.; Park, S.; Park, S. Review on Spray, Combustion, and Emission Characteristics of Recent Developed Direct-Injection Spark Ignition (DISI) Engine System with Multi-Hole Type Injector. Fuel 2020, 259, 116209. [Google Scholar] [CrossRef]
- Shuai, S.; Dong, Z.; Zheng, R.; Wang, B.; Fu, H.; Xu, H.; Wang, J. Review of Formation Mechanism and Emission Characteristics of Particulate Matter from Automotive Gasoline Engines. Trans. Csice 2016, 34, 105–116. [Google Scholar]
- Raza, M.; Chen, L.; Leach, F.; Ding, S. A Review of Particulate Number (PN) Emissions from Gasoline Direct Injection (GDI) Engines and Their Control Techniques. Energies 2018, 11, 1417. [Google Scholar] [CrossRef]
- Gu, Y.; Xu, H.; Feng, R.; Zhang, B.; Gao, M.; Sun, J.; Shen, Z.; Qu, L.; Ho, S.S.H.; Cao, J. Insight into Personal Exposure Characteristics and Health Effects of PM2.5 and PM0.25-Bound PAHs and Their Derivatives with Different Heating Ways in the Fenwei Plain, China. Environ. Pollut. 2023, 338, 122699. [Google Scholar] [CrossRef]
- Tiegang, F.; Libing, W.; Zhi, W. Particulate Matter Emissions from Gasoline Direct Injection Engines: Research Review. J. Automot. Saf. Energy 2017, 8, 226–238. [Google Scholar]
- Samuel, S.; Hassaneen, A.; Morrey, D.; Samuel, S.; Hassaneen, A.; Morrey, D. Particulate Matter Emissions and the Role of Catalytic Converter During Cold Start of GDI Engine; SAE International: Warrendale, PA, USA, 2010. [Google Scholar]
- Yang, J.; Roth, P.; Durbin, T.D.; Johnson, K.C.; Cocker, D.R.I.; Asa-Awuku, A.; Brezny, R.; Geller, M.; Karavalakis, G. Gasoline Particulate Filters as an Effective Tool to Reduce Particulate and Polycyclic Aromatic Hydrocarbon Emissions from Gasoline Direct Injection (GDI) Vehicles: A Case Study with Two GDI Vehicles. Environ. Sci. Technol. 2018, 52, 3275–3284. [Google Scholar] [CrossRef]
- Matteson, M.J.; Orr, C. Filtration: Principles and Practices; Routledge: London, UK, 2017. [Google Scholar]
- Liu, X.; Matti Maricq, M.; Dobson, D.A. Statistical Capillary Tube Model for Porous Filter Media: An Application in Modeling of Gasoline Particulate Filter. Sep. Purif. Technol. 2022, 286, 120393. [Google Scholar] [CrossRef]
- Chen, W.; Ou, Q.; Chang, C.; Pei, C.; Liu, X.; Maricq, M.; Kittelson, D.; Pui, D.Y.H. Using Aerosols to Create Nano-Scaled Membranes That Improve Gasoline Particulate Filter Performance and the Development of Wafer-Based Membrane Coated Filter Analysis (WMCFA) Method. Sep. Purif. Technol. 2022, 284, 120310. [Google Scholar] [CrossRef]
- Nain Singh, G.; Singh Bharj, R. Experimental Study of Filtration Behavior of Diesel Particulate Filter in a Diesel Engine to Meet BS-VI Emission Norms in INDIA. J. Phys. Conf. Ser. 2019, 1276, 012078. [Google Scholar] [CrossRef]
- Gong, J.; Rutland, C. PDF-Based Heterogeneous Multiscale Filtration Model. Environ. Sci. Technol. 2015, 49, 4963–4970. [Google Scholar] [CrossRef] [PubMed]
- Konstandopoulos, A.G.; Kostoglou, M.; Skaperdas, E.; Papaioannou, E.; Zarvalis, D.; Kladopoulou, E. Fundamental Studies of Diesel Particulate Filters: Transient Loading, Regeneration and Aging. J. Fuels Lubr. 2000, 109, 683–705. [Google Scholar]
- Uenishi, T.; Tanaka, E.; Fukuma, T.; Kusaka, J.; Daisho, Y. A Quasi Two Dimensional Model of Transport Phenomena in Diesel Particulate Filters—The Effects of Particle Diameter on the Pressure Drop in DPF Regeneration Mode. 2016, p. 2016-01-2282. Available online: https://www.sae.org/publications/technical-papers/content/2016-01-2282/ (accessed on 18 August 2024).
- Payri, F.; Arnau, F.J.; Piqueras, P.; Ruiz, M.J. Lumped Approach for Flow-Through and Wall-Flow Monolithic Reactors Modelling for Real-Time Automotive Applications; SAE International: Warrendale, PA, USA, 2018. [Google Scholar]
- Bollerhoff, T.; Markomanolakis, I.; Koltsakis, G. Filtration and Regeneration Modeling for Particulate Filters with Inhomogeneous Wall Structure. Catal. Today 2012, 188, 24–31. [Google Scholar] [CrossRef]
- Gong, J.; Stewart, M.L.; Zelenyuk, A.; Strzelec, A.; Viswanathan, S.; Rothamer, D.A.; Foster, D.E.; Rutland, C.J. Importance of Filter’s Microstructure in Dynamic Filtration Modeling of Gasoline Particulate Filters (GPFs): Inhomogeneous Porosity and Pore Size Distribution. Chem. Eng. J. 2018, 338, 15–26. [Google Scholar] [CrossRef]
- Václavík, M.; Plachá, M.; Kočí, P.; Svoboda, M.; Hotchkiss, T.; Novák, V.; Thompsett, D. Structure Characterisation of Catalytic Particulate Filters for Automotive Exhaust Gas Aftertreatment. Mater. Charact. 2017, 134, 311–318. [Google Scholar] [CrossRef]
- Tan, P.; Wang, D.; Yao, C.; Zhu, L.; Wang, Y.; Wang, M.; Hu, Z.; Lou, D. Extended Filtration Model for Diesel Particulate Filter Based on Diesel Particulate Matter Morphology Characteristics. Fuel 2020, 277, 118150. [Google Scholar] [CrossRef]
- Zhang, Y.; Lou, D.; Tan, P.; Hu, Z.; Fang, L. Effect of Catalyst Diesel Particulate Filter Aging and Catalyst Loadings on Particulate Emission Characteristics from a Diesel Vehicle. J. Environ. Sci. 2024, 136, 35–44. [Google Scholar] [CrossRef]
- Jang, D.-H.; Kim, Y.-W.; Kim, H.-D. Processing of Porous Cordierite Ceramics with Controlled Porosity. J. Ceram. Soc. Jpn. 2007, 115, 52–58. [Google Scholar] [CrossRef]
- Guan, B.; Zhan, R.; Lin, H.; Huang, Z. Review of the State-of-the-Art of Exhaust Particulate Filter Technology in Internal Combustion Engines. J. Environ. Manag. 2015, 154, 225–258. [Google Scholar] [CrossRef]
- Belot, I.; Vidal, D.; Votsmeier, M.; Hayes, R.E.; Bertrand, F. Numerical Investigation of the Impact of Washcoat Distribution on the Filtration Performance of Gasoline Particulate Filters. Chem. Eng. Sci. 2020, 221, 115656. [Google Scholar] [CrossRef]
- Bruno, G. Evaluating Porosity in Cordierite Diesel Particulate Filter Materials, Part 2 Statistical Analysis of Computed Tomography Data. J. Ceram. Sci. Technol. 2013, 5, 13–22. [Google Scholar] [CrossRef]
- Wang, J.; Kang, Q.; Wang, Y.; Pawar, R.; Rahman, S.S. Simulation of Gas Flow in Micro-Porous Media with the Regularized Lattice Boltzmann Method. Fuel 2017, 205, 232–246. [Google Scholar] [CrossRef]
- Lou, D.; Chen, Z.; Zhang, Y.; Yu, Y.; Fang, L.; Tan, P.; Hu, Z. A Novel Micro-Scale Structure Reconstruction Approach for Porous Media and Characterization Analysis: An Application in Ceramics-Based Diesel Particulate Filter. Process Saf. Environ. Prot. 2024, 186, 679–693. [Google Scholar] [CrossRef]
- Gribble, C.M.; Matthews, G.P.; Laudone, G.M.; Turner, A.; Ridgway, C.J.; Schoelkopf, J.; Gane, P.A.C. Porometry, Porosimetry, Image Analysis and Void Network Modelling in the Study of the Pore-Level Properties of Filters. Chem. Eng. Sci. 2011, 66, 3701–3709. [Google Scholar] [CrossRef]
- Wang, D.; Tan, P.; Zhu, L.; Wang, Y.; Hu, Z.; Lou, D. Novel Soot Loading Prediction Model of Diesel Particulate Filter Based on Collection Mechanism and Equivalent Permeability. Fuel 2021, 286, 119409. [Google Scholar] [CrossRef]
- Liu, Z.-G.; Liang, S.-Q.; Takei, M. Experimental Study on Forced Convective Heat Transfer Characteristics in Quartz Microtube. Int. J. Therm. Sci. 2007, 46, 139–148. [Google Scholar] [CrossRef]
- Nield, D.A.; Bejan, A. Convection in Porous Media; Springer: New York, NY, USA, 2017. [Google Scholar]
- Awad, O.I.; Ma, X.; Kamil, M.; Ali, O.M.; Zhang, Z.; Shuai, S. Particulate Emissions from Gasoline Direct Injection Engines: A Review of How Current Emission Regulations Are Being Met by Automobile Manufacturers. Sci. Total Environ. 2020, 718, 137302. [Google Scholar] [CrossRef]
- Pei, Y.Q.; Li, T.; Pan, S.Z. An Investigation on Size Distribution of Exhaust Particulate Emitted from Gasoline Engine. Mech. Electron. Eng. III 2012, 130, 2871–2875. [Google Scholar] [CrossRef]
- McLachlan, G.J.; Lee, S.X.; Rathnayake, S.I. Finite Mixture Models. Annu. Rev. Stat. Its Appl. 2019, 6, 355–378. [Google Scholar] [CrossRef]
- Lee, K.W.; Gieseke, J.A. Collection of Aerosol Particles by Packed Beds. Environ. Sci. Technol. 1979, 13, 466–470. [Google Scholar] [CrossRef]
- Konstandopoulos, A.G.; Johnson, J.H. Wall-Flow Diesel Particulate Filters—Their Pressure Drop and Collection Efficiency. J. Engines 1989, 98, 890405. [Google Scholar]
- Serrano, J.R.; Climent, H.; Piqueras, P.; Angiolini, E. Filtration Modelling in Wall-Flow Particulate Filters of Low Soot Penetration Thickness. Energy 2016, 112, 883–898. [Google Scholar] [CrossRef]
- Wentzel, M.; Gorzawski, H.; Naumann, K.-H.; Saathoff, H.; Weinbruch, S. Transmission Electron Microscopical and Aerosol Dynamical Characterization of Soot Aerosols. J. Aerosol Sci. 2003, 34, 1347–1370. [Google Scholar] [CrossRef]
- Choi, S.; Lee, K. Detailed Investigation of Soot Deposition and Oxidation Characteristics in a Diesel Particulate Filter Using Optical Visualization. 2013, p. 2013-01-0528. Available online: https://www.sae.org/publications/technical-papers/content/2013-01-0528/ (accessed on 18 August 2024).
Parameter | GPF 1# | GPF 2# | GPF 3# |
---|---|---|---|
Diameter (mm) | 118.4 | 118.4 | 118.4 |
Length (mm) | 136 | 136 | 136 |
Carrier material | Cordierite | Cordierite | Cordierite |
Cell density (cpsi) | 100 | 200 | 300 |
Porosity (%) | 56.6 | 62.4 | 56.6 |
Wall thickness (mm) | 0.3 | 0.3 | 0.3 |
Working Condition | Engine Speed (rpm) | Engine Torque (N·m) | Engine Load (%) |
---|---|---|---|
a | 1500 | 212 | 90 |
b | 1500 | 148 | 70 |
c | 1500 | 85 | 40 |
d | 3000 | 106 | 40 |
e | 4500 | 94 | 40 |
GPF # | Mean Value (μm) | Standard Deviation (μm) | COV (σ/μ) | Error (%) |
---|---|---|---|---|
1 | 113.3 | 26.77 | 0.24 | 7.8 |
2 | 18.2 | 10.4 | 0.57 | 9.1 |
3 | 112.1 | 29.40 | 0.26 | 7.5 |
Working Condition | μ1 (nm) | μ2 (nm) | μ3 (nm) | σ1 (nm) | σ2 (nm) | σ3 (nm) | P1 (%) | P2 (%) | P3 (%) | Error (%) |
---|---|---|---|---|---|---|---|---|---|---|
a | 12.33 | 66.69 | 185.37 | 4.93 | 26.17 | 77.11 | 0.32 | 0.33 | 0.35 | 6.10 |
b | 12.84 | 79.09 | 250.46 | 5.58 | 37.60 | 119.98 | 0.30 | 0.37 | 0.33 | 9.81 |
c | 11.17 | 57.80 | 220.70 | 4.08 | 31.53 | 110.37 | 0.24 | 0.38 | 0.38 | 8.22 |
d | 12.63 | 70.15 | 213.32 | 5.34 | 33.06 | 92.76 | 0.31 | 0.34 | 0.35 | 9.14 |
e | 11.48 | 55.25 | 219.16 | 4.06 | 29.77 | 116.42 | 0.27 | 0.37 | 0.36 | 8.72 |
Items | Baseline | Planned |
---|---|---|
Diameter (mm) | 118.4 | |
Length (mm) | 130 | 100, 130, 150 |
Cell density (cpsi) | 200 | 100, 200, 300 |
Porosity (%) | 55 | 50, 55, 60 |
Wall thickness (mm) | 0.25 | 0.2, 0.35, 0.5 |
Mean pore size (μm) | 100 | 20, 100, 150 |
Variance of pore size (μm2) | 100 | 20, 60, 120 |
Tail gas flow rate (m/s) | 1 | |
Tail gas temperature (°C) | 350 | |
Number concentration of inlet particles (#/cm3) | 8 × 106 # | |
Distribution pattern | bimodal | |
Peaks diameter (nm) | 12, 66.7 | |
Nuclear particles ratio (%) | 65 |
Particle Size Distribution Pattern | μ1 (nm) | μ2 (nm) | μ3 (nm) | σ1 (nm) | σ2 (nm) | σ3 (nm) | P1 (%) | P2 (%) | P3 (%) |
---|---|---|---|---|---|---|---|---|---|
A | 10 | 50 | 100 | 4.5 | 35 | 126.5 | 0.35 | 0.32 | 0.33 |
B | 23 | 80 | 250 | 4.5 | 35 | 126.5 | 0.35 | 0.32 | 0.33 |
C | 80 | 150 | 300 | 4.5 | 35 | 126.5 | 0.35 | 0.32 | 0.33 |
D | 10 | 50 | 100 | 15 | 100 | 300 | 0.35 | 0.32 | 0.33 |
E | 10 | 50 | 100 | 45 | 300 | 900 | 0.35 | 0.32 | 0.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Z.; Shen, J.; Gao, X.; Tan, P.; Lou, D. Impact Investigation of Structural Parameters and Inlet Exhaust Gas Boundary Conditions on Particles Trapping Efficiency of Carrier Wall in GPF Based on a Non-Homogeneous Dynamic Extended Capture Model. Energies 2025, 18, 2255. https://doi.org/10.3390/en18092255
Hu Z, Shen J, Gao X, Tan P, Lou D. Impact Investigation of Structural Parameters and Inlet Exhaust Gas Boundary Conditions on Particles Trapping Efficiency of Carrier Wall in GPF Based on a Non-Homogeneous Dynamic Extended Capture Model. Energies. 2025; 18(9):2255. https://doi.org/10.3390/en18092255
Chicago/Turabian StyleHu, Zhiyuan, Jiayi Shen, Xinshun Gao, Piqiang Tan, and Diming Lou. 2025. "Impact Investigation of Structural Parameters and Inlet Exhaust Gas Boundary Conditions on Particles Trapping Efficiency of Carrier Wall in GPF Based on a Non-Homogeneous Dynamic Extended Capture Model" Energies 18, no. 9: 2255. https://doi.org/10.3390/en18092255
APA StyleHu, Z., Shen, J., Gao, X., Tan, P., & Lou, D. (2025). Impact Investigation of Structural Parameters and Inlet Exhaust Gas Boundary Conditions on Particles Trapping Efficiency of Carrier Wall in GPF Based on a Non-Homogeneous Dynamic Extended Capture Model. Energies, 18(9), 2255. https://doi.org/10.3390/en18092255