Artificial Intelligence in Renewable Energy Systems: Applications and Security Challenges
Abstract
:1. Introduction
1.1. Research Background and Motivation
1.2. Materials and Methods
2. Wind Power Systems
2.1. Background
2.2. Application of AI in Wind Power Systems
2.3. Security Challenges and Solutions of AI in Wind Power System
3. PV Power Systems
3.1. Background
3.2. Application of AI in PV Power Systems
3.3. Security Challenges and Solutions of AI in PV Power System
4. Energy Storage Systems
4.1. Background
4.2. Application of AI in Energy Storage Systems
4.3. Security Challenges and Solutions of AI in Energy Storage Generation
5. Other Renewable Energy Systems
5.1. Background
5.2. Hydropower Systems
5.3. Nuclear Power Plants
5.4. Hydrogen Energy Systems
5.5. Geothermal Energy Systems and Biomass Energy Systems
6. Conclusions
6.1. Summary of Research Achievements and Challenges
6.2. Comparison with Prior Reviews and Future Research
Funding
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
PV | Photovoltaic |
ML | Machine Learning |
NWP | Numerical Weather Prediction |
NARX | Nonlinear Autoregressive Exogenous |
LSTM | Long Short-Term Memory Network |
CNN-BiLSTM | Convolutional Neural Network-Bidirectional Long Short-Term Memory |
EMD | Empirical Mode Decomposition |
SVM | Support Vector Machine |
RF | Random Forest |
PCA | Principal Component Analysis |
DL | Deep Learning |
ANN | Artificial Neural Network |
ELM | Extreme Learning Machine |
RNN | Recurrent Neural Networks |
IIV | Intra-Interval Variation |
GAT | Graph Attention Networks |
IGWO | Improved Grey Wolf Algorithm |
ESN | Echo State Network |
WT | Wavelet Transforms |
XAI | Explainable Artificial Intelligence |
VR | Virtual Reality |
AR | Augmented Reality |
SOC | State of Charge |
SOH | State of Health |
DQN | Deep Q Networks |
TSVR | Twin Support Vector Regression |
ABC | Artificial Bee Colony |
IIoT | Internet of Things |
GANs | Generative Adversarial Networks |
SVR | Support Vector Regression |
DNN | Deep Neural Networks |
APT | Advanced Persistent Threats |
OHGR | Optimized Hydrogen Generation-based Regression |
PEM | Proton Exchange Membrane |
PtG | Power-to-Gas |
GfG | Gas-fired Generation |
References
- Qin, C.; Yu, Y. Security region based probabilistic small signal stability analysis for power systems with wind power integration. Autom. Electr. Power Syst. 2014, 38, 43–48. [Google Scholar]
- Zhu, Q.; Li, J.; Qiao, J.; Shi, M.; Wang, C. Application and Prospect of Artificial Intelligence Technology in Renewable Energy Forecasting. Proc. Chin. Soc. Electr. Eng. 2023, 43, 3027–3047. [Google Scholar] [CrossRef]
- Pan, G.; Zhang, H.; Ju, W.; Yang, W.; Qin, C.; Pei, L.; Sun, Y.; Wang, R. A prediction method for ultra short-term wind power prediction basing on long short-term memory network and extreme learning machine. In Proceedings of the 2020 Chinese Automation Congress (CAC), Shanghai, China, 6–8 November 2020; pp. 7608–7612. [Google Scholar]
- Liu, X.; Li, X. Error Compensation-Considered Wind Power Forecasting: A Hybrid Deep Learning Method. In Proceedings of the 2023 China Automation Congress (CAC), Shanghai, China, 6–8 November 2023; pp. 7319–7324. [Google Scholar]
- Zhang, B.; Liu, H.; Zhuang, G.; Liu, L.; Wu, W. Data-driven wind farm Volt/Var control based on deep reinforcement learning. In Proceedings of the 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2), Wuhan, China, 30 October–1 November 2020; pp. 2758–2763. [Google Scholar]
- Ahmadi, A.; Talaei, M.; Sadipour, M.; Amani, A.M.; Jalili, M. Deep federated learning-based privacy-preserving wind power forecasting. IEEE Access 2022, 11, 39521–39530. [Google Scholar] [CrossRef]
- Al-Yahyai, S.; Charabi, Y.; Gastli, A. Review of the use of numerical weather prediction (NWP) models for wind energy assessment. Renew. Sustain. Energy Rev. 2010, 14, 3192–3198. [Google Scholar] [CrossRef]
- Foley, A.M.; Leahy, P.G.; Marvuglia, A.; McKeogh, E.J. Current methods and advances in forecasting of wind power generation. Renew. Energy 2012, 37, 1–8. [Google Scholar] [CrossRef]
- Bhavsar, S.; Pitchumani, R.; Ortega-Vazquez, M. Machine learning enabled reduced-order scenario generation for stochastic analysis of solar power forecasts. Appl. Energy 2021, 293, 116964. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, X. Short-term wind power prediction of wind farms based on LSTM + NARX neural network. In Proceedings of the 2021 International Conference on Computer Engineering and Application (ICCEA), Kunming, China, 25–27 June 2021; pp. 137–141. [Google Scholar]
- Liu, S.; Zhou, Z.; Zhao, H. Short-term wind power load forecasting based on ISSA-CNN-BiLSTM. In Proceedings of the 2024 3rd International Conference on Energy, Power and Electrical Technology (ICEPET), Chengdu, China, 17–19 May 2024; pp. 1334–1339. [Google Scholar]
- Wang, Z.; Zhang, Z.; Wang, K.; Chu, L. Wind power prediction model based on long and short-term memory neural network. In Proceedings of the 2023 IEEE 3rd International Conference on Electronic Technology, Communication and Information (ICETCI), Changchun, China, 26–28 May 2023; pp. 754–758. [Google Scholar]
- van Heerden, L.; Vermeulen, H.; van Staden, C. Wind power forecasting using hybrid recurrent neural networks with empirical mode decomposition. In Proceedings of the 2022 IEEE International Conference on Environment and Electrical Engineering and 2022 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Prague, Czech Republic, 28 June–1 July 2022; pp. 1–6. [Google Scholar]
- Abedinia, O.; Lotfi, M.; Bagheri, M.; Sobhani, B.; Shafie-Khah, M.; Catalão, J.P. Improved EMD-based complex prediction model for wind power forecasting. IEEE Trans. Sustain. Energy 2020, 11, 2790–2802. [Google Scholar] [CrossRef]
- Wang, D.; Cui, X.; Niu, D. Wind power forecasting based on LSTM improved by EMD-PCA-RF. Sustainability 2022, 14, 7307. [Google Scholar] [CrossRef]
- Dong, H.; Xie, J.; Zhao, X. Wind farm control technologies: From classical control to reinforcement learning. Prog. Energy 2022, 4, 032006. [Google Scholar] [CrossRef]
- Tomin, N.; Kurbatsky, V.; Guliyev, H. Intelligent control of a wind turbine based on reinforcement learning. In Proceedings of the 2019 16th Conference on Electrical Machines, Drives and Power Systems (ELMA), Varna, Bulgaria, 6–8 June 2019; pp. 1–6. [Google Scholar]
- Soler, D.; Mariño, O.; Huergo, D.; de Frutos, M.; Ferrer, E. Reinforcement learning to maximize wind turbine energy generation. Expert Syst. Appl. 2024, 249, 123502. [Google Scholar] [CrossRef]
- Rasay, H.; Safaei, F.; Taghipour, S. A New Maintenance Plan for Wind Turbine Farms Using Reinforcement Learning. In Proceedings of the 2024 Annual Reliability and Maintainability Symposium (RAMS), Albuquerque, NM, USA, 22–25 January 2024; pp. 1–7. [Google Scholar]
- Chatterjee, J.; Dethlefs, N. Scientometric review of artificial intelligence for operations & maintenance of wind turbines: The past, present and future. Renew. Sustain. Energy Rev. 2021, 144, 111051. [Google Scholar]
- Zimroz, R.; Bartelmus, W.; Barszcz, T.; Urbanek, J. Statistical data processing for wind turbine generator bearing diagnostics. In Condition Monitoring of Machinery in Non-Stationary Operations: Proceedings of the Second International Conference “Condition Monitoring of Machinery in Non-Stationnary Operations” CMMNO’2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 509–518. [Google Scholar]
- Feng, Z.; Liang, M.; Zhang, Y.; Hou, S. Fault diagnosis for wind turbine planetary gearboxes via demodulation analysis based on ensemble empirical mode decomposition and energy separation. Renew. Energy 2012, 47, 112–126. [Google Scholar] [CrossRef]
- Leahy, K.; Hu, R.L.; Konstantakopoulos, I.C.; Spanos, C.J.; Agogino, A.M. Diagnosing wind turbine faults using machine learning techniques applied to operational data. In Proceedings of the 2016 IEEE International Conference on Prognostics and Health Management (ICPHM), Ottawa, ON, Canada, 20–22 June 2016; pp. 1–8. [Google Scholar]
- Si, Y.; Qian, L.; Mao, B.; Zhang, D. A data-driven approach for fault detection of offshore wind turbines using random forests. In Proceedings of the IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 29 October–1 November 2017; pp. 3149–3154. [Google Scholar]
- Clifton, A.; Kilcher, L.; Lundquist, J.; Fleming, P. Using machine learning to predict wind turbine power output. Environ. Res. Lett. 2013, 8, 024009. [Google Scholar] [CrossRef]
- Clifton, A.; Daniels, M.; Lehning, M. Effect of winds in a mountain pass on turbine performance. Wind Energy 2014, 17, 1543–1562. [Google Scholar] [CrossRef]
- Du, M.; Ma, S.; He, Q. A SCADA data based anomaly detection method for wind turbines. In Proceedings of the 2016 China International Conference on Electricity Distribution (CICED), Xi’an, China, 10–13 August 2016; pp. 1–6. [Google Scholar]
- Lu, Y.; Sun, L.; Zhang, X.; Feng, F.; Kang, J.; Fu, G. Condition based maintenance optimization for offshore wind turbine considering opportunities based on neural network approach. Appl. Ocean Res. 2018, 74, 69–79. [Google Scholar] [CrossRef]
- Qian, P.; Ma, X.; Wang, Y. Condition monitoring of wind turbines based on extreme learning machine. In Proceedings of the 2015 21st International Conference on Automation and Computing (ICAC), Glasgow, UK, 11–12 September 2015; pp. 1–6. [Google Scholar]
- Kulkarni, P.A.; Dhoble, A.S.; Padole, P.M. Deep neural network-based wind speed forecasting and fatigue analysis of a large composite wind turbine blade. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2019, 233, 2794–2812. [Google Scholar] [CrossRef]
- Zhu, Q.; Li, H.; Wang, Z.; Chen, J.; Wang, B. Short-term wind power forecasting based on LSTM. Power Syst. Technol. 2017, 41, 3797–3802. [Google Scholar]
- Liu, Y.; Guan, L.; Hou, C.; Han, H.; Liu, Z.; Sun, Y.; Zheng, M. Wind power short-term prediction based on LSTM and discrete wavelet transform. Appl. Sci. 2019, 9, 1108. [Google Scholar] [CrossRef]
- Adlen, K.; Ridha, K. Recurrent neural network optimization for wind turbine condition prognosis. Diagnostyka 2022, 23, 2022301. [Google Scholar] [CrossRef]
- Gao, S.; Zeng, P.; Chen, Y.; Zheng, C.; Zhang, D.; Shang, R. A Dual Timescales Reactive Power Optimization Control Strategy Considering Voltage Security In Doubly-Fed Wind Farm. In Proceedings of the 2024 3rd International Conference on Energy, Power and Electrical Technology (ICEPET), Chengdu, China, 17–19 May 2024; pp. 1846–1850. [Google Scholar]
- Margaris, I.; Hansen, A.D.; Sørensen, P.; Hatziargyriou, N. Dynamic security issues in autonomous power systems with increasing wind power penetration. Electr. Power Syst. Res. 2011, 81, 880–887. [Google Scholar] [CrossRef]
- Ding, X.; Gong, Y.; Wang, C.; Zheng, Z. Artificial intelligence based abnormal detection system and method for wind power equipment. Int. J. Thermofluids 2024, 21, 100569. [Google Scholar] [CrossRef]
- Xu, Y.; Dong, Z.Y.; Xu, Z.; Meng, K.; Wong, K.P. An intelligent dynamic security assessment framework for power systems with wind power. IEEE Trans. Ind. Inform. 2012, 8, 995–1003. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, Z.Y.; Xu, Y.; Su, X.; Fu, Y. Impact analysis of intra-interval variation on dynamic security assessment of wind-energy power systems. In Proceedings of the 2020 IEEE Power & Energy Society General Meeting (PESGM), Montreal, QC, Canada, 2–6 August 2020; pp. 1–5. [Google Scholar]
- Shu, Y.; Yuan, Q.; Ke, W.; Kou, L. Security Access Control Method for Wind-Power-Monitoring System Based on Agile Authentication Mechanism. Electronics 2022, 11, 3938. [Google Scholar] [CrossRef]
- Zhao, R.; Chen, J.; Hou, Z.; Li, B.; Lin, M.; Duan, M. A security early warning method of power grid based on failure risk assessment. In Proceedings of the 2021 IEEE Sustainable Power and Energy Conference (iSPEC), Nanjing, China, 23–25 December 2021; pp. 1627–1633. [Google Scholar]
- Taghezouit, B.; Harrou, F.; Sun, Y.; Merrouche, W. Model-based fault detection in photovoltaic systems: A comprehensive review and avenues for enhancement. Results Eng. 2024, 21, 101835. [Google Scholar] [CrossRef]
- Lukas, F.; Viktor, U.; Claudio, R.; Bernhard, G.; Manuel, G. Fault detective: Automatic fault-detection for solar thermal systems based on artificial intelligence. Sol. Energy Adv. 2023, 3, 100033. [Google Scholar]
- Jia, Y.; Chen, G.; Zhao, L. Defect detection of photovoltaic modules based on improved VarifocalNet. Sci. Rep. 2024, 14, 15170. [Google Scholar] [CrossRef]
- Christian, U.; Christian, M.; Johannes, S.; Rutger, S.; Carolin, U. Explainable artificial intelligence for photovoltaic fault detection: A comparison of instruments. Sol. Energy 2023, 249, 139–151. [Google Scholar]
- Zhounan, W.; Peter, Z.; Basaran Bahadir, K.; Mirko, K. Drone-Based Solar Cell Inspection with Autonomous Deep Learning. In Infrastructure Robotics: Methodologies, Robotic Systems and Applications; IEEE: New York, NY, USA, 2024; pp. 337–365. [Google Scholar]
- Polymeropoulos, I.; Bezyrgiannidis, S.; Vrochidou, E.; Papakostas, G.A. Enhancing Solar Plant Efficiency: A Review of Vision-Based Monitoring and Fault Detection Techniques. Technologies 2024, 12, 175. [Google Scholar] [CrossRef]
- Mansouri, N.; Zitouni, N.; Mouelhi, A. AI Innovations in Photovoltaic Power Prediction. In Proceedings of the 2024 IEEE International Conference on Artificial Intelligence & Green Energy (ICAIGE), Yasmine Hammamet, Tunisia, 10–12 October 2024; pp. 1–6. [Google Scholar]
- Salman, D.; Direkoglu, C.; Kusaf, M.; Fahrioglu, M. Hybrid deep learning models for time series forecasting of solar power. Neural Comput. Appl. 2024, 36, 9095–9112. [Google Scholar] [CrossRef]
- Bakht, M.P.; Mohd, M.N.H.; Ibrahim, B.S.K.S.M.K.; Khan, N.; Sheikh, U.U.; Ab Rahman, A.A.-H. Advanced automated machine learning framework for photovoltaic power output prediction using environmental parameters and SHAP interpretability. Results Eng. 2025, 25, 103838. [Google Scholar] [CrossRef]
- Shao, X.; Pu, C.; Zhang, Y.; Kim, C.S. Domain Fusion CNN-LSTM for Short-Term Power Consumption Forecasting. IEEE Access 2020, 8, 188352–188362. [Google Scholar] [CrossRef]
- Xiang, X.; Li, X.; Zhang, Y.; Hu, J. A short-term forecasting method for photovoltaic power generation based on the TCN-ECANet-GRU hybrid model. Sci. Rep. 2024, 14, 6744. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, S.; Yu, J.J.Q.; Wei, X. ST-AGNet: Dynamic power system state prediction with spatial–temporal attention graph-based network. Appl. Energy 2024, 365, 123252. [Google Scholar] [CrossRef]
- Chen, R.; Cao, J.; Zhang, D. Probabilistic Prediction of Photovoltaic Power Using Bayesian Neural Network—LSTM Model. In Proceedings of the 2021 IEEE 4th International Conference on Renewable Energy and Power Engineering (REPE), Beijing, China, 9–11 October 2021; pp. 294–299. [Google Scholar]
- Amadou, B.; Alphousseyni, N.; Mbaye, N.E.h.; Senghane, M. Power optimization of a photovoltaic system with artificial intelligence algorithms over two seasons in tropical area. MethodsX 2023, 10, 101959. [Google Scholar]
- Ge, W.; Wang, X. PSO–LSTM–Markov Coupled Photovoltaic Power Prediction Based on Sunny, Cloudy and Rainy Weather. J. Electr. Eng. Technol. 2024, 20, 935–945. [Google Scholar] [CrossRef]
- Feng, N.; Song, D.; Liu, Z.; Wu, G. A Novel LSTM-XGBoost Model Optimized by SSA for Predicting Short-Term Photovoltaic Power. In Proceedings of the 2023 3rd International Conference on Energy, Power and Electrical Engineering (EPEE), Wuhan, China, 15–17 September 2023; pp. 128–133. [Google Scholar]
- Al, S.T.; Ahmed, H.; Gaeid, K.S.; Adnan, A.-S.; Yaseen, A.-H.; Smadi, K.A. Artificial intelligent control of energy management PV system. Results Control Optim. 2024, 14, 100343. [Google Scholar]
- ur Rehman, A.; Muhammad, A.; Sheeraz, I.; Aqib, S.; Nasim, U.; Al, O.S. Artificial Intelligence-Based Control and Coordination of Multiple PV Inverters for Reactive Power/Voltage Control of Power Distribution Networks. Energies 2022, 15, 6297. [Google Scholar] [CrossRef]
- Wang, Y.; Qi, Y.; Li, J.; Huan, L.; Li, Y.; Xie, B.; Wang, Y. The Wind and Photovoltaic Power Forecasting Method Based on Digital Twins. Appl. Sci. 2023, 13, 8374. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, J.; Liu, H.; Tong, J.; Sun, Z. Prediction of energy photovoltaic power generation based on artificial intelligence algorithm. Neural Comput. Appl. 2020, 33, 821–835. [Google Scholar] [CrossRef]
- Mandal, P.; Madhira, S.T.S.; Haque, A.U.; Meng, J.; Pineda, R.L. Forecasting Power Output of Solar Photovoltaic System Using Wavelet Transform and Artificial Intelligence Techniques. Procedia Comput. Sci. 2012, 12, 332–337. [Google Scholar] [CrossRef]
- Salazar-Peña, N.; Tabares, A.; González-Mancera, A. AI-Powered Dynamic Fault Detection and Performance Assessment in Photovoltaic Systems. arXiv 2024, arXiv:2409.00052. [Google Scholar]
- Kim, J.; Ibrahim, H.; Wang, S.; Mete, A.; Xie, L.; Enjeti, P.; Kumar, P.R. Cyber-Secure and Safe Operation of Solar Photovoltaic Power Distribution Systems. In Proceedings of the 2024 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 25–29 February 2024; pp. 1280–1287. [Google Scholar]
- Murat, K.; Umit, C.; Vinayak, S.; Ozgur, G. Gaining Insight Into Solar Photovoltaic Power Generation Forecasting Utilizing Explainable Artificial Intelligence Tools. IEEE Access 2020, 8, 187814–187823. [Google Scholar]
- Nozarian, M.; Fereidunian, A.; Hajizadeh, A.; Shahinzadeh, H. Exploring Social Capital in Situation-Aware and Energy Hub-Based Smart Cities: Towards a Pandemic-Resilient City. Energies 2023, 16, 6479. [Google Scholar] [CrossRef]
- Shaneh, M.; Shahinzadeh, H.; Iranpour, M.; Bayindir, R.; Nafisi, H.; Marzband, M. Risk curtailment assessment in smart deregulated grid with the presence of renewable and storage sources. In Proceedings of the 2020 6th Iranian Conference on Signal Processing and Intelligent Systems (ICSPIS), Mashhad, Iran, 23–24 December 2020; pp. 1–8. [Google Scholar]
- Karimi, A.; Aminifar, F.; Fereidunian, A.; Lesani, H. Energy storage allocation in wind integrated distribution networks: An MILP-Based approach. Renew. Energy 2019, 134, 1042–1055. [Google Scholar] [CrossRef]
- Nadeem, F.; Hussain, S.M.S.; Tiwari, P.K.; Goswami, A.K.; Ustun, T.S. Comparative Review of Energy Storage Systems, Their Roles and Impacts on Future Power Systems. IEEE Access 2018, 7, 4555–4585. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, X.; Mu, X.; Long, Z.; Zhou, L. Energy Storage Techniques Applied in Smart Grid. In Communications, Signal Processing, and Systems; Springer: Singapore, 2020. [Google Scholar]
- Karanki, S.B.; Xu, D.; Venkatesh, B.; Singh, B.N. Optimal location of battery energy storage systems in power distribution network for integrating renewable energy sources. In Proceedings of the 2013 IEEE Energy Conversion Congress and Exposition, Denver, CO, USA, 15–19 September 2013; pp. 4553–4558. [Google Scholar]
- Kolokotsa, D.; Kampelis, N.; Mavrigiannaki, A.; Gentilozzi, M.; Paredes, F.; Montagnino, F.; Venezia, L. On the integration of the energy storage in smart grids: Technologies and applications. Energy Storage 2019, 1, e50. [Google Scholar] [CrossRef]
- Biswal, B.; Deb, S.; Datta, S.; Ustun, T.S.; Cali, U. Review on smart grid load forecasting for smart energy management using machine learning and deep learning techniques. Energy Rep. 2024, 12, 3654–3670. [Google Scholar] [CrossRef]
- Murnane, M.; Ghazel, A. A closer look at state of charge (SOC) and state of health (SOH) estimation techniques for batteries. Analog Devices 2017, 2, 426–436. [Google Scholar]
- Ho, W.S.; Macchietto, S.; Lim, J.S.; Hashim, H.; Muis, Z.A.; Liu, W.H. Optimal scheduling of energy storage for renewable energy distributed energy generation system. Renew. Sustain. Energy Rev. 2016, 58, 1100–1107. [Google Scholar] [CrossRef]
- Hu, Y.; Kuang, W.; Qin, Z.; Li, K.; Zhang, J.; Gao, Y.; Li, W.; Li, K. Artificial intelligence security: Threats and countermeasures. ACM Comput. Surv. (CSUR) 2021, 55, 1–36. [Google Scholar] [CrossRef]
- Dey, B.; Roy, B.; Datta, S.; Ustun, T. Forecasting ethanol demand in India to meet future blending targets: A comparison of ARIMA and various regression models. Energy Rep. 2023, 9, 411–418. [Google Scholar] [CrossRef]
- Das, R.P.; Samal, T.K.; Luhach, A.K. An Energy Efficient Evolutionary Approach for Smart City-Based IoT Applications. Math. Probl. Eng. 2023, 2023, 9937949. [Google Scholar] [CrossRef]
- Xin, Q.; Alazab, M.; Díaz, V.G.; Montenegro-Marin, C.E.; Crespo, R.G. A deep learning architecture for power management in smart cities. Energy Rep. 2022, 8, 1568–1577. [Google Scholar] [CrossRef]
- Yao, Z.; Zhang, T.; Wang, Q.; Zhao, Y. Short-Term Power Load Forecasting of Integrated Energy System Based on Attention-CNN-DBILSTM. Math. Probl. Eng. 2022, 2022, 1075698. [Google Scholar] [CrossRef]
- Khan, N.; Shahid, Z.; Alam, M.M.; Bakar Sajak, A.A.; Mazliham, M.; Khan, T.A.; Ali Rizvi, S.S. Energy management systems using smart grids: An exhaustive parametric comprehensive analysis of existing trends, significance, opportunities, and challenges. Int. Trans. Electr. Energy Syst. 2022, 2022, 3358795. [Google Scholar] [CrossRef]
- Kong, X.; Li, C.; Wang, C.; Zhang, Y.; Zhang, J. Short-term electrical load forecasting based on error correction using dynamic mode decomposition. Appl. Energy 2020, 261, 114368. [Google Scholar] [CrossRef]
- Widodo, D.; Iksan, N.; Udayanti, E. Renewable energy power generation forecasting using deep learning method. IOP Conf. Ser. Earth Environ. Sci. 2021, 700, 012026. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, X.; Wang, L.; Yang, J. Study on smart home energy management system based on artificial intelligence. J. Sens. 2021, 2021, 9101453. [Google Scholar] [CrossRef]
- Li, M.; Xu, W.; Zhang, S.; Liu, L.; Hussain, A.; Hu, E.; Zhang, J.; Mao, Z.; Chen, Z. State of Health Estimation and Battery Management: A Review of Health Indicators, Models and Machine Learning. Materials 2025, 18, 145. [Google Scholar] [CrossRef]
- Akbar, K.; Zou, Y.; Awais, Q.; Baig, M.J.A.; Jamil, M. A machine learning-based robust state of health (SOH) prediction model for electric vehicle batteries. Electronics 2022, 11, 1216. [Google Scholar] [CrossRef]
- Yu, Q.; Nie, Y.; Guo, S.; Li, J.; Zhang, C. Machine learning enables rapid state of health estimation of each cell within battery pack. Appl. Energy 2024, 375, 124165. [Google Scholar] [CrossRef]
- Vidal, C.; Malysz, P.; Kollmeyer, P.; Emadi, A. Machine learning applied to electrified vehicle battery state of charge and state of health estimation: State-of-the-art. IEEE Access 2020, 8, 52796–52814. [Google Scholar] [CrossRef]
- Talluri, G.; Lozito, G.M.; Grasso, F.; Iturrino Garcia, C.; Luchetta, A. Optimal battery energy storage system scheduling within renewable energy communities. Energies 2021, 14, 8480. [Google Scholar] [CrossRef]
- Mehrjerdi, H.; Hemmati, R. Modeling and optimal scheduling of battery energy storage systems in electric power distribution networks. J. Clean. Prod. 2019, 234, 810–821. [Google Scholar] [CrossRef]
- Lu, Y.; Xiang, Y.; Huang, Y.; Yu, B.; Weng, L.; Liu, J. Deep reinforcement learning based optimal scheduling of active distribution system considering distributed generation, energy storage and flexible load. Energy 2023, 271, 127087. [Google Scholar] [CrossRef]
- Xin, H.; Zhang, M.; Seuss, J.; Wang, Z.; Gan, D. A real-time power allocation algorithm and its communication optimization for geographically dispersed energy storage systems. IEEE Trans. Power Syst. 2013, 28, 4732–4741. [Google Scholar] [CrossRef]
- Zheng, Y.; Hill, D.J.; Dong, Z.Y. Multi-agent optimal allocation of energy storage systems in distribution systems. IEEE Trans. Sustain. Energy 2017, 8, 1715–1725. [Google Scholar] [CrossRef]
- Lagorse, J.; Paire, D.; Miraoui, A. A multi-agent system for energy management of distributed power sources. Renew. Energy 2010, 35, 174–182. [Google Scholar] [CrossRef]
- Carvalho, R.P.; Marchiori, C.F.N.; Brandell, D.; Araujo, C.M. Artificial intelligence driven in-silico discovery of novel organic lithium-ion battery cathodes. Energy Storage Mater. 2022, 44, 313–325. [Google Scholar] [CrossRef]
- Citroni, R.; Mangini, F.; Frezza, F. Efficient Integration of Ultra-low Power Techniques and Energy Harvesting in Self-Sufficient Devices: A Comprehensive Overview of Current Progress and Future Directions. Sensors 2024, 24, 4471. [Google Scholar] [CrossRef]
- Scharf, J.; Chouchane, M.; Finegan, D.P.; Lu, B.; Redquest, C.; Kim, M.-c.; Yao, W.; Franco, A.A.; Gostovic, D.; Liu, Z.; et al. Bridging nano- and microscale X-ray tomography for battery research by leveraging artificial intelligence. Nat. Nanotechnol. 2022, 17, 446–459. [Google Scholar] [CrossRef]
- Qiu, W.; Wang, Y.; Liu, J. Multiscale computations and artificial intelligent models of electrochemical performance in Li-ion battery materials. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2021, 12, e1592. [Google Scholar] [CrossRef]
- Li, X.; Zhang, X.; Lin, F.; Blaabjerg, F. Artificial-Intelligence-Based Design for Circuit Parameters of Power Converters. IEEE Trans. Ind. Electron. 2022, 69, 11144–11155. [Google Scholar] [CrossRef]
- Del Grosso, G.; Pichler, G.; Palamidessi, C.; Piantanida, P. Bounding information leakage in machine learning. Neurocomputing 2023, 534, 1–17. [Google Scholar] [CrossRef]
- Goldblum, M.; Tsipras, D.; Xie, C.; Chen, X.; Schwarzschild, A.; Song, D.; Mądry, A.; Li, B.; Goldstein, T. Dataset security for machine learning: Data poisoning, backdoor attacks, and defenses. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 1563–1580. [Google Scholar] [CrossRef]
- Kapoor, S.; Narayanan, A. Leakage and the reproducibility crisis in ML-based science. arXiv 2022, arXiv:2207.07048. [Google Scholar]
- Zhang, W.; Tople, S.; Ohrimenko, O. Leakage of dataset properties in Multi-Party machine learning. In Proceedings of the 30th USENIX Security Symposium (USENIX Security 21), Online, 11–13 August 2021; pp. 2687–2704. [Google Scholar]
- Tonni, S.M. Information Leakage in Machine Learning Models. Doctoral Dissertation, Macquarie University, Melbourne, Australian, 2020. [Google Scholar]
- Sasse, L.; Nicolaisen-Sobesky, E.; Dukart, J.; Eickhoff, S.B.; Götz, M.; Hamdan, S.; Komeyer, V.; Kulkarni, A.; Lahnakoski, J.; Love, B.C. On Leakage in Machine Learning Pipelines. arXiv 2023, arXiv:2311.04179. [Google Scholar]
- Bae, H.; Jang, J.; Jung, D.; Jang, H.; Ha, H.; Lee, H.; Yoon, S. Security and privacy issues in deep learning. arXiv 2018, arXiv:1807.11655. [Google Scholar]
- Alberti, M.; Pondenkandath, V.; Wursch, M.; Bouillon, M.; Seuret, M.; Ingold, R.; Liwicki, M. Are you tampering with my data? In Proceedings of the European Conference on Computer Vision (ECCV) Workshops, Munich, Germany, 8–14 September 2018. [Google Scholar]
- Borghetti, J.-S. How can Artificial Intelligence be defective? In Liability for Artificial Intelligence and the Internet of Things; Nomos Verlagsgesells chaft: Baden, Germany, 2019; pp. 63–76. [Google Scholar]
- Yampolskiy, R.V. Artificial Intelligence Safety and Security; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Feng, Z.-k.; Niu, W.-j.; Zhang, T.-h.; Wang, W.-c.; Yang, T. Deriving hydropower reservoir operation policy using data-driven artificial intelligence model based on pattern recognition and metaheuristic optimizer. J. Hydrol. 2023, 624, 129916. [Google Scholar] [CrossRef]
- Shaw, A.R.; Smith Sawyer, H.; LeBoeuf, E.J.; McDonald, M.P.; Hadjerioua, B. Hydropower optimization using artificial neural network surrogate models of a high-fidelity hydrodynamics and water quality model. Water Resour. Res. 2017, 53, 9444–9461. [Google Scholar] [CrossRef]
- Uzlu, E.; Akpınar, A.; Özturk, H.T.; Nacar, S.; Kankal, M. Estimates of hydroelectric generation using neural networks with the artificial bee colony algorithm for Turkey. Energy 2014, 69, 638–647. [Google Scholar] [CrossRef]
- Hanoon, M.S.; Ahmed, A.N.; Razzaq, A.; Oudah, A.Y.; Alkhayyat, A.; Huang, Y.F.; El-Shafie, A. Prediction of hydropower generation via machine learning algorithms at three Gorges Dam, China. Ain Shams Eng. J. 2023, 14, 101919. [Google Scholar] [CrossRef]
- Monteiro, C.; Ramirez-Rosado, I.J.; Fernandez-Jimenez, L.A. Short-term forecasting model for aggregated regional hydropower generation. Energy Convers. Manag. 2014, 88, 231–238. [Google Scholar] [CrossRef]
- Fera, F.T.; Spandonidis, C. An Artificial Intelligence and Industrial Internet of Things-Based Framework for Sustainable Hydropower Plant Operations. Smart Cities 2024, 7, 496–517. [Google Scholar] [CrossRef]
- Villeneuve, Y.; Séguin, S.; Chehri, A. Ai-based scheduling models, optimization, and prediction for hydropower generation: Opportunities, issues, and future directions. Energies 2023, 16, 3335. [Google Scholar] [CrossRef]
- Karakatsanis, D.; Theodossiou, N. Smart hydropower water distribution networks, use of artificial intelligence methods and metaheuristic algorithms to generate energy from existing water supply networks. Energies 2022, 15, 5166. [Google Scholar] [CrossRef]
- Hajimohammadali, F.; Crisostomi, E.; Tucci, M.; Fontana, N. Evaluating Deep Learning Networks Versus Hybrid Network for Smart Monitoring of Hydropower Plants. Energies 2024, 17, 5670. [Google Scholar] [CrossRef]
- Siniosoglou, I.; Radoglou-Grammatikis, P.; Efstathopoulos, G.; Fouliras, P.; Sarigiannidis, P. A unified deep learning anomaly detection and classification approach for smart grid environments. IEEE Trans. Netw. Serv. Manag. 2021, 18, 1137–1151. [Google Scholar] [CrossRef]
- Cui, L.; Qu, Y.; Gao, L.; Xie, G.; Yu, S. Detecting false data attacks using machine learning techniques in smart grid: A survey. J. Netw. Comput. Appl. 2020, 170, 102808. [Google Scholar] [CrossRef]
- Zeng, Y.; Liu, J.; Sun, K.; Hu, L.-w. Machine learning based system performance prediction model for reactor control. Ann. Nucl. Energy 2018, 113, 270–278. [Google Scholar] [CrossRef]
- Saeed, A.; Rashid, A. Development of core monitoring system for a nuclear power plant using artificial neural network technique. Ann. Nucl. Energy 2020, 144, 107513. [Google Scholar] [CrossRef]
- Do Koo, Y.; An, Y.J.; Kim, C.-H.; Na, M.G. Nuclear reactor vessel water level prediction during severe accidents using deep neural networks. Nuclear Eng. Technol. 2019, 51, 723–730. [Google Scholar] [CrossRef]
- Qi, B.; Liang, J.; Tong, J. Fault diagnosis techniques for nuclear power plants: A review from the artificial intelligence perspective. Energies 2023, 16, 1850. [Google Scholar] [CrossRef]
- Fu, Y.; Zhang, D.; Xiao, Y.; Wang, Z.; Zhou, H. An interpretable time series data prediction framework for severe accidents in nuclear power plants. Entropy 2023, 25, 1160. [Google Scholar] [CrossRef]
- Lee, S.; Huh, J.-H. An effective security measures for nuclear power plant using big data analysis approach. J. Supercomput. 2019, 75, 4267–4294. [Google Scholar] [CrossRef]
- Yockey, P.; Erickson, A.; Spirito, C. Cyber threat assessment of machine learning driven autonomous control systems of nuclear power plants. Prog. Nucl. Energy 2023, 166, 104960. [Google Scholar] [CrossRef]
- Kumari, A.; Dubey, R.; Sharma, I. ShNP: Shielding Nuclear Plants from Cyber Attacks Using Artificial Intelligence Techniques. In Proceedings of the 2023 Annual International Conference on Emerging Research Areas: International Conference on Intelligent Systems (AICERA/ICIS), Kanjirapally, India, 16–18 November 2023; pp. 1–6. [Google Scholar]
- Mc Leod, J.E.N.; Rivera, S.S. Reliability Optimization of New Generation Nuclear Power Plants Using Artificial Intelligence. In Reliability Engineering and Computational Intelligence for Complex Systems: Design, Analysis and Evaluation; Springer: Berlin/Heidelberg, Germany, 2023; pp. 159–173. [Google Scholar]
- Almoqbil, A.H.N. Anomaly detection for early ransomware and spyware warning in nuclear power plant systems based on FusionGuard. Int. J. Inf. Secur. 2024, 23, 2377–2394. [Google Scholar] [CrossRef]
- Ahmed, R.; Shehab, S.A.; Elzeki, O.M.; Darwish, A.; Hassanein, A.E. An explainable AI for green hydrogen production: A deep learning regression model. Int. J. Hydrogen Energy 2024, 83, 1226–1242. [Google Scholar] [CrossRef]
- Devasahayam, S. Deep learning models in Python for predicting hydrogen production: A comparative study. Energy 2023, 280, 128088. [Google Scholar] [CrossRef]
- Zhang, W.; Maleki, A.; Pourfayaz, F.; Shadloo, M.S. An artificial intelligence approach to optimization of an off-grid hybrid wind/hydrogen system. Int. J. Hydrogen Energy 2021, 46, 12725–12738. [Google Scholar] [CrossRef]
- Hwangbo, S.; Nam, K.; Heo, S.; Yoo, C. Hydrogen-based self-sustaining integrated renewable electricity network (HySIREN) using a supply-demand forecasting model and deep-learning algorithms. Energy Convers. Manag. 2019, 185, 353–367. [Google Scholar] [CrossRef]
- Zhao, A.P.; Zhang, Q.; Alhazmi, M.; Hu, P.J.-H.; Zhang, S.; Yan, X. AI for science: Covert cyberattacks on energy storage systems. J. Energy Storage 2024, 99, 112835. [Google Scholar] [CrossRef]
- Halgamuge, M.N. Leveraging Deep Learning to Strengthen the Cyber-Resilience of Renewable Energy Supply Chains: A Survey. IEEE Commun. Surv. Tutor. 2024, 26, 2146–2175. [Google Scholar] [CrossRef]
- Sawas, A.M.; Khani, H.; Farag, H.E. On the resiliency of power and gas integration resources against cyber attacks. IEEE Trans. Ind. Inform. 2020, 17, 3099–3110. [Google Scholar] [CrossRef]
- Mirfallah Lialestani, S.P.; Parcerisa, D.; Himi, M.; Abbaszadeh Shahri, A. Generating 3D geothermal maps in Catalonia, Spain using a hybrid adaptive multitask deep learning procedure. Energies 2022, 15, 4602. [Google Scholar] [CrossRef]
- Moraga, J.; Duzgun, H.; Cavur, M.; Soydan, H. The geothermal artificial intelligence for geothermal exploration. Renew. Energy 2022, 192, 134–149. [Google Scholar] [CrossRef]
- Meena, M.; Shubham, S.; Paritosh, K.; Pareek, N.; Vivekanand, V. Production of biofuels from biomass: Predicting the energy employing artificial intelligence modelling. Bioresour. Technol. 2021, 340, 125642. [Google Scholar] [CrossRef]
- Okolie, J.A. Introduction of Machine Learning and artificial intelligence in biofuel technology. Curr. Opin. Green Sustain. Chem. 2024, 47, 100928. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, H.; Li, X.; Liao, X.; Cui, W.; Liu, F.; Li, D. Artificial Intelligence in Renewable Energy Systems: Applications and Security Challenges. Energies 2025, 18, 1931. https://doi.org/10.3390/en18081931
Xiang H, Li X, Liao X, Cui W, Liu F, Li D. Artificial Intelligence in Renewable Energy Systems: Applications and Security Challenges. Energies. 2025; 18(8):1931. https://doi.org/10.3390/en18081931
Chicago/Turabian StyleXiang, Hui, Xiaolei Li, Xiao Liao, Wei Cui, Fengkai Liu, and Donghe Li. 2025. "Artificial Intelligence in Renewable Energy Systems: Applications and Security Challenges" Energies 18, no. 8: 1931. https://doi.org/10.3390/en18081931
APA StyleXiang, H., Li, X., Liao, X., Cui, W., Liu, F., & Li, D. (2025). Artificial Intelligence in Renewable Energy Systems: Applications and Security Challenges. Energies, 18(8), 1931. https://doi.org/10.3390/en18081931