Defining the Power and Energy Demands from Ships at Anchorage for Offshore Power Supply Solutions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Background
2.2. Methodology
- Focus on core ports of the TEN-T network: the final list includes 28 core ports, 4 comprehensive ports, and 5 ports not part of the TEN-T network, as the countries are not part of the EU.
- Ensure variation of EU or neighbouring counties (at least 20 counties): a total of 22 countries are represented, most of which are European (20), apart from Egypt and Turkey, which are considered EU adjacent.
- Ensure representation of sea basins, i.e., Atlantic, Mediterranean, Black Sea, North Sea, Baltic Sea: the final list includes 4 Atlantic ports, 18 Mediterranean ports, 1 Black Sea port, 9 North Sea ports, and 5 Baltic Sea ports.
2.3. Data
- Mean power demand, per IMO GHG study,
- Mean power demand, per EMSA SSE guidance,
- Peak power demand, per EMSA SSE guidance,
- Mean power demand, per load factors assumptions,
3. Results
3.1. Aggregate Results per Ship Type and Port
3.2. Focused Results per Port and per Ship Type
3.3. Statistical Analysis and Modelling
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AE | Auxiliary engine |
CII | Carbon Intensity Indicator |
CO2 | Carbon dioxide |
EEDI | Energy Efficiency Design Index |
EEXI | Energy Efficiency Existing ship Index |
EMSA | European Maritime Safety Agency |
ETS | Emission Trading System |
EU | European Union |
GHG | Greenhouse gas |
HFO | Heavy fuel oil |
IMO | International Maritime Organization |
KDE | Kernel Density Estimate |
KS | Kolmogorov–Smirnov |
LF | Load factors |
MDO | Marine diesel oil |
ME | Main engine |
MLE | Maximum Likelihood Estimation |
NOX | Nitrogen Oxides |
OPS | Onshore Power Supply |
PM | Particulate matter |
SEEMP | Ship Energy Management Plan |
SOX | Sulphur oxides |
SSE | Shore-side electricity |
TEU | Twenty-foot equivalent unit |
References
- Bergqvist, R.; Monios, J. Green Ports: Inland and Seaside Sustainable Transportation Strategies; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–284. [Google Scholar] [CrossRef]
- IMO. Fourth IMO Greenhouse Gas Study 2020; IMO: London, UK, 2020. [Google Scholar]
- United Nations. COP21—The Paris Agreement; United Nations: New York, NY, USA, 2015. [Google Scholar]
- MEPC. MEPC72—Initial IMO Strategy on Reduction of GHG Emissions from Ships; IMO: London, UK, 2018. [Google Scholar]
- European Union Regulation. (EU) 2023/1805 on the Use of Renewable and Low-Carbon Fuels in Maritime Transport, and Amending Directive 2009/16/EC; European Commission: Brussels, Belgium, 2023. [Google Scholar]
- European Union Regulation. (EU) 2023/1804 on the Deployment of Alternative Fuels Infrastructure, and Repealing Directive 2014/94/EU; European Commission: Brussels, Belgium, 2023. [Google Scholar]
- Stolz, B.; Held, M.; Georges, G.; Boulouchos, K. The CO2 Reduction Potential of Shore-Side Electricity in Europe. Appl. Energy 2021, 285, 116425. [Google Scholar] [CrossRef]
- Winkel, R.; Weddige, U.; Johnsen, D.; Hoen, V.; Papaefthimiou, S. Shore Side Electricity in Europe: Potential and Environmental Benefits. Energy Policy 2016, 88, 584–593. [Google Scholar] [CrossRef]
- Dalsøren, S.B.; Eide, M.S.; Endresen, O.; Mjelde, A.; Gravir, G.; Isaksen, I.S.A. Update on Emissions and Environmental Impacts from the International Fleet of Ships: The Contribution from Major Ship Types and Ports. Atmos. Chem. Phys. 2009, 9, 2171–2194. [Google Scholar] [CrossRef]
- Peša, T.; Krčum, M.; Kero, G.; Šoda, J. Electric Ferry Fleet Peak Charging Power Schedule Optimization Considering the Timetable and Daily Energy Profile. Appl. Sci. 2025, 15, 235. [Google Scholar] [CrossRef]
- IMO. Just In Time (JIT) Arrival Guide—Barriers and Potential Solutions; IMO: London, UK, 2020. [Google Scholar]
- MEPC. MEPC.377(80)—2023 IMO Strategy on Reduction of GHG Emissions from Ships; IMO: London, UK, 2023. [Google Scholar]
- DNV. Maritime Forecast to 2050—Energy Transition Outlook; DNV: Høvik, Norway, 2022. [Google Scholar]
- European Council Fit for 55—The EU’s Plan for a Green Transition. Available online: https://www.consilium.europa.eu/en/policies/green-deal/fit-for-55-the-eu-plan-for-a-green-transition/ (accessed on 14 February 2023).
- European Union Regulation. (EU) 2023/957 Amending Regulation (EU) 2015/757 in Order to Provide for the Inclusion of Maritime Transport Activities in the EU Emissions Trading System and for the Monitoring, Reporting and Verification of Emissions of Additional Greenhouse Gases and Emissions from Additional Ship Types; European Commission: Brussels, Belgium, 2023. [Google Scholar]
- Kizielewicz, J. Monitoring Energy Efficiency and Environmental Ship Index by Cruise Seaports in Northern Europe. Energies 2022, 15, 4215. [Google Scholar] [CrossRef]
- Kumar, J.; Parthasarathy, C.; Västi, M.; Laaksonen, H.; Shafie-Khah, M.; Kauhaniemi, K. Sizing and Allocation of Battery Energy Storage Systems in Åland Islands for Large-Scale Integration of Renewables and Electric Ferry Charging Stations. Energies 2020, 13, 317. [Google Scholar] [CrossRef]
- Bao, J.; Hu, S.; Fei, J.; Amaral, M.; Amaro, N.; Arsénio, P. Methodology for Assessing Power Needs for Onshore Power Supply in Maritime Ports. Sustainability 2023, 15, 16670. [Google Scholar] [CrossRef]
- Wang, Y.; Liang, C.; Aktas, T.U.; Shi, J.; Pan, Y.; Fang, S.; Lim, G. Joint Voyage Planning and Onboard Energy Management of Hybrid Propulsion Ships. J. Mar. Sci. Eng. 2023, 11, 585. [Google Scholar] [CrossRef]
- Albo-López, A.B.; Carrillo, C.; Díaz-Dorado, E. Contribution of Onshore Power Supply (OPS) and Batteries in Reducing Emissions from Ro-Ro Ships in Ports. J. Mar. Sci. Eng. 2024, 12, 1833. [Google Scholar] [CrossRef]
- Faber, J.; Jaspers, D.; Kleijn, A. Summary Assessment of the Status of Floating Powerplants; CE Delft: Delft, The Netherlands, 2022. [Google Scholar]
- Karadeniz Holding Powership. Available online: https://www.karadenizholding.com/group-companies-powership (accessed on 20 February 2025).
- Therma Marine Inc. AboitizPower. Available online: https://aboitizpower.com/about-us/our-businesses/power-generation/thermal/therma-marine-inc (accessed on 20 February 2025).
- Hummel LNG Hybrid Barge. Available online: https://www.ship-technology.com/projects/hummel-lng-hybrid-barge/ (accessed on 20 February 2025).
- Kalosh, A. TECO 2030 Power Barge—A Solution for Places with Insufficient Electrical Grid. Available online: https://www.seatrade-cruise.com/environmental-health/teco-2030-power-barge-a-solution-for-places-with-insufficient-electrical-grid (accessed on 20 February 2025).
- Ventus Maritime Mobile Shore Power. Available online: https://ventus-maritime.com/en/ (accessed on 20 February 2025).
- Stillstrom by Maersk Green Anchorage Zones. Available online: https://stillstrom.com/green-anchorage-zones (accessed on 20 February 2025).
- EMSA. Shore-Side Electricity: Guidance to Port Authorities and Administrations—Part 1: Equipment and Technology; EMSA: Lisbon, Portugal, 2022. [Google Scholar]
- EMSA. Shore-Side Electricity: Guidance to Port Authorities and Administrations—Part 2: Planning, Operations and Safety; EMSA: Lisbon, Portugal, 2022. [Google Scholar]
- Heaver, T.D. Reducing Anchorage in Ports: Changing Technologies, Opportunities and Challenges. Front. Future Transp. 2021, 2, 709762. [Google Scholar] [CrossRef]
- Marine Traffic. Just In Time Arrival: Emissions Reduction Potential in Global Container Shipping; IMO: London, UK, 2022. [Google Scholar]
- Sotiralis, P.; Annetis, M.; Ntachan, F.; Diamantis, C.; Keratsa, L.; Ventikos, N.P. Just in Time Port Call Optimisation: Preliminary Regulatory Compliance Evaluation and Environmental Performance Assessment. J. Phys. Conf. Ser. 2024, 2867, 012010. [Google Scholar] [CrossRef]
- Łebkowski, A.; Wnorowski, J. A Comparative Analysis of Energy Consumption by Conventional and Anchor Based Dynamic Positioning of Ship. Energies 2021, 14, 524. [Google Scholar] [CrossRef]
- Rohner, C. Daily Fuel Consumption and Greenhouse Gas Emissions by Bulk Carriers Anchoring in the Southern Gulf Islands; Centre for Marine Affairs: Southern Gulf Islands, BC, Canada, 2020. [Google Scholar]
- European Union Regulation. (EU) 1315/2013 on Union Guidelines for the Development of the Trans-European Transport Network and Repealing Decision No 661/2010/EU; European Commission: Brussels, Belgium, 2013. [Google Scholar]
- IMO. Third IMO Greenhouse Gas Study 2014; IMO: London, UK, 2015. [Google Scholar]
- Abu Bakar, N.N.; Bazmohammadi, N.; Vasquez, J.C.; Guerrero, J.M. Electrification of Onshore Power Systems in Maritime Transportation towards Decarbonization of Ports: A Review of the Cold Ironing Technology. Renew. Sustain. Energy Rev. 2023, 178, 113243. [Google Scholar] [CrossRef]
- Browning, L.; Bailey, K. Current Methodologies and Best Practices for Preparing Port Emission Inventories; ICF International: Reston, VA, USA, 2006. [Google Scholar]
- Nicewicz, G.; Tarnapowicz, D. Assessment of Marine Auxiliary Engines Load Factor in Ports. Manag. Syst. Prod. Eng. 2012, 3, 12–17. [Google Scholar]
- Moreno-Gutí, J.; Moreno-Gutí Errez, J.; Durán, V.; Durán-Grados, D.; Uriondo, Z.; Angel, J. Emission-Factor Uncertainties in Maritime Transport Atmospheric Measurement Techniques Discussions Emission-Factor Uncertainties in Maritime Transport in the Strait of Gibraltar, Spain Emission-Factor Uncertainties in Maritime Transport Emission-Factor Uncertainties in Maritime Transport. Atmos. Meas. Tech. Discuss. 2012, 5, 5953–5991. [Google Scholar] [CrossRef]
- Scarbrough, T.; Wakeling, D.; Tsagatakis, I. Study of Ship Emissions Whilst at Berth in the UK; Ricardo Energy & Environment: Didcot, UK, 2018. [Google Scholar]
- Ericsson, P.; Fazlagic, I. Shore-Side Power Supply: A Feasibility Study and a Technical Solution for an on-Shore Electrical Infrastructure to Supply Vessels with Electric Power While in Port; Chalmers University of Technology: Goteborg, Sweden, 2022. [Google Scholar]
- Scarbrough, T.; Tsagatakis, I.; Smith, K.; Wakeling, D.; Smith, T.; O’Keeffe, E.; Hauerhoff, E. A Review of the NAEI Shipping Emissions Methodology; Ricardo Energy & Environment: Didcot, UK, 2017. [Google Scholar]
- Hogg, R.V.; McKean, J.W.; Craig, A.T. Probability and Statistical Inference. In Introduction to Mathematical Statistics; Pearson: London, UK, 2018. [Google Scholar]
- Montgomery, D.C.; Runger, G.C. Applied Probability and Statistics for Engineers, 7th ed.; Wiley: Hoboken, NJ, USA, 2021. [Google Scholar]
- S&P Global Sea-Web: The Ultimate Marine Online Database. Available online: https://www.spglobal.com/market-intelligence/en/solutions/sea-web-maritime-reference (accessed on 21 February 2025).
- S&P Global StatCode5 Shiptype Coding System. Available online: https://cdn.ihs.com/www/pdf/Statcode-Shiptype-Coding-System.pdf (accessed on 21 February 2025).
Attribute | Description | Type |
---|---|---|
Port name | The name of the port, as commonly referred to | String |
Country | The country that the port belongs to | String |
Latitude | The latitude of the port location | Geometry |
Longitude | The longitude of the port location | Geometry |
TEN-T | The categorisation of the port with respect to the TEN-T network | String |
Attribute | Description | Type |
---|---|---|
IMO number | The 9-digit unique identification code for a vessel | Integer |
Port name | The name of the port of call | String |
Port zone | The specific zone/location of the port of call that the ship called | String |
Arrival date | The date of arrival at the port of call | Date |
Arrival time | The time of arrival at the port of call | Time |
Hours in port | The time in hours that the ship remained at the port of call or at anchorage | Integer |
Attribute | Description | Type |
---|---|---|
IMO number | The 9-digit unique identification code for a vessel | Integer |
Ship name | The name of the ship, as given by its company | String |
Ship type | The ship type/category, as defined by the relevant databases | String |
Total ME power | The total power in kW (MCR) of the main engine | Float |
AE power | The power in kW of the AE (not the emergency generator) | Float |
Number of AEs | The number of auxiliary engines | Integer |
Ship Type | Total Port Calls (no.) | Average Time (h) at Anchorage | Average Power Demand (MW) | Average Energy Demand (MWh) | ||||
---|---|---|---|---|---|---|---|---|
IMO | EMSA | LF | IMO | EMSA | LF | |||
Bulk carriers | 35,694 | 16.63 | 0.28 | 0.61 | 0.42 | 4.68 | 10.14 | 6.78 |
Chemical tankers | 50,996 | 13.4 | 0.4 | 7.98 | 1.35 | 6.19 | 115.35 | 20.79 |
Containers | 23,231 | 14.07 | 1.06 | 2.45 | 1.2 | 14.28 | 33.1 | 15.39 |
Cruise | 1378 | 7.63 | 5.15 | 7.07 | 7.71 | 53.28 | 64.23 | 77.54 |
Dredging vessels | 1433 | 7.52 | 0.32 | 1.35 | 0.33 | 2.41 | 1.29 | 2.7 |
Fishing | 7160 | 5.98 | 0.2 | 0.52 | 0.38 | 1.2 | 3.17 | 2.12 |
General cargo | 47,972 | 16.33 | 0.17 | 1.51 | 0.17 | 2.7 | 24.58 | 2.69 |
Liquified gas tankers | 9327 | 17.24 | 5.57 | 7.75 | 2.69 | 99.58 | 136.29 | 46.29 |
Offshore support vessels | 17,448 | 4.86 | 0.32 | 1.03 | 1.31 | 1.56 | 5.2 | 22.78 |
Oil tankers | 49,476 | 14.37 | 0.41 | 5.45 | 2.24 | 6.46 | 84.37 | 28.34 |
Refrigerated cargo | 728 | 12.19 | 2.4 | 1.5 | 1.36 | 26.46 | 18.28 | 14.2 |
Ro-Pax | 2744 | 6.86 | 0.35 | 2.19 | 1.1 | 3.15 | 17.42 | 9.89 |
Ro-Ro | 4220 | 9.77 | 0.86 | 4.89 | 1.05 | 8.19 | 48.19 | 9.08 |
Ship Type | Total Port Calls (no.) | Average Time (h) at Anchorage | Average Power Demand (MW) | Average Energy Demand (MWh) | ||||
---|---|---|---|---|---|---|---|---|
IMO | EMSA | LF | IMO | EMSA | LF | |||
Algeciras | 14,025 | 11.14 | 0.62 | 3.96 | 1.02 | 8.42 | 50.97 | 14.64 |
Antwerp | 37,625 | 4.38 | 0.61 | 4.89 | 1.01 | 5.17 | 25.64 | 6.72 |
Barcelona | 2129 | 16.83 | 0.82 | 4.4 | 1.19 | 13.17 | 92.5 | 20.12 |
Bilbao | 2474 | 10.08 | 0.43 | 2.6 | 1.18 | 5.96 | 40.11 | 19.82 |
Bremerhaven | 1610 | 1.33 | 0.38 | 2.72 | 0.38 | 0.49 | 3.16 | 0.42 |
Ceuta | 1720 | 11.09 | 0.78 | 4.44 | 1.28 | 8.71 | 53.49 | 15.62 |
Constanza | 5777 | 19.96 | 0.41 | 2.31 | 0.61 | 7.81 | 49.03 | 12.41 |
Copenhagen | 317 | 15.19 | 0.24 | 2.88 | 0.37 | 3.4 | 44.84 | 6.39 |
Felixstowe | 309 | 20.62 | 0.19 | 2.06 | 0.25 | 3.39 | 41.32 | 4.36 |
Gdansk | 2808 | 18.97 | 0.82 | 3.03 | 0.9 | 17.32 | 61.09 | 17.95 |
Genoa | 2250 | 11.82 | 0.95 | 3.78 | 1.34 | 9.51 | 51.96 | 18.06 |
Gibraltar | 14,924 | 9.6 | 0.78 | 3.98 | 1.13 | 8.09 | 41.39 | 12.18 |
Gothenburg | 7945 | 10.78 | 0.65 | 4.44 | 0.84 | 8.99 | 57.49 | 13.05 |
Hamburg | 2598 | 22.59 | 1.06 | 4.27 | 1.62 | 26.92 | 104.59 | 39.33 |
Ibiza | 61 | 11.02 | 0.69 | 2.94 | 0.82 | 3.1 | 32.39 | 10.4 |
Istanbul | 72,630 | 17.32 | 0.34 | 2.67 | 0.65 | 5.8 | 47.14 | 11.69 |
Kiel | 632 | 16.32 | 0.63 | 3.17 | 0.58 | 10.5 | 56.03 | 9.64 |
Klaipeda | 585 | 20.43 | 0.66 | 3.31 | 0.71 | 12.25 | 73.45 | 15.43 |
Koper | 1134 | 19.49 | 0.6 | 2.64 | 0.81 | 12.91 | 58.51 | 18.76 |
Las Palmas | 5405 | 11.25 | 0.52 | 3.52 | 0.98 | 6.73 | 41.17 | 13.3 |
Le Havre | 6197 | 17.4 | 0.7 | 4.14 | 1.15 | 14.9 | 87.92 | 26.29 |
Limassol | 782 | 14.39 | 0.49 | 2.35 | 0.58 | 6.82 | 36.61 | 8.07 |
Lisbon | 1462 | 11.51 | 0.52 | 2.53 | 0.64 | 6.6 | 31.19 | 8.1 |
London | 2730 | 17.97 | 0.79 | 3.98 | 1.32 | 15.69 | 86.53 | 30.14 |
Marsaxlokk | 13,289 | 14.32 | 0.63 | 4.6 | 1.22 | 10 | 77.75 | 20.89 |
Marseille | 2459 | 25.78 | 1.18 | 5.96 | 1.22 | 35.91 | 173.41 | 33.87 |
Piraeus | 8484 | 15.02 | 0.71 | 4.22 | 1.21 | 9.86 | 66.7 | 18.87 |
Port Said | 12,989 | 14.12 | 0.99 | 4.45 | 1.58 | 14.37 | 64.28 | 22.58 |
Rotterdam | 14,847 | 22.56 | 0.8 | 5.45 | 1.34 | 19.54 | 135.23 | 33.5 |
Sines | 1403 | 17.28 | 1.17 | 5.1 | 1.79 | 22.53 | 109.65 | 32.47 |
Tallin | 1576 | 10.17 | 0.67 | 4.7 | 1.38 | 6.94 | 54.15 | 16.95 |
Thira | 2133 | 10.67 | 2.73 | 4.29 | 5.55 | 31.2 | 47.24 | 58.86 |
Trieste | 931 | 20.03 | 0.64 | 4.35 | 1.36 | 13.3 | 94.76 | 31.29 |
Valencia | 2047 | 11.96 | 0.95 | 3.24 | 1.32 | 9.41 | 25.29 | 12.34 |
Valletta | 2927 | 6.72 | 0.42 | 2.99 | 1.1 | 2.73 | 39.28 | 8.12 |
Venice | 1160 | 22.41 | 1.07 | 3.93 | 1.01 | 28.76 | 95.91 | 24.12 |
Wilhelmshaven | 1950 | 3.92 | 0.31 | 1.23 | 0.16 | 1.39 | 4.75 | 0.8 |
Ship Type | Mean Power Demand (MW) | Peak Power Demand (MW) 1 | Mean Energy Demand (MWh) |
---|---|---|---|
Bulk carriers | 0.35 | 0.7–2.8 | 4.68 |
Chemical tankers | 1.35 | 9.0–20.0 | 6.19 |
Container ships | 0.87 | 2.0–6.0 | 14.28 |
Cruise ships | 6.43 | 4.5–20.0 | 53.28 |
General cargo | 0.17 | 3.0–5.0 | 2.70 |
Oil tankers | 1.33 | 6.0–10.0 | 6.46 |
Ro-Pax | 0.73 | 4.0–6.5 | 3.15 |
Ro-Ro | 0.96 | - | 8.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ventikos, N.P.; Sotiralis, P.; Annetis, M.; Koimtzoglou, M.-A.; Keratsa, L. Defining the Power and Energy Demands from Ships at Anchorage for Offshore Power Supply Solutions. Energies 2025, 18, 1766. https://doi.org/10.3390/en18071766
Ventikos NP, Sotiralis P, Annetis M, Koimtzoglou M-A, Keratsa L. Defining the Power and Energy Demands from Ships at Anchorage for Offshore Power Supply Solutions. Energies. 2025; 18(7):1766. https://doi.org/10.3390/en18071766
Chicago/Turabian StyleVentikos, Nikolaos P., Panagiotis Sotiralis, Manolis Annetis, Marios-Anestis Koimtzoglou, and Lina Keratsa. 2025. "Defining the Power and Energy Demands from Ships at Anchorage for Offshore Power Supply Solutions" Energies 18, no. 7: 1766. https://doi.org/10.3390/en18071766
APA StyleVentikos, N. P., Sotiralis, P., Annetis, M., Koimtzoglou, M.-A., & Keratsa, L. (2025). Defining the Power and Energy Demands from Ships at Anchorage for Offshore Power Supply Solutions. Energies, 18(7), 1766. https://doi.org/10.3390/en18071766