Suitability of Existing Photovoltaic Degradation Models for Agrivoltaic Systems
Abstract
:1. Introduction
2. Application of Agrivoltaics and Potential Requirements
3. Photovoltaic Module Degradation Modeling
3.1. Comprehensive PV Degradation Modeling
3.2. Thermal Degradation
3.3. Photo Degradation and Deterioration (UV Degradation)
3.4. Hydrolysis in PVs and Moisture-Based Degradation
3.5. Corrosion of a PV Module
3.6. Discoloration of a PV Module
3.7. Delamination of a PV Module
3.8. Reducing the Degradation Rate of PVs
3.9. Systematic Methods for Detection and Evaluation of Degradation Processes
4. Application of Degradation Models in Agrivoltaics and Future Requirements
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- IEA. Share of Renewable Electricity Generation by Technology, 2000–2028. 2024. Available online: https://www.iea.org/data-and-statistics/charts/share-of-renewable-electricity-generation-by-technology-2000-2028 (accessed on 12 December 2024).
- Kılıç Depren, S.; Kartal, M.T.; Çoban Çelikdemir, N.; Depren, Ö. Energy Consumption and Environmental Degradation Nexus: A Systematic Review and Meta-Analysis of Fossil Fuel and Renewable Energy Consumption. Ecol. Inform. 2022, 70, 101747. [Google Scholar] [CrossRef]
- Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The Role of Renewable Energy in the Global Energy Transformation. Energy Strategy Rev. 2019, 24, 38–50. [Google Scholar] [CrossRef]
- Petit, V. The Energy Transition: An Overview of the True Challenge of the 21st Century; SpringerLink Bücher; Springer: Cham, Switzerland, 2017; ISBN 978-3-319-50292-2. [Google Scholar]
- IEA. Cumulative Renewable Electricity Capacity in the Main and Accelerated Cases and Net Zero Scenario; IEA: Paris, France, 2024. [Google Scholar]
- IEA. Renewables 2023; IEA: Paris, France, 2023. [Google Scholar]
- IEA. Tracking SDG7: The Energy Progress Report, 2021; IEA: Paris, France, 2021. [Google Scholar]
- Maka, A.O.M.; Alabid, J.M. Solar Energy Technology and Its Roles in Sustainable Development. Clean Energy 2022, 6, 476–483. [Google Scholar] [CrossRef]
- Kannan, N.; Vakeesan, D. Solar Energy for Future World: A Review. Renew. Sustain. Energy Rev. 2016, 62, 1092–1105. [Google Scholar] [CrossRef]
- Nijsse, F.J.M.M.; Mercure, J.-F.; Ameli, N.; Larosa, F.; Kothari, S.; Rickman, J.; Vercoulen, P.; Pollitt, H. The Momentum of the Solar Energy Transition. Nat. Commun. 2023, 14, 6542. [Google Scholar] [CrossRef]
- IRENA. Renewable Energy and Climate Pledges: Five Years After the Paris Agreement; International Renewable Energy Agency (IRENA): Abu Dhabi, United Arab Emirates, 2019. [Google Scholar]
- Laan, T.; Do, N.; Haig, S.; Urazova, I.; Posada, E.; Wang, H. Public Financial Support for Renewable Power Generation and Integration in the G20 Countries; International Institude for Sustainable Development: Winnipeg, MB, Canada, 2024; p. 39. [Google Scholar]
- Taylor, M. Energy Subsidides: Evolution in the Global Energy Transformation to 2050; International Renewable Energy Agency (IRENA): Abu Dhabi, United Arab Emirates, 2020; p. 63. [Google Scholar]
- Tibebu, T.B.; Hittinger, E.; Miao, Q.; Williams, E. What Is the Optimal Subsidy for Residential Solar? Energy Policy 2021, 155, 112326. [Google Scholar] [CrossRef]
- Sarasa-Maestro, C.J.; Dufo-López, R.; Bernal-Agustín, J.L. Photovoltaic Remuneration Policies in the European Union. Energy Policy 2013, 55, 317–328. [Google Scholar] [CrossRef]
- Fouquet, D.; Johansson, T.B. European Renewable Energy Policy at Crossroads—Focus on Electricity Support Mechanisms. Energy Policy 2008, 36, 4079–4092. [Google Scholar] [CrossRef]
- Dusonchet, L.; Telaretti, E. Comparative Economic Analysis of Support Policies for Solar PV in the Most Representative EU Countries. Renew. Sustain. Energy Rev. 2015, 42, 986–998. [Google Scholar] [CrossRef]
- Van De Graaf, T.; Van Asselt, H. Introduction to the Special Issue: Energy Subsidies at the Intersection of Climate, Energy, and Trade Governance. Int. Env. Agreem. 2017, 17, 313–326. [Google Scholar] [CrossRef]
- Cansino, J.M.; Pablo-Romero, M.D.P.; Román, R.; Yñiguez, R. Tax Incentives to Promote Green Electricity: An Overview of EU-27 Countries. Energy Policy 2010, 38, 6000–6008. [Google Scholar] [CrossRef]
- European Commission. Directive (EU) 2023/2413 of the European Parliament and of the Council of 18 October 2023; European Commission: Brussels, Belgium, 2023. [Google Scholar]
- European Commission. EU Solar Energy Strategy; European Commission: Brussels, Belgium, 2022. [Google Scholar]
- European Commission Joint Research Centre. Overview of the Potential and Challenges for Agri-Photovoltaics in the European Union; Publications Office of the European Union (OP): Luxembourg, 2023. [Google Scholar]
- European Commission. Communication from the Commission to the European Parliament, the Council, The European Economic and Social Committee and the Committtee of the Regions on an EU Strategy to Reduce Methane Emissions; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Tedesco, A.; PV Magazine. 12 October 2023. Available online: https://www.pv-magazine.com/2023/10/12/italian-agrivoltaics-could-be-a-vital-plank-of-the-eus-energy-transition/ (accessed on 27 February 2025).
- Ministry of Economy and Finance. Piano Nazionale Di Ripresa e Resilienza (Recovery and Resilience Plan); Italian Government, Presidency of the Council of Ministers: Rome, Italy, 2021; 273p. [Google Scholar]
- European Environment Agency. Methane Emissions in the EU: The Key to Immediate Action on Climate Change; European Environment Agency: Copenhagen, Denmark, 2022. [Google Scholar]
- European Commission Joint Research Centre. Trends of Methane Emissions and Their Impact on Ozone Concentrations at the European and Global Levels; Publications Office of the European Union (OP): Luxembourg, 2024. [Google Scholar]
- Yang, M.; Zhu, Y.; Zhao, Y.; Li, C.; Zhang, Y.; Fan, Y.; Yang, W.; Kang, M. Life Cycle Water and Energy Consumption and Efficiency Analysis of Major Crops in China. J. Clean. Prod. 2024, 467, 142899. [Google Scholar] [CrossRef]
- Paris, B.; Vandorou, F.; Balafoutis, A.T.; Vaiopoulos, K.; Kyriakarakos, G.; Manolakos, D.; Papadakis, G. Energy Use in Open-Field Agriculture in the EU: A Critical Review Recommending Energy Efficiency Measures and Renewable Energy Sources Adoption. Renew. Sustain. Energy Rev. 2022, 158, 112098. [Google Scholar] [CrossRef]
- Qin, J.; Duan, W.; Zou, S.; Chen, Y.; Huang, W.; Rosa, L. Global Energy Use and Carbon Emissions from Irrigated Agriculture. Nat. Commun. 2024, 15, 3084. [Google Scholar] [CrossRef]
- Panda, S.N.; Saikia, R.; Sagar; Swamy, G.N.; Panotra, N.; Yadav, K.; Singh, B.V.; Rathi, S.; Singh, R.; Pandey, S.K. Solar Energy’s Role in Achieving Sustainable Development Goals in Agriculture. IJECC 2024, 14, 10–31. [Google Scholar] [CrossRef]
- Pascaris, A.S.; Schelly, C.; Burnham, L.; Pearce, J.M. Integrating Solar Energy with Agriculture: Industry Perspectives on the Market, Community, and Socio-Political Dimensions of Agrivoltaics. Energy Res. Soc. Sci. 2021, 75, 102023. [Google Scholar] [CrossRef]
- Durga, N.; Schmitter, P.; Ringler, C.; Mishra, S.; Magombeyi, M.S.; Ofosu, A.; Pavelic, P.; Hagos, F.; Melaku, D.; Verma, S.; et al. Barriers to the Uptake of Solar-Powered Irrigation by Smallholder Farmers in Sub-Saharan Africa: A Review. Energy Strategy Rev. 2024, 51, 101294. [Google Scholar] [CrossRef]
- Moerkerken, A.; Duijndam, S.; Blasch, J.; Van Beukering, P.; Van Well, E. Which Farmers Adopt Solar Energy? A Regression Analysis to Explain Adoption Decisions over Time. Renew. Energy Focus 2023, 45, 169–178. [Google Scholar] [CrossRef]
- Movellan, J. Renewable Energy World; International Renewable Energy Agency (IRENA): Abu Dhabi, United Arab Emirates, 2013. [Google Scholar]
- Scarano, A.; Semeraro, T.; Calisi, A.; Aretano, R.; Rotolo, C.; Lenucci, M.S.; Santino, A.; Piro, G.; De Caroli, M. Effects of the Agrivoltaic System on Crop Production: The Case of Tomato (Solanum lycopersicum L.). Appl. Sci. 2024, 14, 3095. [Google Scholar] [CrossRef]
- Amaducci, S.; Yin, X.; Colauzzi, M. Agrivoltaic Systems to Optimise Land Use for Electric Energy Production. Appl. Energy 2018, 220, 545–561. [Google Scholar] [CrossRef]
- Barron-Gafford, G.A.; Pavao-Zuckerman, M.A.; Minor, R.L.; Sutter, L.F.; Barnett-Moreno, I.; Blackett, D.T.; Thompson, M.; Dimond, K.; Gerlak, A.K.; Nabhan, G.P.; et al. Agrivoltaics Provide Mutual Benefits across the Food–Energy–Water Nexus in Drylands. Nat. Sustain. 2019, 2, 848–855. [Google Scholar] [CrossRef]
- Luo, J.; Luo, Z.; Li, W.; Shi, W.; Sui, X. The Early Effects of an Agrivoltaic System within a Different Crop Cultivation on Soil Quality in Dry–Hot Valley Eco-Fragile Areas. Agronomy 2024, 14, 584. [Google Scholar] [CrossRef]
- Asa’a, S.; Reher, T.; Rongé, J.; Diels, J.; Poortmans, J.; Radhakrishnan, H.S.; Van Der Heide, A.; Van De Poel, B.; Daenen, M. A Multidisciplinary View on Agrivoltaics: Future of Energy and Agriculture. Renew. Sustain. Energy Rev. 2024, 200, 114515. [Google Scholar] [CrossRef]
- Friman-Peretz, M.; Ozer, S.; Geoola, F.; Magadley, E.; Yehia, I.; Levi, A.; Brikman, R.; Gantz, S.; Levy, A.; Kacira, M.; et al. Microclimate and Crop Performance in a Tunnel Greenhouse Shaded by Organic Photovoltaic Modules—Comparison with Conventional Shaded and Unshaded Tunnels. Biosyst. Eng. 2020, 197, 12–31. [Google Scholar] [CrossRef]
- Faria, A.F.P.A.; Maia, A.S.C.; Moura, G.A.B.; Fonsêca, V.F.C.; Nascimento, S.T.; Milan, H.F.M.; Gebremedhin, K.G. Use of Solar Panels for Shade for Holstein Heifers. Animals 2023, 13, 329. [Google Scholar] [CrossRef]
- Maia, A.S.C.; Culhari, E.D.A.; Fonsêca, V.D.F.C.; Milan, H.F.M.; Gebremedhin, K.G. Photovoltaic Panels as Shading Resources for Livestock. J. Clean. Prod. 2020, 258, 120551. [Google Scholar] [CrossRef]
- Sekiyama, T.; Nagashima, A. Solar Sharing for Both Food and Clean Energy Production: Performance of Agrivoltaic Systems for Corn, A Typical Shade-Intolerant Crop. Environments 2019, 6, 65. [Google Scholar] [CrossRef]
- Lee, S.; Lee, J.; Jeong, Y.; Kim, D.; Seo, B.; Seo, Y.; Kim, T.; Choi, W. Agrivoltaic System Designing for Sustainability and Smart Farming: Agronomic Aspects and Design Criteria with Safety Assessment. Appl. Energy 2023, 341, 121130. [Google Scholar] [CrossRef]
- Zahrawi, A.A.; Aly, A.M. A Review of Agrivoltaic Systems: Addressing Challenges and Enhancing Sustainability. Sustainability 2024, 16, 8271. [Google Scholar] [CrossRef]
- Kench, P.S.; Ford, M.R.; Owen, S.D. Patterns of Island Change and Persistence Offer Alternate Adaptation Pathways for Atoll Nations. Nat. Commun. 2018, 9, 605. [Google Scholar] [CrossRef]
- Cagle, A.E.; Armstrong, A.; Exley, G.; Grodsky, S.M.; Macknick, J.; Sherwin, J.; Hernandez, R.R. The Land Sparing, Water Surface Use Efficiency, and Water Surface Transformation of Floating Photovoltaic Solar Energy Installations. Sustainability 2020, 12, 8154. [Google Scholar] [CrossRef]
- Zainol Abidin, M.A.; Mahyuddin, M.N.; Mohd Zainuri, M.A.A. Solar Photovoltaic Architecture and Agronomic Management in Agrivoltaic System: A Review. Sustainability 2021, 13, 7846. [Google Scholar] [CrossRef]
- Sarr, A.; Soro, Y.M.; Tossa, A.K.; Diop, L. Agrivoltaic, a Synergistic Co-Location of Agricultural and Energy Production in Perpetual Mutation: A Comprehensive Review. Processes 2023, 11, 948. [Google Scholar] [CrossRef]
- Toledo, C.; Scognamiglio, A. Agrivoltaic Systems Design and Assessment: A Critical Review, and a Descriptive Model towards a Sustainable Landscape Vision (Three-Dimensional Agrivoltaic Patterns). Sustainability 2021, 13, 6871. [Google Scholar] [CrossRef]
- Touil, S.; Richa, A.; Fizir, M.; Bingwa, B. Shading Effect of Photovoltaic Panels on Horticulture Crops Production: A Mini Review. Rev. Environ. Sci. Biotechnol. 2021, 20, 281–296. [Google Scholar] [CrossRef]
- Ukwu, U.N.; Muller, O.; Meier-Grüll, M.; Uguru, M.I. Agrivoltaics Shading Enhanced the Microclimate, Photosynthesis, Growth and Yields of Vigna Radiata Genotypes in Tropical Nigeria. Sci. Rep. 2025, 15, 1190. [Google Scholar] [CrossRef]
- Marrou, H.; Guilioni, L.; Dufour, L.; Dupraz, C.; Wery, J. Microclimate under Agrivoltaic Systems: Is Crop Growth Rate Affected in the Partial Shade of Solar Panels? Agric. For. Meteorol. 2013, 177, 117–132. [Google Scholar] [CrossRef]
- Maia, A.S.C.; Moura, G.A.B.; Fonsêca, V.F.C.; Gebremedhin, K.G.; Milan, H.M.; Chiquitelli Neto, M.; Simão, B.R.; Campanelli, V.P.C.; Pacheco, R.D.L. Economically Sustainable Shade Design for Feedlot Cattle. Front. Vet. Sci. 2023, 10, 1110671. [Google Scholar] [CrossRef]
- Emmott, C.J.M.; Röhr, J.A.; Campoy-Quiles, M.; Kirchartz, T.; Urbina, A.; Ekins-Daukes, N.J.; Nelson, J. Organic Photovoltaic Greenhouses: A Unique Application for Semi-Transparent PV? Energy Environ. Sci. 2015, 8, 1317–1328. [Google Scholar] [CrossRef]
- Jamil, U.; Hickey, T.; Pearce, J.M. Solar Energy Modelling and Proposed Crops for Different Types of Agrivoltaics Systems. Energy 2024, 304, 132074. [Google Scholar] [CrossRef]
- Potenza, E.; Croci, M.; Colauzzi, M.; Amaducci, S. Agrivoltaic System and Modelling Simulation: A Case Study of Soybean (Glycine max L.) in Italy. Horticulturae 2022, 8, 1160. [Google Scholar] [CrossRef]
- Kim, S.; Kim, S.; An, K. An Integrated Multi-Modeling Framework to Estimate Potential Rice and Energy Production under an Agrivoltaic System. Comput. Electron. Agric. 2023, 213, 108157. [Google Scholar] [CrossRef]
- Willockx, B.; Herteleer, B.; Cappelle, J. Techno-Economic Study of Agrovoltaic Systems Focusing on Orchard Crops. In Proceedings of the 37th European Photovoltaic Solar Energy Conference and Exhibition, Online, 7–11 September 2020; pp. 1761–1766. [Google Scholar] [CrossRef]
- Willockx, B.; Reher, T.; Lavaert, C.; Herteleer, B.; Van De Poel, B.; Cappelle, J. Design and Evaluation of an Agrivoltaic System for a Pear Orchard. Appl. Energy 2024, 353, 122166. [Google Scholar] [CrossRef]
- Ravilla, A.; Shirkey, G.; Chen, J.; Jarchow, M.; Stary, O.; Celik, I. Techno-Economic and Life Cycle Assessment of Agrivoltaic System (AVS) Designs. Sci. Total Environ. 2024, 912, 169274. [Google Scholar] [CrossRef]
- Farja, Y.; Maciejczak, M. Economic Implications of Agricultural Land Conversion to Solar Power Production. Energies 2021, 14, 6063. [Google Scholar] [CrossRef]
- Soto-Gómez, D. Integration of Crops, Livestock, and Solar Panels: A Review of Agrivoltaic Systems. Agronomy 2024, 14, 1824. [Google Scholar] [CrossRef]
- Badran, G.; Dhimish, M. Comprehensive Study on the Efficiency of Vertical Bifacial Photovoltaic Systems: A UK Case Study. Sci. Rep. 2024, 14, 18380. [Google Scholar] [CrossRef]
- Tina, G.M.; Osama, A.; Cazzaniga, R.; Cicu, M.; Hancock, J.; Howlin, E.; Rosa-Clot, M.; Rosa-Clot, P. PVSails: Harnessing Innovation with Vertical Bifacial PV Modules in Floating Photovoltaic Systems. Prog. Photovolt. 2024, 32, 872–888. [Google Scholar] [CrossRef]
- Ghosh, A. A Comprehensive Review of Water Based PV: Flotavoltaics, under Water, Offshore & Canal Top. Ocean Eng. 2023, 281, 115044. [Google Scholar] [CrossRef]
- Chrysochoidis-Antsos, N.; Chrysochoidis, C. Benefits from PV System Integration with Irrigation and Drainage Infrastructures: Case Study for Thessaloniki-Imathia-Pella Plain in Greece. In Proceedings of the 33rd European Photovoltaic Solar Energy Conference and Exhibition, Amsterdam, The Netherlands, 25–29 September 2017; pp. 2151–2159. [Google Scholar] [CrossRef]
- Abdalazeem, M.E.; Hassan, H.; Asawa, T.; Mahmoud, H. Review on Integrated Photovoltaic-Green Roof Solutions on Urban and Energy-Efficient Buildings in Hot Climate. Sustain. Cities Soc. 2022, 82, 103919. [Google Scholar] [CrossRef]
- Kim, S.; Kim, S. Design of an Agrivoltaic System with Building Integrated Photovoltaics. Agronomy 2023, 13, 2140. [Google Scholar] [CrossRef]
- Dal Prà, A.; Genesio, L.; Miglietta, F.; Carotenuto, F.; Baronti, S.; Moriondo, M.; Greco, A.; Morè, N.; Svanera, L.; Reboldi, A. Salad Yields Under Agrivoltaics: A Field Test. AgriVoltaics Conf. Proc. 2023, 2. [Google Scholar] [CrossRef]
- Kabir, M.Y.; Nambeesan, S.U.; Díaz-Pérez, J.C. Shade Nets Improve Vegetable Performance. Sci. Hortic. 2024, 334, 113326. [Google Scholar] [CrossRef]
- Semeraro, T.; Scarano, A.; Curci, L.M.; Leggieri, A.; Lenucci, M.; Basset, A.; Santino, A.; Piro, G.; De Caroli, M. Shading Effects in Agrivoltaic Systems Can Make the Difference in Boosting Food Security in Climate Change. Appl. Energy 2024, 358, 122565. [Google Scholar] [CrossRef]
- Vaughan, A.; Brent, A. Agrivoltaics for Small Ruminants: A Review. Small Rumin. Res. 2024, 241, 107393. [CrossRef]
- Vodapally, S.N.; Ali, M.H. A Comprehensive Review of Solar Photovoltaic (PV) Technologies, Architecture, and Its Applications to Improved Efficiency. Energies 2022, 16, 319. [Google Scholar] [CrossRef]
- Atia, D.M.; Hassan, A.A.; El-Madany, H.T.; Eliwa, A.Y.; Zahran, M.B. Degradation and Energy Performance Evaluation of Mono-Crystalline Photovoltaic Modules in Egypt. Sci. Rep. 2023, 13, 13066. [Google Scholar] [CrossRef]
- Alavi, O.; Kaaya, I.; De Jong, R.; De Ceuninck, W.; Daenen, M. Assessing the Impact of PV Panel Climate-Based Degradation Rates on Inverter Reliability in Grid-Connected Solar Energy Systems. Heliyon 2024, 10, e25839. [Google Scholar] [CrossRef]
- Sodhi, M.; Banaszek, L.; Magee, C.; Rivero-Hudec, M. Economic Lifetimes of Solar Panels. Procedia CIRP 2022, 105, 782–787. [Google Scholar] [CrossRef]
- Libra, M.; Mrázek, D.; Tyukhov, I.; Severová, L.; Poulek, V.; Mach, J.; Šubrt, T.; Beránek, V.; Svoboda, R.; Sedláček, J. Reduced Real Lifetime of PV Panels—Economic Consequences. Sol. Energy 2023, 259, 229–234. [Google Scholar] [CrossRef]
- Busch, C.; Wydra, K. Life Cycle Assessment of an Agrivoltaic System with Conventional Potato Production. J. Renew. Sustain. Energy 2023, 15, 043501. [Google Scholar] [CrossRef]
- Poulek, V.; Aleš, Z.; Finsterle, T.; Libra, M.; Beránek, V.; Severová, L.; Belza, R.; Mrázek, J.; Kozelka, M.; Svoboda, R. Reliability Characteristics of First-Tier Photovoltaic Panels for Agrivoltaic Systems—Practical Consequences. Int. Agrophys. 2024, 38, 383–391. [Google Scholar] [CrossRef]
- Jordan, D.C.; Kurtz, S.R. Photovoltaic Degradation Rates—An Analytical Review. Prog. Photovolt. 2013, 21, 12–29. [Google Scholar] [CrossRef]
- Pastuszak, J.; Węgierek, P. Photovoltaic Cell Generations and Current Research Directions for Their Development. Materials 2022, 15, 5542. [Google Scholar] [CrossRef] [PubMed]
- Jordan, D.C.; Silverman, T.J.; Wohlgemuth, J.H.; Kurtz, S.R.; VanSant, K.T. Photovoltaic Failure and Degradation Modes. Prog. Photovolt. 2017, 25, 318–326. [Google Scholar] [CrossRef]
- Peshek, T.J.; Fada, J.S.; Martin, I.T. Degradation Processes in Photovoltaic Cells. In Durability and Reliability of Polymers and Other Materials in Photovoltaic Modules; Elsevier: Amsterdam, The Netherlands, 2019; pp. 97–118. ISBN 978-0-12-811545-9. [Google Scholar]
- Escobar, L.A.; Meeker, W.Q. A Review of Accelerated Test Models. Statist. Sci. 2006, 21, 552–577. [Google Scholar] [CrossRef]
- Dia, F.; Mbengue, N.; Sarr, O.N.; Diagne, M.; Niasse, O.A.; Dieye, A.; Niang, M.; Ba, B.; Sene, C. Model Associated with the Study of the Degradation Based on the Accelerated Test: A Literature Review. OJAppS 2016, 06, 49–63. [Google Scholar] [CrossRef]
- Vázquez, M.; Rey-Stolle, I. Photovoltaic Module Reliability Model Based on Field Degradation Studies. Prog. Photovolt. 2008, 16, 419–433. [Google Scholar] [CrossRef]
- Bruckman, L.S.; Wheeler, N.R.; Ma, J.; Wang, E.; Wang, C.K.; Chou, I.; Sun, J.; French, R.H. Statistical and Domain Analytics Applied to PV Module Lifetime and Degradation Science. IEEE Access 2013, 1, 384–403. [Google Scholar] [CrossRef]
- Lindig, S.; Kaaya, I.; Weiss, K.-A.; Moser, D.; Topic, M. Review of Statistical and Analytical Degradation Models for Photovoltaic Modules and Systems as Well as Related Improvements. IEEE J. Photovolt. 2018, 8, 1773–1786. [Google Scholar] [CrossRef]
- Almas; Sundaram, S.; Dwivedi, U.D. Predictive Analysis of Power Degradation Rate in Solar PV Systems Emphasizing Hot Spots and Visual Effects-Based Failure Modes. Renew. Energy 2024, 228, 120684. [Google Scholar] [CrossRef]
- Charki, A. Accelerated Degradation Testing of a Photovoltaic Module. J. Photon. Energy 2013, 3, 033099. [Google Scholar] [CrossRef]
- Kawai, S.; Tanahashi, T.; Fukumoto, Y.; Tamai, F.; Masuda, A.; Kondo, M. Causes of Degradation Identified by the Extended Thermal Cycling Test on Commercially Available Crystalline Silicon Photovoltaic Modules. IEEE J. Photovolt. 2017, 7, 1511–1518. [Google Scholar] [CrossRef]
- Aghaei, M.; Fairbrother, A.; Gok, A.; Ahmad, S.; Kazim, S.; Lobato, K.; Oreski, G.; Reinders, A.; Schmitz, J.; Theelen, M.; et al. Review of Degradation and Failure Phenomena in Photovoltaic Modules. Renew. Sustain. Energy Rev. 2022, 159, 112160. [Google Scholar] [CrossRef]
- Silvestre, S.; Kichou, S.; Guglielminotti, L.; Nofuentes, G.; Alonso-Abella, M. Degradation Analysis of Thin Film Photovoltaic Modules under Outdoor Long Term Exposure in Spanish Continental Climate Conditions. Sol. Energy 2016, 139, 599–607. [Google Scholar] [CrossRef]
- Piliougine, M.; Sánchez-Friera, P.; Petrone, G.; Sánchez-Pacheco, F.J.; Spagnuolo, G.; Sidrach-de-Cardona, M. New Model to Study the Outdoor Degradation of Thin–Film Photovoltaic Modules. Renew. Energy 2022, 193, 857–869. [Google Scholar] [CrossRef]
- Syed, T.H.; Wei, W. Technoeconomic Analysis of Dye Sensitized Solar Cells (DSSCs) with WS2/Carbon Composite as Counter Electrode Material. Inorganics 2022, 10, 191. [Google Scholar] [CrossRef]
- Spinelli, G.; Freitag, M.; Benesperi, I. What Is Necessary to Fill the Technological Gap to Design Sustainable Dye-Sensitized Solar Cells? Sustain. Energy Fuels 2023, 7, 916–927. [Google Scholar] [CrossRef]
- Kettle, J.; Aghaei, M.; Ahmad, S.; Fairbrother, A.; Irvine, S.; Jacobsson, J.J.; Kazim, S.; Kazukauskas, V.; Lamb, D.; Lobato, K.; et al. Review of Technology Specific Degradation in Crystalline Silicon, Cadmium Telluride, Copper Indium Gallium Selenide, Dye Sensitised, Organic and Perovskite Solar Cells in Photovoltaic Modules: Understanding How Reliability Improvements in Mature Technologies Can Enhance Emerging Technologies. Prog. Photovolt. 2022, 30, 1365–1392. [Google Scholar] [CrossRef]
- Zhang, D.; Li, D.; Hu, Y.; Mei, A.; Han, H. Degradation Pathways in Perovskite Solar Cells and How to Meet International Standards. Commun. Mater. 2022, 3, 58. [Google Scholar] [CrossRef]
- Giannouli, M. Current Status of Emerging PV Technologies: A Comparative Study of Dye-Sensitized, Organic, and Perovskite Solar Cells. Int. J. Photoenergy 2021, 2021, 1–19. [Google Scholar] [CrossRef]
- Celik, I.; Song, Z.; Cimaroli, A.J.; Yan, Y.; Heben, M.J.; Apul, D. Life Cycle Assessment (LCA) of Perovskite PV Cells Projected from Lab to Fab. Sol. Energy Mater. Sol. Cells 2016, 156, 157–169. [Google Scholar] [CrossRef]
- Rahman, T.; Mansur, A.; Hossain Lipu, M.; Rahman, M.; Ashique, R.; Houran, M.; Elavarasan, R.; Hossain, E. Investigation of Degradation of Solar Photovoltaics: A Review of Aging Factors, Impacts, and Future Directions toward Sustainable Energy Management. Energies 2023, 16, 3706. [Google Scholar] [CrossRef]
- Philipps, S.; Warmuth, W. Photovoltaics Report; Fraunhofer ISE: Freiburg, Germany, 2024; p. 37. [Google Scholar]
- Machín, A.; Márquez, F. Advancements in Photovoltaic Cell Materials: Silicon, Organic, and Perovskite Solar Cells. Materials 2024, 17, 1165. [Google Scholar] [CrossRef] [PubMed]
- Kaaya, I.; Koehl, M.; Mehilli, A.P.; De Cardona Mariano, S.; Weiss, K.A. Modeling Outdoor Service Lifetime Prediction of PV Modules: Effects of Combined Climatic Stressors on PV Module Power Degradation. IEEE J. Photovolt. 2019, 9, 1105–1112. [Google Scholar] [CrossRef]
- Kaaya, I.; Ascencio-Vásquez, J.; Weiss, K.-A.; Topič, M. Assessment of Uncertainties and Variations in PV Modules Degradation Rates and Lifetime Predictions Using Physical Models. Sol. Energy 2021, 218, 354–367. [Google Scholar] [CrossRef]
- Peck, D.S. Comprehensive Model for Humidity Testing Correlation. In Proceedings of the 24th International Reliability Physics Symposium, San Jose, CA, USA, 1–3 April 1986; IEEE: Anaheim, CA, USA, 1986; pp. 44–50. [Google Scholar]
- Faiman, D. Assessing the Outdoor Operating Temperature of Photovoltaic Modules. Prog. Photovolt. 2008, 16, 307–315. [Google Scholar] [CrossRef]
- Ross, R.G., Jr. Interface Design Considerations for Terrestrial Solar Cell Modules. In Proceedings of the 12th Photovoltaic Specialists Conference, Baton Rouge, LA, USA, 15–18 November 1976; pp. 801–806. [Google Scholar]
- Koehl, M.; Heck, M.; Wiesmeier, S. Categorization of Weathering Stresses for Photovoltaic Modules. Energy Sci. Eng. 2018, 6, 93–111. [Google Scholar] [CrossRef]
- IEC 61215-1; Terrestrial Photovoltaic (PV) Modules-Design Qualification and Type Approval-Part 1: Test Requirements. International Electrotechnical Commission: Geneva, Switzerland, 2021.
- Skoplaki, E.; Palyvos, J.A. Operating Temperature of Photovoltaic Modules: A Survey of Pertinent Correlations. Renew. Energy 2009, 34, 23–29. [Google Scholar] [CrossRef]
- Li, Z.; Ma, M.; Han, T.; Ma, J. A PV Module Life Prediction Method with Flexible Consideration of Environmental Stress Coupling Weights. In Proceedings of the 2023 IEEE 2nd International Power Electronics and Application Symposium (PEAS), Guangzhou, China, 10 November 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1868–1873. [Google Scholar]
- Weiß, K.-A.; Klimm, E.; Kaaya, I. Accelerated Aging Tests vs Field Performance of PV Modules. Prog. Energy 2022, 4, 042009. [Google Scholar] [CrossRef]
- Kouklaki, D.; Kazadzis, S.; Raptis, I.-P.; Papachristopoulou, K.; Fountoulakis, I.; Eleftheratos, K. Photovoltaic Spectral Responsivity and Efficiency under Different Aerosol Conditions. Energies 2023, 16, 6644. [Google Scholar] [CrossRef]
- Wirth, H. Crystalline Silicon PV Module Technology. In Semiconductors and Semimetals; Elsevier: Amsterdam, The Netherlands, 2013; Volume 89, pp. 135–197. ISBN 978-0-12-381343-5. [Google Scholar]
- Wald, L. A Simple Algorithm for The Computation of The Spectral Distribution of The Solar Irradiance at Surface; Research report; Mines ParisTech: Paris, France, 2018. [Google Scholar]
- Habte, A.; Sengupta, M.; Gueymard, C.A.; Narasappa, R.; Rosseler, O.; Burns, D.M. Estimating Ultraviolet Radiation From Global Horizontal Irradiance. IEEE J. Photovolt. 2019, 9, 139–146. [Google Scholar] [CrossRef]
- Bala Subramaniyan, A.; Pan, R.; Kuitche, J.; TamizhMani, G. Quantification of Environmental Effects on PV Module Degradation: A Physics-Based Data-Driven Modeling Method. IEEE J. Photovolt. 2018, 8, 1289–1296. [Google Scholar] [CrossRef]
- Adhothu, B.; Kumar, S.; Al Moosawi, A.; Joseph John, J.; Albadwawi, O.; Mathiak, G.; Alberts, V. Transmittance Degradation Analysis of Desert Exposed UV Transparent PV Module Encapsulants. In Proceedings of the 2022 IEEE 49th Photovoltaics Specialists Conference (PVSC), Philadelphia, PA, USA, 5 June 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1449–1452. [Google Scholar]
- Kaaya, I.; Mansour, D.-E.; Gebhardt, P.; Weiss, K.-A.; Philipp, D. Modelling and Validation of Photovoltaic Degradation under Ultraviolet-Damp-Heat Conditions. In Proceedings of the 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC), Fort Lauderdale, FL, USA, 20 June 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 986–990. [Google Scholar]
- Elgharbawy, A.S. Review on Corrosion in Solar Panels. ijSmartGrid 2018, 2, 218–220. [Google Scholar] [CrossRef]
- Xiong, H.; Gan, C.; Yang, X.; Hu, Z.; Niu, H.; Li, J.; Si, J.; Xing, P.; Luo, X. Corrosion Behavior of Crystalline Silicon Solar Cells. Microelectron. Reliab. 2017, 70, 49–58. [Google Scholar] [CrossRef]
- Kim, J.; Rabelo, M.; Padi, S.P.; Yousuf, H.; Cho, E.-C.; Yi, J. A Review of the Degradation of Photovoltaic Modules for Life Expectancy. Energies 2021, 14, 4278. [Google Scholar] [CrossRef]
- Kyranaki, N.; Zhu, J.; Betts, T.; Gottschalg, R. The Impact of Acetic Acid Corrosion on the Front-Side Contacts and the Finger Electrodes of c-Si PV Cells. In Proceedings of the 14th Photovoltaic Science, Applications and Technology Conference (PVSAT-14), London, UK, 18–19 April 2018; Loughsborough University: Loughsborough, UK, 2018. [Google Scholar]
- Oliveira, M.C.C.D.; Diniz Cardoso, A.S.A.; Viana, M.M.; Lins, V.D.F.C. The Causes and Effects of Degradation of Encapsulant Ethylene Vinyl Acetate Copolymer (EVA) in Crystalline Silicon Photovoltaic Modules: A Review. Renew. Sustain. Energy Rev. 2018, 81, 2299–2317. [Google Scholar] [CrossRef]
- Li, J.; Shen, Y.-C.; Hacke, P.; Kempe, M. Electrochemical Mechanisms of Leakage-Current-Enhanced Delamination and Corrosion in Si Photovoltaic Modules. Sol. Energy Mater. Sol. Cells 2018, 188, 273–279. [Google Scholar] [CrossRef]
- Rabelo, M.; Yousuf, H.; Cha, Y.; Dao, V.-A.; Kim, Y.; Phong Pham, D.; Yi, J. Crystalline Silicon Photovoltaic Module Degradation: Galvanic Corrosion and Its Solution. Eng. Fail. Anal. 2022, 138, 106329. [Google Scholar] [CrossRef]
- Bouaichi, A.; Merrouni, A.A.; El Hassani, A.; Naimi, Z.; Ikken, B.; Ghennioui, A.; Benazzouz, A.; El Amrani, A.; Messaoudi, C. Experimental Evaluation of the Discoloration Effect on PV-Modules Performance Drop. Energy Procedia 2017, 119, 818–827. [Google Scholar] [CrossRef]
- Ihaddadene, R.; Tabet, S.; Guerira, B.; Ihaddadene, N.; Bekhouche, K. Evaluation of the Degradation of a PV Panel in an Arid Zone; Case Study Biskra (Algeria). Sol. Energy 2023, 263, 111809. [Google Scholar] [CrossRef]
- Meena, R.; Kumar, S.; Gupta, R. Comparative Investigation and Analysis of Delaminated and Discolored Encapsulant Degradation in Crystalline Silicon Photovoltaic Modules. Sol. Energy 2020, 203, 114–122. [Google Scholar] [CrossRef]
- Kyranaki, N.; Smith, A.; Yendall, K.; Hutt, D.A.; Whalley, D.C.; Gottschalg, R.; Betts, T.R. Damp-heat Induced Degradation in Photovoltaic Modules Manufactured with Passivated Emitter and Rear Contact Solar Cells. Prog. Photovolt. 2022, 30, 1061–1071. [Google Scholar] [CrossRef]
- Meena, R.; Pareek, A.; Gupta, R. A Comprehensive Review on Interfacial Delamination in Photovoltaic Modules. Renew. Sustain. Energy Rev. 2024, 189, 113944. [Google Scholar] [CrossRef]
- Wohlgemuth, J.H.; Hacke, P.; Bosco, N.; Miller, D.C.; Kempe, M.D.; Kurtz, S.R. Assessing the Causes of Encapsulant Delamination in PV Modules. In Proceedings of the 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC) , Portland, OR, USA, 5–10 June 2016; IEEE: Piscatway, NJ, USA, 2016; pp. 248–254. [Google Scholar]
- Sangpongsanont, Y.; Chuangchote, S.; Chenvidhya, D.; Kirtikara, K. Annual Expansion in Delamination of Front Encapsulant in Tropical Climate Field-Operated PV Modules. Sol. Energy 2023, 262, 111850. [Google Scholar] [CrossRef]
- Segbefia, O.K.; Imenes, A.G.; Sætre, T.O. Moisture Ingress in Photovoltaic Modules: A Review. Sol. Energy 2021, 224, 889–906. [Google Scholar] [CrossRef]
- Sangpongsanont, Y.; Chenvidhya, D.; Chuangchote, S.; Kirtikara, K. Corrosion Growth of Solar Cells in Modules after 15 Years of Operation. Sol. Energy 2020, 205, 409–431. [Google Scholar] [CrossRef]
- Kadırgan, F. Electrochemical Nano-coating Processes in Solar Energy Systems. Int. J. Photoenergy 2006, 2006, 084891. [Google Scholar] [CrossRef]
- Openair-Plasma® for Better Performance and Long-Term Efficiency of Solar Energy Systems. Plasmatreat. 2024. Available online: https://www.plasmatreat.com/en/industry-solutions/new-energies/solar-technology (accessed on 28 February 2025).
- Wohlgemuth, J.H.; Kempe, M.D.; Miller, D.C. Discoloration of PV Encapsulants. In Proceedings of the 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC), Tampa, FL, USA, 16 June 2013; IEEE: Piscatway, NJ, USA, 2013; pp. 3260–3265. [Google Scholar]
- Ahmed, H.A.; Walshe, J.; Kennedy, M.; Confrey, T.; Doran, J.; McCormack, S.J. Enhancement in Solar Cell Efficiency by Luminescent Down-Shifting Layers. Adv. Energy Res. 2013, 1, 117–126. [Google Scholar] [CrossRef]
- Ivaturi, A.; Upadhyaya, H. Upconversion and Downconversion Processes for Photovoltaics. In A Comprehensive Guide to Solar Energy Systems; Elsevier: Amsterdam, The Netherlands, 2018; pp. 279–298. ISBN 978-0-12-811479-7. [Google Scholar]
- Desmet, L.; Ras, A.J.M.; De Boer, D.K.G.; Debije, M.G. Monocrystalline Silicon Photovoltaic Luminescent Solar Concentrator with 42% Power Conversion Efficiency. Opt. Lett. 2012, 37, 3087. [Google Scholar] [CrossRef]
- Klampaftis, E.; Ross, D.; McIntosh, K.R.; Richards, B.S. Enhancing the Performance of Solar Cells via Luminescent Down-Shifting of the Incident Spectrum: A Review. Sol. Energy Mater. Sol. Cells 2009, 93, 1182–1194. [Google Scholar] [CrossRef]
- Coldrick, K.; Walshe, J.; McCormack, S.J.; Doran, J.; Amarandei, G. Experimental and Theoretical Evaluation of a Commercial Luminescent Dye for PVT Systems. Energies 2023, 16, 6294. [Google Scholar] [CrossRef]
- Gabor, A.; Janoch, R.; Anselmo, A.; Field, H. Solar Panel Design Factors to Reduce the Impact of Cracked Cells and the Tendency for Crack Propagation. In Proceedings of the NREL PV Module Reliability Workshop, Denver, CO, USA, 17–19 March 2015. [Google Scholar]
- Walker, H. Best Practices for Operation and Maintenance of Photovoltaic and Energy Storage Systems, 3rd ed.; National Renewable Energy Laboratory: Golden, CO, USA, 2018. [Google Scholar]
- Al Mahdi, H.; Leahy, P.G.; Alghoul, M.; Morrison, A.P. A Review of Photovoltaic Module Failure and Degradation Mechanisms: Causes and Detection Techniques. Solar 2024, 4, 43–82. [Google Scholar] [CrossRef]
- Gomez-Casanovas, N.; Mwebaze, P.; Khanna, M.; Branham, B.; Time, A.; DeLucia, E.H.; Bernacchi, C.J.; Knapp, A.K.; Hoque, M.J.; Du, X.; et al. Knowns, Uncertainties, and Challenges in Agrivoltaics to Sustainably Intensify Energy and Food Production. Cell Rep. Phys. Sci. 2023, 4, 101518. [Google Scholar] [CrossRef]
- Schiller, C.H.; Rendler, L.C.; Eberlein, D.; Mülhöfer, G.; Kraft, A.; Neuhaus, D.-H. Accelerated TC Test in Comparison with Standard TC Test for PV Modules with Ribbon, Wire and Shingle Interconnection. In Proceedings of the 36th European PV Solar Energy Conference and Exhibition, Marseille, France, 9–13 September 2019; pp. 995–999. [Google Scholar] [CrossRef]
- Eitner, U.; Kajari-Schröder, S.; Köntges, M.; Altenbach, H. Thermal Stress and Strain of Solar Cells in Photovoltaic Modules. In Shell-like Structures; Altenbach, H., Eremeyev, V.A., Eds.; Advanced Structured Materials; Springer: Berlin/Heidelberg, Germany, 2011; Volume 15, pp. 453–468. ISBN 978-3-642-21854-5. [Google Scholar]
- Kassar, R.E.; Takash, A.A.; Faraj, J.; Khaled, M.; Ramadan, H.S. Phase Change Materials for Enhanced Photovoltaic Panels Performance: A Comprehensive Review and Critical Analysis. Energy Built Environ. 2024, S2666123324000230. [Google Scholar] [CrossRef]
- Sharma, N.K.; Gaur, M.K.; Malvi, C.S. Application of Phase Change Materials for Cooling of Solar Photovoltaic Panels: A Review. Mater. Today Proc. 2021, 47, 6759–6765. [Google Scholar] [CrossRef]
- He, Y.-L.; Qiu, Y.; Wang, K.; Yuan, F.; Wang, W.-Q.; Li, M.-J.; Guo, J.-Q. Perspective of Concentrating Solar Power. Energy 2020, 198, 117373. [Google Scholar] [CrossRef]
- Liu, Z.; Cheng, W.; Jim, C.Y.; Morakinyo, T.E.; Shi, Y.; Ng, E. Heat Mitigation Benefits of Urban Green and Blue Infrastructures: A Systematic Review of Modeling Techniques, Validation and Scenario Simulation in ENVI-Met V4. Build. Environ. 2021, 200, 107939. [Google Scholar] [CrossRef]
- Akrouch, M.A.; Chahine, K.; Faraj, J.; Hachem, F.; Castelain, C.; Khaled, M. Advancements in Cooling Techniques for Enhanced Efficiency of Solar Photovoltaic Panels: A Detailed Comprehensive Review and Innovative Classification. Energy Built Environ. 2025, 6, 248–276. [Google Scholar] [CrossRef]
- Shaker, L.M.; Al-Amiery, A.A.; Hanoon, M.M.; Al-Azzawi, W.K.; Kadhum, A.A.H. Examining the Influence of Thermal Effects on Solar Cells: A Comprehensive Review. Sustain. Energy Res. 2024, 11, 6. [Google Scholar] [CrossRef]
- Abdallah, R.; Haddad, T.; Zayed, M.; Juaidi, A.; Salameh, T. An Evaluation of the Use of Air Cooling to Enhance Photovoltaic Performance. Therm. Sci. Eng. Prog. 2024, 47, 102341. [Google Scholar] [CrossRef]
- Kazem, H.A.; Chaichan, M.T.; Al-Waeli, A.H.A.; Sopian, K. A Review of Dust Accumulation and Cleaning Methods for Solar Photovoltaic Systems. J. Clean. Prod. 2020, 276, 123187. [Google Scholar] [CrossRef]
- Zheng, Y.; Miao, J.; Yu, H.; Liu, F.; Cai, Q. Thermal Analysis of Air-Cooled Channels of Different Sizes in Naturally Ventilated Photovoltaic Wall Panels. Buildings 2023, 13, 3002. [Google Scholar] [CrossRef]
- Gijsman, P. A Review on the Mechanism of Action and Applicability of Hindered Amine Stabilizers. Polym. Degrad. Stab. 2017, 145, 2–10. [Google Scholar] [CrossRef]
- Lindig, S.; Ascencio-Vásquez, J.; Leloux, J.; Moser, D.; Aghaei, M.; Fairbrother, A.; Gok, A.; Ahmad, S.; Kazim, S.; Lobato, K.; et al. Performance and Degradation in Silicon PV Systems Under Outdoor Conditions in Relation to Reliability Aspects of Silicon PV Modules—Summary of Results of COST Action PEARL PV. In Proceedings of the 2023 IEEE 50th Photovoltaic Specialists Conference (PVSC), San Juan, PR, USA, 11 June 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–3. [Google Scholar]
- Gyamfi, S.; Aboagye, B.; Peprah, F.; Obeng, M. Degradation Analysis of Polycrystalline Silicon Modules from Different Manufacturers under the Same Climatic Conditions. Energy Convers. Manag. X 2023, 20, 100403. [Google Scholar] [CrossRef]
- Wedashwara, W.; Jatmika, A.H.; AZubaidi; Arimbawa, I.W.A. Smart Solar Powered Hydroponics System Using Internet of Things and Fuzzy Association Rule Mining. IOP Conf. Ser. Earth Environ. Sci. 2021, 712, 012007. [Google Scholar] [CrossRef]
- Xu, Z.; Elomri, A.; Al-Ansari, T.; Kerbache, L.; El Mekkawy, T. Decisions on Design and Planning of Solar-Assisted Hydroponic Farms under Various Subsidy Schemes. Renew. Sustain. Energy Rev. 2022, 156, 111958. [Google Scholar] [CrossRef]
- Novaldo, E.V.; Dewi, T. Rusdianasari Solar Energy as an Alternative Energy Source in Hydroponic Agriculture: A Pilot Study. In Proceedings of the 2022 International Conference on Electrical and Information Technology (IEIT), Malang, Indonesia, 15 September 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 202–205. [Google Scholar]
PV Configuration | Description | Advantages | Disadvantages | Ref. |
---|---|---|---|---|
Ground integration/solar plant | Traditional usage of solar modules for electricity production | Common and tested designs, maximized solar energy production | Requires significant land usage, reduced land space for crops or infrastructure, high investment cost | [32,40,45,46,63] |
Crop integration | Integration of PV systems alongside existing crops | Improved land usage (LER), reduction in electrical costs | Higher installation costs, more complex harvesting techniques, potential reduced crop yield | [32,36,37,40,45,46,64] |
Vertical PV module crop integration | Bifacial PV modules mounted 90° vertically alongside crops | Greater efficiency and winter energy production than tilted PV module designs, improved land usage with crop integration | Higher investment cost for bifacial PVs, installation required at greater height than tilted PVs | [40,45,64,65,66] |
Orchard/tree integration | PVs integrated alongside orchard trees above the treeline | Potential reduced effect of shading on plant growth with PVs | Greater module frame heights, higher maintenance and installation costs | [40,60,61,62] |
Floating PV/waterbody integration | Floating platforms with PV modules on stable bodies of water | Utilization of land unsuitable for crops, potential reduction in surface water evaporation | High-cost investment, complex maintenance and replacement, requires stable bodies of water | [40,45,46,48,66,67] |
Drainage channel integration | Placement of PV modules above agricultural drainage channels | Utilization of land without interference with crop growth | Complex maintenance and replacement, higher shading on PVs due to height placement | [40,64,68] |
Livestock field integration | Placement of PV modules above livestock fields/alongside livestock infrastructure | Simple design and integration, improved land usage, potential cooling/shading of livestock | Potential damage from livestock, limited to fenced grazing fields | [40,42,43,55,64] |
Building/greenhouse integration | Integration of PVs onto existing farm structures/semi-transparent PVs for greenhouse | Simple design, minimal planning requirements for typical PV modules, utilization of existing space | High-cost investment, requires correct integration and placement with buildings | [40,64,69,70] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fennessy, A.; Onea, V.; Walshe, J.; Doran, J.; Purcar, M.; Amarandei, G. Suitability of Existing Photovoltaic Degradation Models for Agrivoltaic Systems. Energies 2025, 18, 1937. https://doi.org/10.3390/en18081937
Fennessy A, Onea V, Walshe J, Doran J, Purcar M, Amarandei G. Suitability of Existing Photovoltaic Degradation Models for Agrivoltaic Systems. Energies. 2025; 18(8):1937. https://doi.org/10.3390/en18081937
Chicago/Turabian StyleFennessy, Adam, Vasile Onea, James Walshe, John Doran, Marius Purcar, and George Amarandei. 2025. "Suitability of Existing Photovoltaic Degradation Models for Agrivoltaic Systems" Energies 18, no. 8: 1937. https://doi.org/10.3390/en18081937
APA StyleFennessy, A., Onea, V., Walshe, J., Doran, J., Purcar, M., & Amarandei, G. (2025). Suitability of Existing Photovoltaic Degradation Models for Agrivoltaic Systems. Energies, 18(8), 1937. https://doi.org/10.3390/en18081937