Venturi Optimization and Local Pressure Method for Measuring Supercritical CO2 Flow in Downhole
Abstract
:1. Introduction
2. Sensor Design and Selection
2.1. Optimization Design of Miniature Venturi Sensor Based on LedaFlow
- Upstream Straight Pipe Section: 40 grids with sizes ranging from 1.5 to 5.25 mm.
- Contraction Section: 20 grids with a size of 1.2 mm.
- Throat Section: 10 grids with a size of 0.6 mm.
- Expansion Section: 40 grids with a size of 1.7 mm.
- Downstream Straight Pipe Section: 40 grids with sizes ranging from 2.25 mm to 9 mm.
2.2. Selection of Pressure Sensors
3. Room Temperature and Atmospheric Pressure Water Experiment of Miniature Venturi
3.1. Tianjin University’s Water Flow Rig
3.2. Water Experiment Results and Discussion
4. Miniature Venturi LPM Validation Experiment
4.1. Tianjin University’s Gas–Liquid Two-Phase Flow Rig
4.2. Wet Gas Experiment Results and Discussion
4.2.1. Comparison of EJA and Keller Sensor Measurements at 0.3 MPa
4.2.2. Comparison of EJA and Keller Sensor Measurements at 0.5 MPa
4.2.3. Comparison of EJA and Keller Sensor Measurements at 0.7 MPa
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Edouard, M.N.; Okere, C.J.; Ejike, C.; Dong, P.; Suliman, M.A. Comparative numerical study on the co-optimization of CO2 storage and utilization in EOR, EGR, and EWR: Implications for CCUS project development. Appl. Energy 2023, 347, 121448. [Google Scholar]
- International Energy Agency, Net Zero by 2050; IEA: Paris, France, 2021.
- Xu, Y.; Cao, L.F.; Yuan, C. Study of the factors influencing the over-reading characteristics of the precession Venturi. Flow Meas. Instrum. 2023, 89, 102272. [Google Scholar]
- Yan, C. Gas-Liquid Two-Phase Flow, 3rd ed.; Harbin Engineering University Press: Harbin, China, 2017; pp. 1–7. [Google Scholar]
- Shao, D.; Yan, Y.; Zhang, W.B. Dynamic measurement of gas volume fraction in a CO2 pipeline through capacitive sensing and data driven modelling. Int. J. Greenh. Gas Control 2019, 94, 102950. [Google Scholar]
- Xu, Y.; Jia, S.-J.; Yuan, C. A Study of Downhole Gas Injection Flow Measurement Method. In Proceedings of the IEEE Instrumentation and Measurement Technology Conference, Kuala Lumpur, Malaysia, 22–25 May 2023. [Google Scholar]
- ISO 5167:2; Measurement of Fluid Flow by Means of Pressure Differential Devices Inserted in Circular Cross-Section Conduits Running Full—Part 2: ORIFICE Plates. ISO: Geneva, Switzerland, 2003.
- ISO 11583:2012; Measurement of Wet Gas Flow by Means of Pressure Differential Devices Inserted in Circular Cross-Section Conduits. ISO: Geneva, Switzerland, 2012.
- Collie, G.; Nazeri, M.; Jahanbakhsh, A.; Lin, C.; Maroto-Valer, M. Review of flowmeters for carbon dioxide transport in CCS applications. Greenh. Gases Sci. Technol. 2017, 7, 10–28. [Google Scholar] [CrossRef]
- Adefila, K.; Yan, Y.; Sun, L.; Wang, T. Flow measurement of wet CO2 using an averaging pitot tube and coriolis mass flowmeters. Int. J. Greenh. Gas Control. 2017, 63, 289–295. [Google Scholar]
- Ueno, S.; Tsuru, W.; Kinoue, Y.; Shiomi, N.; Setoguchi, T. PIV measurement of carbon dioxide gas-liquid two-phase nozzle flow. Fluids Engineering Division Summer Meeting. Am. Soc. Mech. Eng. 2015, 57213, V01AT20A002. [Google Scholar]
- Mohitpour, M.; Jenkins, A.; Nahas, G. A generalized overview of requirements for the design, construction, and operation of new pipelines for CO2 sequestration. J. Pipeline Eng. 2008, 7, 237–251. [Google Scholar]
- Reader-Harris, M.J.; Barnett, J.; Mistry, K. Orifice Plate Pressure Loss Ratio: Theoretical Work in Compressible Flow and Experimental Work in CO2. In Proceedings of the FLOMEKO 2019 Conference, Lisbon, Portugal, 26–28 June 2019. [Google Scholar]
- Oakes, F.G.; White, J.T. Measurement of CO2 Flow in Its Supercritical and Gaseous Phases. SPE Prod. Eng. 1987, 2, 209–217. [Google Scholar] [CrossRef]
- Park, J.H.; Cha, J.E. Measurements of the flow of supercritical pressure carbon dioxide through venturi flow meter. Flow Meas. Instrum. 2023, 91, 102364. [Google Scholar] [CrossRef]
- Sauerbrun, J. Design and Characterization of a High pressure Flow Loop for Heat Transfer Experiments of Supercritical Carbon Dioxide. Master’s Thesis, Embry-Riddle Aeronautical University, Daytona Beach, FL, USA, 2023. [Google Scholar]
- ISO 5167-4; Measurement of Fluid Flow by Means of Pressure Differential Devices Inserted in Circular Cross-Section Conduits Running Full—Part 4: Venturi Tubes. ISO: Geneva, Switzerland, 2003.
- Xue, D.; Kou, L.; Zheng, C.; Wang, S.; Jia, S.; Yuan, C. Dual-Parameter Prediction of Downhole Supercritical CO2 with Associated Gas Using Levenberg–Marquardt (LM) Neural Network. Fluids 2024, 9, 177. [Google Scholar] [CrossRef]
PD | ∆p1 | ∆p2 | ∆ploss | ||||
---|---|---|---|---|---|---|---|
Grid Count Time (s) | Result | Rel% | Result | Rel% | Result | Rel% | |
150 | 64 | 0.409 | 0.287 | 0.122 | |||
75 | 28 | 0.401 | 0.27% | 0.288 | 0.43% | 0.122 | −0.12% |
39 | 22 | 0.425 | 3.91% | 0.269 | −6.39% | 0.156 | 28.21% |
Type | Manufacturer | Image | Dimensions mm | Measurement Range | Proof Pressure | Operating Temperature | Accuracy |
---|---|---|---|---|---|---|---|
S-DP 1 | BCM sensor (Antwerp, Belgium) | Ø 40 × 40 | 0~10 MPa | 32 MPa | −40~+130 °C | ±0.8 %FS | |
S-P 2 | BCM sensor | Ø 12.6 × 10 | 0~40 MPa | 80 MPa | −40~+125 °C | ±0.25 %FS | |
S-P 2 | Keller (Winterthur, Switzerland) | Ø 13 × 8 | 0~60 MPa | 150 MPa | −20~+180 °C | ±0.25 %FS | |
S-P 2 | Huba Control (Würenlos, Switzerland) | Ø 18 × 7 | 0~60 MPa | 120 MPa | −30~+150 °C | ±0.5 %FS | |
S-P 2 | MICRO SENSOR (Xi’an, China) | Ø 19 × 7 | 0~100 MPa | 110 MPa | −40~+125 °C | ±0.25 %FS |
Performance Parameter | Design Parameter |
---|---|
Flow Range | 0.3 m3/h–12 m3/h |
Flow Uncertainty | 0.03 (k = 2) (Standard Meter Method) |
Flow Stability | 0.2% |
q m3/h | U m/s | Uth m/s | ρl kg/m3 |
---|---|---|---|
0.6~3.0 | 1.0~4.7 | 6.4~29.5 | 998.21 |
Experimental Condition | Experimental Results | ||||||
---|---|---|---|---|---|---|---|
q m3/h | U m/s | Uth m/s | Δp1 kPa | Δploss kPa | Δploss /Δp1% | C | Repeatability Δp1% |
0.6 | 1.0 | 6.35 | 20.24 | 4.15 | 20.52 | 0.984 | 0.15 |
1.0 | 1.5 | 9.56 | 50.94 | 15.39 | 30.21 | 0.934 | 0.14 |
1.3 | 2.0 | 12.53 | 91.63 | 30.56 | 33.35 | 0.913 | 0.05 |
1.6 | 2.6 | 15.96 | 152.38 | 53 | 34.78 | 0.902 | 0.01 |
1.9 | 3.0 | 19.02 | 216.84 | 76.84 | 35.43 | 0.901 | 0.03 |
2.3 | 3.6 | 22.67 | 308.42 | 110.86 | 35.94 | 0.900 | 0.06 |
2.6 | 4.1 | 25.51 | 388.85 | 140.26 | 36.07 | 0.902 | 0.14 |
2.9 | 4.6 | 28.59 | 486.31 | 205.64 | 42.29 | 0.904 | 0.08 |
3.0 | 4.7 | 29.53 | 522.92 | 261.75 | 50.05 | 0.901 | 0.06 |
q m3/h | Simulated Δp1 kPa | Experimental Δp1 kPa | Rel % | Abs kPa |
---|---|---|---|---|
0.64 | 21.12 | 20.24 | 4.35 | 0.88 |
0.95 | 51.58 | 50.94 | 1.26 | 0.64 |
1.27 | 91.23 | 91.63 | −0.44 | −0.40 |
1.59 | 148.09 | 152.38 | −2.82 | −4.29 |
1.91 | 210.14 | 216.84 | −3.09 | −6.70 |
2.27 | 296.43 | 308.42 | −3.89 | −11.99 |
2.54 | 378.78 | 388.85 | −2.59 | −10.07 |
2.93 | 475.55 | 486.31 | −2.21 | −10.76 |
2.99 | 503.86 | 522.92 | −3.64 | −19.06 |
Performance Parameter | Design Parameter |
---|---|
Design Pressure | 1.6 MPa |
Gas Flow Range | 5.89 m3/h–400 m3/h |
Gas Flow Uncertainty | 0.004 (k = 2) |
Liquid Flow Range | 0.03 m3/h–8 m3/h |
Liquid Flow Uncertainty | 0.0028 (k = 2) |
Fan Boost Capacity | 200 kPa |
P MPa | Usg m/s | LVF % | XLM | Total Mass Flowrate m kg/s | Flowrate × 104 Nm3/d |
---|---|---|---|---|---|
0.3 | 25 | 0.1, 0.5, 1.0 | 0.01~0.16 | 0.22~0.65 | 2.03~5.21 |
0.5 | 20 | 0.1, 0.5, 1.0 | 0.01~0.11 | 0.37~0.71 | 2.64~5.12 |
0.7 | 18 | 1.0, 2.0, 3.0 | 0.01~0.30 | 0.73~1.44 | 5.27~10.35 |
LVF % | Upstream Pressure MPa | Throat Pressure MPa | Differential Pressure kPa | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
EJA-Pup | K-Pup | Rel % | Abs kPa | EJA-Pth | K-Pth | Rel % | Abs kPa | EJA-DP | K-DP | Rel % | Abs kPa | |
0.1 | 0.293 | 0.292 | −0.16 | −0.47 | 0.273 | 0.274 | 0.31 | 0.81 | 20.1 | 18.8 | −6.51 | −1.32 |
0.1 | 0.289 | 0.308 | 6.42 | 18.41 | 0.268 | 0.289 | 7.73 | 20.64 | 20.9 | 18.7 | −10.42 | −2.21 |
0.5 | 0.266 | 0.275 | 3.24 | 8.64 | 0.235 | 0.247 | 4.92 | 11.63 | 31.2 | 28.3 | −9.44 | −2.93 |
0.5 | 0.282 | 0.282 | −0.13 | −0.23 | 0.250 | 0.254 | 1.44 | 3.51 | 32.0 | 28.3 | −11.73 | −3.74 |
1.0 | 0.275 | 0.279 | 1.44 | 3.72 | 0.229 | 0.239 | 3.92 | 9.02 | 46.0 | 40.7 | −11.73 | −5.34 |
1.0 | 0.282 | 0.301 | 6.61 | 18.73 | 0.234 | 0.258 | 10.21 | 23.91 | 47.8 | 42.6 | −10.94 | −5.21 |
LVF % | Upstream Pressure MPa | Throat Pressure MPa | Differential Pressure kPa | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
EJA-Pup | K-Pup | Rel % | Abs kPa | EJA-Pth | K-Pth | Rel % | Abs kPa | EJA-DP | K-DP | Rel % | Abs kPa | |
0.1 | 0.498 | 0.496 | −0.33 | −1.63 | 0.479 | 0.478 | −0.32 | −1.32 | 18.6 | 18.3 | −1.82 | −0.24 |
0.1 | 0.488 | 0.490 | 0.51 | 2.53 | 0.469 | 0.475 | 1.21 | 5.64 | 18.4 | 15.3 | −16.64 | −3.13 |
0.5 | 0.494 | 0.495 | 0.13 | 0.62 | 0.470 | 0.472 | 0.55 | 2.23 | 24.2 | 22.7 | −6.32 | −1.52 |
0.5 | 0.487 | 0.487 | −0.01 | −0.11 | 0.462 | 0.466 | 0.83 | 3.61 | 25.1 | 21.4 | −14.61 | −3.71 |
1.0 | 0.489 | 0.492 | 0.77 | 3.82 | 0.455 | 0.459 | 0.92 | 4.02 | 33.5 | 33.3 | −0.71 | −0.22 |
1.0 | 0.494 | 0.496 | 0.41 | 2.03 | 0.461 | 0.469 | 1.56 | 7.18 | 32.3 | 27.2 | −16.0 | −5.19 |
LVF % | Upstream Pressure MPa | Throat Pressure MPa | Differential Pressure kPa | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
EJA-Pup | K-Pup | Rel % | Abs kPa | EJA-Pth | K-Pth | Rel % | Abs kPa | EJA-DP | K-DP | Rel % | Abs kPa | |
1.0 | 0.691 | 0.687 | −0.52 | −3.63 | 0.659 | 0.656 | −0.41 | −2.91 | 32.1 | 31.5 | −2.42 | −0.62 |
1.0 | 0.659 | 0.659 | −0.02 | −0.11 | 0.628 | 0.629 | 0.24 | 1.21 | 31.2 | 29.8 | −4.11 | −1.43 |
2.0 | 0.686 | 0.680 | −0.96 | −6.59 | 0.641 | 0.636 | −0.83 | −5.02 | 44.9 | 43.3 | −4.24 | −1.64 |
2.0 | 0.653 | 0.653 | 0.09 | 0.61 | 0.609 | 0.614 | 0.81 | 4.96 | 43.9 | 39.5 | −10.02 | −4.41 |
3.0 | 0.683 | 0.680 | −0.50 | −3.42 | 0.624 | 0.622 | −0.42 | −2.71 | 58.9 | 58.1 | −1.40 | −0.83 |
3.0 | 0.648 | 0.651 | 0.43 | 2.83 | 0.588 | 0.593 | 0.71 | 4.33 | 59.6 | 58.0 | −3.32 | −1.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, C.; Yang, W.; Xue, D.; Kou, L.; Wang, S.; Chen, Z.; Jia, S.; Yuan, C. Venturi Optimization and Local Pressure Method for Measuring Supercritical CO2 Flow in Downhole. Energies 2025, 18, 1951. https://doi.org/10.3390/en18081951
Zheng C, Yang W, Xue D, Kou L, Wang S, Chen Z, Jia S, Yuan C. Venturi Optimization and Local Pressure Method for Measuring Supercritical CO2 Flow in Downhole. Energies. 2025; 18(8):1951. https://doi.org/10.3390/en18081951
Chicago/Turabian StyleZheng, Chunfeng, Wanyou Yang, Dedong Xue, Lei Kou, Sheng Wang, Zhengyang Chen, Shijiao Jia, and Chao Yuan. 2025. "Venturi Optimization and Local Pressure Method for Measuring Supercritical CO2 Flow in Downhole" Energies 18, no. 8: 1951. https://doi.org/10.3390/en18081951
APA StyleZheng, C., Yang, W., Xue, D., Kou, L., Wang, S., Chen, Z., Jia, S., & Yuan, C. (2025). Venturi Optimization and Local Pressure Method for Measuring Supercritical CO2 Flow in Downhole. Energies, 18(8), 1951. https://doi.org/10.3390/en18081951