O&G, Geothermal Systems, and Natural Hydrogen Well Drilling: Market Analysis and Review
Abstract
:1. Introduction
2. Oil and Gas
3. Geothermal Energy
- Dry steam: Known as the most common technology, it uses steam at high pressure and temperatures (over 235 °C) to move a turbine paired with an electrical energy generator. After transferring its energy to the turbine, the steam condenses and is re-injected back into the Earth;
- Flash: Water tanks (above 150–170 °C) are used to supply energy to single- or double-flash systems. The water is brought to the surface through wells, and due to the sudden pressure drop from the tank to the atmosphere, it separates into steam, which is directed to the plant, and liquid, which is then reinjected into the tank (single flash). If the geothermal fluid reaches the surface at extremely high temperatures, it can undergo the process twice (double flash).
- Binary cycle: In tanks that generate water at moderate temperatures (between 120 and 180 °C), the geothermal fluid is used to vaporize a secondary liquid (typically isobutane or isopentane) through a heat exchanger, as this secondary fluid has a lower boiling point than water. The secondary fluid then expands in the turbine, condenses, and returns to the exchanger in a closed-loop system, with no interaction with the external environment.
4. Natural Hydrogen
5. Energy Forecasts and Matrix Analysis
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Song, X.; Li, G.; Huang, Z.; Shi, Y.; Wang, G.; Song, G.; Xu, F. Review of High-Temperature Geothermal Drilling and Exploitation Technologies. Gondwana Res. 2023, 122, 315–330. [Google Scholar] [CrossRef]
- Li, T.; Yue, X.G.; Qin, M.; Norena-Chavez, D. Towards Paris Climate Agreement Goals: The Essential Role of Green Finance and Green Technology. Energy Econ. 2024, 129, 107273. [Google Scholar] [CrossRef]
- Lewandowska-Śmierzchalska, J.; Uliasz-Misiak, B. Assessment of Potential Sites for Simultaneous Exploitation of Geothermal Energy and CO2 Storage in Aquifers: Multi-Criteria Approach. Renew. Energy 2024, 226, 120449. [Google Scholar] [CrossRef]
- Acen, C.; Bamisile, O.; Cai, D.; Ukwuoma, C.C.; Obiora, S.; Huang, Q.; Uzun Ozsahin, D.; Adun, H. The Complementary Role of Carbon Dioxide Removal: A Catalyst for Advancing the COP28 Pledges towards the 1.5 °C Paris Agreement Target. Sci. Total Environ. 2024, 947, 174302. [Google Scholar] [CrossRef] [PubMed]
- Salman, M.; Wang, G.; Qin, L.; He, X. G20 Roadmap for Carbon Neutrality: The Role of Paris Agreement, Artificial Intelligence, and Energy Transition in Changing Geopolitical Landscape. J. Environ. Manag. 2024, 367, 122080. [Google Scholar] [CrossRef] [PubMed]
- Chatjuthamard, P.; Singh, S.; Jiraporn, P.; Lee, S.M. Climate Change Exposure, Shareholder Wealth, and the Adoption of the Paris Agreement: A Text-Based Approach. Int. Rev. Financ. Anal. 2024, 94, 103327. [Google Scholar] [CrossRef]
- Korucan, A.; Derin-Gure, P.; Celebi, B.; Baker, D.; Vander Velde, M. Opportunities and Challenges of Geothermal Energy in Turkiye. Energy Sustain. Dev. 2024, 79, 101417. [Google Scholar] [CrossRef]
- Li, J.; Tarpani, R.R.Z.; Stamford, L.; Gallego-Schmid, A. Life Cycle Sustainability Assessment and Circularity of Geothermal Power Plants. Sustain. Prod. Consum. 2023, 35, 141–156. [Google Scholar] [CrossRef]
- World Energy Outlook 2020. Available online: https://www.iea.org/reports/world-energy-outlook-2020/outlook-for-electricity#abstract (accessed on 5 September 2024).
- Nardini, I. Geothermal Power Generation. In Palgrave Handbook of International Energy Economics; Springer International Publishing: Cham, Switzerland, 2022; pp. 183–194. [Google Scholar] [CrossRef]
- Kubota, H.; Hondo, H.; Hienuki, S.; Kaieda, H. Determining Barriers to Developing Geothermal Power Generation in Japan: Societal Acceptance by Stakeholders Involved in Hot Springs. Energy Policy 2013, 61, 1079–1087. [Google Scholar] [CrossRef]
- Elam, C.C.; Padró, C.E.G.; Sandrock, G.; Luzzi, A.; Lindblad, P.; Hagen, E.F. Realizing the Hydrogen Future: The International Energy Agency’s Efforts to Advance Hydrogen Energy Technologies. Int. J. Hydrogen Energy 2003, 28, 601–607. [Google Scholar] [CrossRef]
- Isania, F.; Elahifar, B. Advances in Geothermal Drilling: A Comparative Study with Oil and Gas Techniques. Geoenergy Sci. Eng. 2025, 246, 213638. [Google Scholar] [CrossRef]
- Gowida, A.; Gamal, H.; Elkatatny, S. Exploring the Potential of Laser Technology in Oil Well Drilling: An Overview. Geoenergy Sci. Eng. 2023, 230, 212278. [Google Scholar] [CrossRef]
- Feder, J. Geothermal Well Construction: A Step Change in Oil and Gas Technologies. J. Pet. Technol. 2021, 73, 32–35. [Google Scholar] [CrossRef]
- Li, Q.; Li, Q.; Wu, J.; Li, X.; Li, H.; Cheng, Y. Wellhead Stability During Development Process of Hydrate Reservoir in the Northern South China Sea: Evolution and Mechanism. Processes 2024, 13, 40. [Google Scholar] [CrossRef]
- Li, Q.; Li, Q.; Cao, H.; Wu, J.; Wang, F.; Wang, Y. The Crack Propagation Behaviour of CO2 Fracturing Fluid in Unconventional Low Permeability Reservoirs: Factor Analysis and Mechanism Revelation. Processes 2025, 13, 159. [Google Scholar] [CrossRef]
- Peymanian, M.H.; Kariminezhad, H.; Dehestani, M. Thermal Drilling for Application in Gas and Oil Wells: Efficiency Enhancement by Acoustic Inspection. Gas. Sci. Eng. 2023, 115, 205000. [Google Scholar] [CrossRef]
- Mantegazini, D.Z.; Guzman, R.; Nascimento, A.; Hugo Mathias, M.; Joel Romero Guzman, O.; Reich, M. Optimization of Rate of Penetration and Mechanical Specific Energy Using Response Surface Methodology and Multi-Objective Optimization. Appl. Sci. 2025, 15, 1390. [Google Scholar] [CrossRef]
- Mantegazini, D.Z.; Nascimento, A.; Dornelas, V.F.; Mathias, M.H. Analysis and Multi-Objective Optimization of the Rate of Penetration and Mechanical Specific Energy: A Case Study Applied to a Carbonate Hard Rock Reservoir Based on a Drill Rate Test Using Play-Back Methodology. Appl. Sci. 2024, 14, 2234. [Google Scholar] [CrossRef]
- Khoshouei, M.; Bagherpour, R. Measurement, Prediction, and Modeling of the Drilling Specific Energy by Soft Rock Properties during the Drilling Operation. Measurement 2023, 222, 113679. [Google Scholar] [CrossRef]
- Lee, S.S.; Kim, K.Y.; Seo, J.W. Development of a Trip Time for Bit Exchange Simulator for Drilling Time Estimation. Geothermics 2018, 71, 24–33. [Google Scholar] [CrossRef]
- Jamali, S.; Wittig, V.; Börner, J.; Bracke, R.; Ostendorf, A. Application of High Powered Laser Technology to Alter Hard Rock Properties towards Lower Strength Materials for More Efficient Drilling, Mining, and Geothermal Energy Production. Geomech. Energy Environ. 2019, 20, 100112. [Google Scholar] [CrossRef]
- Chen, X.; Yang, Q.; Yang, J.; Gao, D.; Zou, Y.; Zhu, M. The Stress Field Simulation of a Novel M-Type Convex Stepped Bottomhole and the Rate of Penetration Enhancement Mechanism of a New Type of Central-Grooved PDC Bit for Offshore Deep & Ultradeep Well Drilling. Ocean Eng. 2024, 293, 116706. [Google Scholar] [CrossRef]
- Liu, W.; Zhu, X.; Lv, Y.X.; Tong, H. On the Mechanism of Thermally Induced Micro-Cracking Assisted Rock Cutting in Hard Formation. J. Pet. Sci. Eng. 2021, 196, 107666. [Google Scholar] [CrossRef]
- Zhang, D.; Yang, Y.; Ren, H.; Huang, K.; Niu, S. Experimental Research on Efficiency and Vibration of Polycrystalline Diamond Compact Bit in Heterogeneous Rock. J. Pet. Sci. Eng. 2023, 220, 111175. [Google Scholar] [CrossRef]
- Khaled, M.S.; Wang, N.; Ashok, P.; van Oort, E. Downhole Heat Management for Drilling Shallow and Ultra-Deep High Enthalpy Geothermal Wells. Geothermics 2023, 107, 102604. [Google Scholar] [CrossRef]
- Hai, W.; Xue, Q.; Wang, M.; He, Y. Parameter Optimization Based on Deepwater Drilling System Simulation: A Pre-Salt Exploration Well in Brazil. Geoenergy Sci. Eng. 2024, 241, 213120. [Google Scholar] [CrossRef]
- Dias, W.; Mejia, C.; Roehl, D. Cavern Integrity under Cyclic Underground Hydrogen Storage in Heterogeneous Brazilian Pre-Salt Formations. Int. J. Hydrogen Energy 2024, 94, 922–933. [Google Scholar] [CrossRef]
- Gonzaga, H.M.; Novo, T.A.; Gama da Silva, J.T.; Fonte Boa, T.M.R.; Gonçalves, L.C.; Cordeiro, M. da S. Stratigraphy and Drilling Geomechanics of a Thick Salt Section: The Ariri Formation in the Eastern Portion of the Santos Basin. J. S. Am. Earth Sci. 2024, 135, 104802. [Google Scholar] [CrossRef]
- Chen, X.; Gao, D.; Guo, B.; Feng, Y. Real-Time Optimization of Drilling Parameters Based on Mechanical Specific Energy for Rotating Drilling with Positive Displacement Motor in the Hard Formation. J. Nat. Gas. Sci. Eng. 2016, 35, 686–694. [Google Scholar] [CrossRef]
- Chen, X.; Weng, C.; Du, X.; Yang, J.; Gao, D.; Wang, R. Prediction of the Rate of Penetration in Offshore Large-Scale Cluster Extended Reach Wells Drilling Based on Machine Learning and Big-Data Techniques. Ocean Eng. 2023, 285, 115404. [Google Scholar] [CrossRef]
- Nascimento, A. Mathematical Modeling for Drilling Optimization in Pre-Salt Sections: A Focus on South Atlantic Ocean Operations. Ph.D Thesis, Sao Paulo State University—UNESP, Sao Paulo, Brazil, 2016. [Google Scholar]
- Wang, X.; Zhang, F.; Wang, X.; Yu, Y.; Lou, W.; Peng, F. Evaluating the Maximum Drilling Length of Horizontal Geothermal Wells Utilizing Temperature Constraints. Geoenergy Sci. Eng. 2024, 238, 212884. [Google Scholar] [CrossRef]
- Hao, J.; You, Q.; Peng, Z.; Ma, D.; Tian, Y. A Model-Free Toolface Control Strategy for Cross-Well Intelligent Directional Drilling. Eng. Appl. Artif. Intell. 2024, 133, 108272. [Google Scholar] [CrossRef]
- Hao, J.; Ma, D.; Liu, W.; Peng, Z.; Chen, D.; Wang, Y. Adaptive Decision Method of Directional Drilling Tool Face Based on Model Free Online Learning. In Proceedings of the 2022 IEEE 61st Conference on Decision and Control (CDC), Cancun, Mexico, 6–9 December 2022; pp. 4688–4693. [Google Scholar] [CrossRef]
- Gillan, C.; Boone, S.; Kostiuk, G.; Schlembach, C.; Pinto, J.; LeBlanc, M. Applying Precision Drill Pipe Rotation and Oscillation to Slide Drilling Problems. In Proceedings of the SPE/IADC Drilling Conference and Exhibition, Amsterdam, The Netherlands, 17–19 March 2009; pp. 53–65. [Google Scholar] [CrossRef]
- Xu, B.L.; Liu, S.Y.; Li, H.S. Drill String’s Axial Force Transfer Law in Slide Directional Drilling in Underground Coal Mine. Tunn. Undergr. Space Technol. 2022, 130, 104701. [Google Scholar] [CrossRef]
- Benti, N.E.; Woldegiyorgis, T.A.; Geffe, C.A.; Gurmesa, G.S.; Chaka, M.D.; Mekonnen, Y.S. Overview of Geothermal Resources Utilization in Ethiopia: Potentials, Opportunities, and Challenges. Sci. Afr. 2023, 19, e01562. [Google Scholar] [CrossRef]
- Geothermal Energy. Available online: https://understand-energy.stanford.edu/energy-resources/renewable-energy/geothermal-energy (accessed on 28 September 2024).
- Walch, A.; Li, X.; Chambers, J.; Mohajeri, N.; Yilmaz, S.; Patel, M.; Scartezzini, J.L. Shallow Geothermal Energy Potential for Heating and Cooling of Buildings with Regeneration under Climate Change Scenarios. Energy 2022, 244, 123086. [Google Scholar] [CrossRef]
- Geothermal. Available online: https://www.irena.org/Energy-Transition/Technology/Geothermal-energy (accessed on 10 October 2024).
- Renewables 2023 Global Status Report Collection. Available online: https://www.ren21.net/gsr-2023/modules/energy_supply/02_market_developments/02_geothermal/ (accessed on 16 October 2024).
- Global Geothermal Market and Technology Assessment. Available online: https://www.irena.org/Publications/2023/Feb/Global-geothermal-market-and-technology-assessment (accessed on 16 October 2024).
- Kruszewski, M.; Wittig, V. Review of Failure Modes in Supercritical Geothermal Drilling Projects. Geotherm. Energy 2018, 6, 28. [Google Scholar] [CrossRef]
- Geothermal Plants. Available online: https://www.enelgreenpower.com/learning-hub/renewable-energies/geothermal-energy/geothermal-plants (accessed on 2 October 2024).
- Comparing Geothermal with Petroleum Drilling. Available online: https://www.thinkgeoenergy.com/comparing-geothermal-with-petroleum-drilling/ (accessed on 18 October 2024).
- Finger, J.; Blankenship, D. Handbook of Best Practices for Geothermal Drilling; Sandia Report 2010; Sandia National Laboratories: Albuquerque, NM, USA, 2010. Available online: https://www.energy.gov/eere/geothermal/articles/handbook-best-practices-geothermal-drilling (accessed on 20 October 2024).
- Lyu, Z.; Song, X.; Li, G. Numerical Analysis of Characteristics of Reaction in Hydrothermal Jet Drilling for Geothermal Energy. Geothermics 2019, 77, 62–74. [Google Scholar] [CrossRef]
- Yehia, T.; Gasser, M.; Ebaid, H.; Meehan, N.; Okoroafor, E.R. Comparative Analysis of Machine Learning Techniques for Predicting Drilling Rate of Penetration (ROP) in Geothermal Wells: A Case Study of FORGE Site. Geothermics 2024, 121, 103028. [Google Scholar] [CrossRef]
- Erge, O.; Sakaoglu, K.; Sonmez, A.; Bagatir, G.; Dogan, H.A.; Ay, A.; Gucuyener, I.H. Overview and Design Principles of Drilling Fluids Systems for Geothermal Wells in Turkey. Geothermics 2020, 88, 101897. [Google Scholar] [CrossRef]
- Mohamed, A.K.; Elkatatny, S.A.; Mahmoud, M.A.; Shawabkeh, R.A.; Al-Majed, A.A. The Evaluation of Micronized Barite as a Weighting Material for Completing HPHT Wells. In Proceedings of the SPE Middle East Oil and Gas Show and Conference, Manama, UK, 6–9 March 2017; pp. 697–712. [Google Scholar] [CrossRef]
- Mohamed, A.; Salehi, S.; Ahmed, R. Significance and Complications of Drilling Fluid Rheology in Geothermal Drilling: A Review. Geothermics 2021, 93, 102066. [Google Scholar] [CrossRef]
- Gutiérrez-Negrín, L.C.A. Evolution of Worldwide Geothermal Power 2020–2023. Geotherm. Energy 2024, 12, 14. [Google Scholar] [CrossRef]
- Jia, G.; Lei, M.; Li, M.; Xu, W.; Li, R.; Lu, Y.; Cai, M. Hydrogen Embrittlement in Hydrogen-Blended Natural Gas Transportation Systems: A Review. Int. J. Hydrogen Energy 2023, 48, 32137–32157. [Google Scholar] [CrossRef]
- Blay-Roger, R.; Bach, W.; Bobadilla, L.F.; Reina, T.R.; Odriozola, J.A.; Amils, R.; Blay, V. Natural Hydrogen in the Energy Transition: Fundamentals, Promise, and Enigmas. Renew. Sustain. Energy Rev. 2024, 189, 113888. [Google Scholar] [CrossRef]
- Balat, M. Possible Methods for Hydrogen Production. Energy Sources Part A Recover. Util. Environ. Eff. 2008, 31, 39–50. [Google Scholar] [CrossRef]
- Ten-Year Energy Expansion Plan 2031. Available online: https://www.epe.gov.br/en/press-room/news/mme-launches-english-version-of-the-ten-year-energy-expansion-plan-pde-2031 (accessed on 6 October 2024).
- Knez, D.; Zamani, O.A.M. Up-to-Date Status of Geoscience in the Field of Natural Hydrogen with Consideration of Petroleum Issues. Energies 2023, 16, 6580. [Google Scholar] [CrossRef]
- Ji, M.; Wang, J. Review and Comparison of Various Hydrogen Production Methods Based on Costs and Life Cycle Impact Assessment Indicators. Int. J. Hydrogen Energy 2021, 46, 38612–38635. [Google Scholar] [CrossRef]
- The Colors of Hydrogen. Available online: https://www.belfercenter.org/research-analysis/colors-hydrogen (accessed on 2 October 2024).
- Tian, Q.; Yao, S.; Shao, M.; Zhang, W.; Wang, H.; Tian, Q.; Yao, S.; Shao, M.; Zhang, W.; Wang, H. Origin, Discovery, Exploration and Development Status and Prospect of Global Natural Hydrogen under the Background of “Carbon Neutrality”. China Geol. 2022, 5, 722–733. [Google Scholar] [CrossRef]
- Zgonnik, V. The Occurrence and Geoscience of Natural Hydrogen: A Comprehensive Review. Earth-Sci. Rev. 2020, 203, 103140. [Google Scholar] [CrossRef]
- Milkov, A.V. Molecular Hydrogen in Surface and Subsurface Natural Gases: Abundance, Origins and Ideas for Deliberate Exploration. Earth-Sci. Rev. 2022, 230, 104063. [Google Scholar] [CrossRef]
- Sun, B.; Zhang, M.; Sun, Q.; Zhong, J.; Shao, G. Review on Natural Hydrogen Wells Safety. Nat. Commun. 2025, 16, 369. [Google Scholar] [CrossRef]
- Colombo, C.; Zafra García, A.; Belzunce, J.; Fernandez Pariente, I. Sensitivity to Hydrogen Embrittlement of AISI 4140 Steel: A Numerical Study on Fracture Toughness. Theor. Appl. Fract. Mech. 2020, 110, 102810. [Google Scholar] [CrossRef]
- Overview of Hydrogen Embrittlement. Available online: https://inspectioneering.com/tag/hydrogen+embrittlement (accessed on 26 October 2024).
- Brandt, A.R. Greenhouse Gas Intensity of Natural Hydrogen Produced from Subsurface Geologic Accumulations. Joule 2023, 7, 1818–1831. [Google Scholar] [CrossRef]
- Prinzhofer, A.; Moretti, I.; Françolin, J.; Pacheco, C.; D’Agostino, A.; Werly, J.; Rupin, F. Natural Hydrogen Continuous Emission from Sedimentary Basins: The Example of a Brazilian H2-Emitting Structure. Int. J. Hydrogen Energy 2019, 44, 5676–5685. [Google Scholar] [CrossRef]
- Frery, E.; Langhi, L.; Maison, M.; Moretti, I. Natural Hydrogen Seeps Identified in the North Perth Basin, Western Australia. Int. J. Hydrogen Energy 2021, 46, 31158–31173. [Google Scholar] [CrossRef]
- Arrouvel, C.; Prinzhofer, A. Genesis of Natural Hydrogen: New Insights from Thermodynamic Simulations. Int. J. Hydrogen Energy 2021, 46, 18780–18794. [Google Scholar] [CrossRef]
- Prinzhofer, A.; Tahara Cissé, C.S.; Diallo, A.B. Discovery of a Large Accumulation of Natural Hydrogen in Bourakebougou (Mali). Int. J. Hydrogen Energy 2018, 43, 19315–19326. [Google Scholar] [CrossRef]
- Truche, L.; Donzé, F.V.; Goskolli, E.; Muceku, B.; Loisy, C.; Monnin, C.; Dutoit, H.; Cerepi, A. A Deep Reservoir for Hydrogen Drives Intense Degassing in the Bulqizë Ophiolite. Science 2024, 383, 618–621. [Google Scholar] [CrossRef]
- International Energy Outlook 2023. Available online: https://www.eia.gov/outlooks/ieo/pdf/IEO2023_Narrative.pdf (accessed on 26 October 2024).
- World Energy Review 2024. Available online: https://www.eni.com/content/dam/enicom/documents/eng/visione/wer/2024/World-Energy-Review-2024.pdf (accessed on 26 October 2024).
- Hunt, J.D.; Nascimento, A.; Nascimento, N.; Vieira, L.W.; Romero, O.J. Possible Pathways for Oil and Gas Companies in a Sustainable Future: From the Perspective of a Hydrogen Economy. Renew. Sustain. Energy Rev. 2022, 160, 112291. [Google Scholar] [CrossRef]
- Maiores Produtores Mundiais de Petróleo Em 2023. Available online: https://www.ibp.org.br/observatorio-do-setor/snapshots/maiores-produtores-mundiais-de-petroleo/ (accessed on 28 October 2024).
- Rossoni, R.B.; Porcher, C.C.; Koester, E.; Sobiesiak, J.S.; da Silva, L.A.C.; Mexias, A.S.; Gomes, M.E.B.; Ramnani, C.W.; De Ros, L.F. The Role of Compaction in the Diagenetic Evolution of Pre-Salt Aptian Deposits of Santos Basin, Brazil. Sediment. Geol. 2024, 466, 106650. [Google Scholar] [CrossRef]
- Evolução Da Produção, Exportação e Importação de Petróleo No Brasil. Available online: https://www.ibp.org.br/observatorio-do-setor/producao-importacao-e-exportacao-de-petroleo/ (accessed on 28 October 2024).
- Boletim Mensal Da Produção de Petróleo e Gás Natural. Available online: https://www.gov.br/anp/pt-br/centrais-de-conteudo/publicacoes/boletins-anp/boletins/boletim-mensal-da-producao-de-petroleo-e-gas-natural (accessed on 18 December 2024).
- Petróleo Deve Elevar Fortemente Arrecadação Até 2030, Mas é Preciso Evitar Mau Uso Dessa Receita. Available online: https://portalibre.fgv.br/revista-conjuntura-economica/carta-da-conjuntura/petroleo-deve-elevar-fortemente-arrecadacao-ate (accessed on 24 October 2024).
- Lima, G.; Nascimento, A.; Oliveira, M.P.; Dias, F.L.G.; Lima, G.; Nascimento, A.; Oliveira, M.P.; Dias, F.L.G. Energy Efficiency Analysis: A Household Digital Transformation. AIMS Energy 2024, 12, 774–808. [Google Scholar] [CrossRef]
- Carbon Dioxide Emissions of the Most Polluting Countries Worldwide in 2010 and 2022. Available online: https://www.statista.com/statistics/270499/co2-emissions-in-selected-countries/ (accessed on 25 October 2024).
- Statista Global Fossil Carbon Dioxide Emissions from 1970 to 2023, by Sector. Available online: https://www.statista.com/statistics/276480/world-carbon-dioxide-emissions-by-sector/ (accessed on 8 November 2024).
- Shi, L.; Zou, D.; He, Z.; Gao, D. Fluid–Solid Coupling Simulation of a New Hydraulic Self-Adaptive PDC Cutter for Improving Well-Drilling Efficiency in Complex Formations. Energy Rep. 2021, 7, 5885–5894. [Google Scholar] [CrossRef]
- Renewable Energies Continue to Pick up Speed in 2023. Available online: https://www.umweltbundesamt.de/en/topics/renewable-energies-continue-to-pick-up-speed-in (accessed on 6 November 2024).
- Global Energy Investment in Clean Energy and in Fossil Fuels, 2015–2023. Available online: https://www.iea.org/data-and-statistics/charts/global-energy-investment-in-clean-energy-and-in-fossil-fuels-2015-2023 (accessed on 6 November 2024).
- Ávila, R. The Importance of Exploration and Production in the Energy Transition. In Proceedings of the Geosciences Technology Workshop 2023, Rio de Janeiro, Brazil, 9–10 May 2023. [Google Scholar]
- Summary Report 2023. Brazilian Energy Balanc. Available online: https://www.epe.gov.br/en/publications/publications/brazilian-oil-gas-report (accessed on 12 November 2024).
- What Is Energy? Available online: https://www.eia.gov/energyexplained/what-is-energy/sources-of-energy.php (accessed on 28 October 2024).
- Renewable Energy Explained. Available online: https://www.eia.gov/energyexplained/renewable-sources/ (accessed on 10 November 2024).
- Total Geothermal Capacity. Available online: https://ourworldindata.org/grapher/installed-geothermal-capacity?time=2022 (accessed on 8 November 2024).
- Top 10 Geothermal Countries 2023—Power Generation Capacity. Available online: https://www.thinkgeoenergy.com/thinkgeoenergys-top-10-geothermal-countries-2023-power-generation-capacity/ (accessed on 10 November 2024).
- Number Os Employees in Utilities in the United States in 2022. Available online: https://www.statista.com/statistics/186355/number-of-employees-at-utilities-in-the-us/ (accessed on 8 November 2024).
- Global Geothermal Power Tracker. Available online: https://globalenergymonitor.org/projects/global-geothermal-power-tracker/ (accessed on 22 November 2024).
- Geothermal Energy. Available online: https://www.oil-gasportal.com/main-world-geothermal-projects/ (accessed on 24 November 2024).
- Hydrogen Demand Worldwide from 2019 to 2021, with a Forecast for 2030. Available online: https://www.statista.com/statistics/1121206/global-hydrogen-demand/ (accessed on 22 November 2024).
- Wang, L.; Cheng, J.; Jin, Z.; Sun, Q.; Zou, R.; Meng, Q.; Liu, K.; Su, Y.; Zhang, Q. High-Pressure Hydrogen Adsorption in Clay Minerals: Insights on Natural Hydrogen Exploration. Fuel 2023, 344, 127919. [Google Scholar] [CrossRef]
- Incer-Valverde, J.; Korayem, A.; Tsatsaronis, G.; Morosuk, T. “Colors” of Hydrogen: Definitions and Carbon Intensity. Energy Convers. Manag. 2023, 291, 117294. [Google Scholar] [CrossRef]
- Solutions to the Green Hydrogen Deficit. Available online: https://helios-aragon.com/ (accessed on 26 November 2024).
- Global Hydrogen Production in the Sustainable Development Scenario, 2019–2070. Available online: https://www.iea.org/data-and-statistics/charts/global-hydrogen-production-in-the-sustainable-development-scenario-2019-2070 (accessed on 26 November 2024).
- Hydrogen Forecast to 2050. Available online: https://www.dnv.com/focus-areas/hydrogen/forecast-to-2050/ (accessed on 26 November 2024).
- Forecast Hydrogen Demand Worldwide in a Sustainable Development Scenario from 2019 to 2070, by Sector. Available online: https://www.statista.com/statistics/760001/global-hydrogen-demand-by-sector-sustainable-scenario/ (accessed on 29 November 2024).
- Hydrogen Insights 2022. Available online: https://hydrogencouncil.com/en/hydrogen-insights-2022/ (accessed on 29 November 2024).
- Global Hydrogen Review 2023. Available online: https://www.iea.org/reports/global-hydrogen-review-2023 (accessed on 30 November 2024).
- Hidrogênio de Baixo Carbono: Oportunidades Para o Protagonismo Brasileiro Na Produção de Energia Limpa. Available online: https://web.bndes.gov.br/bib/jspui/bitstream/1408/22665/1/PRLiv_Hidrog%C3%AAnio%20de%20baixo%20carbono_215712.pdf (accessed on 30 November 2024).
- Petrobras Investirá R$ 20 Milhões Em Pesquisas Sobre Hidrogênio Natural. Available online: https://agencia.petrobras.com.br/w/sustentabilidade/petrobras-investira-r-20-milhoes-em-pesquisas-sobre-hidrogenio-natural (accessed on 30 November 2024).
- Hydrogen Production and Infrastructure Projects Database. Available online: https://www.iea.org/data-and-statistics/data-product/hydrogen-production-and-infrastructure-projects-database (accessed on 30 November 2024).
- Hydrogen Production Projects Interactive Map. Available online: https://www.iea.org/data-and-statistics/data-tools/hydrogen-production-projects-interactive-map (accessed on 30 November 2024).
Petroleum | Geothermal | |
---|---|---|
Temperature | 150–175 °C (hot) | 150–350 °C |
Flow rates | 5000 bpd (high flow) | 50,000 bpd (average) |
Drilling | 5–7″ Onshore/offshore Vertical and long reach horizontal | 8–12″ Onshore Vertical (less common)/deviated (most common) |
Production | High initial flow (months) Declining rate (years) | Constant production 20–30 years |
Lithology | Sedimentary | Volcanic, intrusive, metamorphic |
Facies | Stratigraphic/structural | Complex fault-dominated |
Color | Classification | Description |
---|---|---|
Black hydrogen | Produced from coal (anthracite) gasification without CCUS | |
Brown hydrogen | Produced from coal (lignite) gasification without CCUS | |
Gray hydrogen | Produced from methane steam reforming without CCUS | |
Blue hydrogen | Produced from methane steam reforming with CCUS | |
Green hydrogen | Produced from water electrolysis with renewable power source | |
White hydrogen | Produced from natural reservoirs/accumulations; originated from geological reactions (natural occurrence) | |
Turquoise hydrogen | Produced from methane pyrolysis (carbon results as a solid byproduct) | |
Moss hydrogen | Produced from biomass or biofuels via catalytic reforming or anaerobic digestion and from gasification of plastic waste | |
Pink hydrogen | Produced from water electrolysis with nuclear power source |
Projects | Localization | Installed Capacity |
---|---|---|
The Geysers Geothermal Complex | United States | 1517 MW |
Larderello Geothermal Complex | Italy | 770 MW |
Cerro Prieto Geothermal Power Station | Mexico | 720 MW |
Makban Geothermal Complex | Philippines | 458 MW |
CalEnergy Generation’s Salton Sea Geothermal Plants | United States | 340 MW |
Hellisheidi Geothermal Power Plant | Iceland | 300 MW |
Tiwi Geothermal Complex | Philippines | 289 MW |
Darajat Power Station | Indonesia | 260 MW |
Malitbog Geothermal Power Station | Philippines | 230 MW |
Wayang Windu Geothermal Power Plant | Indonesia | 225 MW |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nascimento, A.; Mantegazini, D.Z.; Mathias, M.H.; Reich, M.; Hunt, J.D. O&G, Geothermal Systems, and Natural Hydrogen Well Drilling: Market Analysis and Review. Energies 2025, 18, 1608. https://doi.org/10.3390/en18071608
Nascimento A, Mantegazini DZ, Mathias MH, Reich M, Hunt JD. O&G, Geothermal Systems, and Natural Hydrogen Well Drilling: Market Analysis and Review. Energies. 2025; 18(7):1608. https://doi.org/10.3390/en18071608
Chicago/Turabian StyleNascimento, Andreas, Diunay Zuliani Mantegazini, Mauro Hugo Mathias, Matthias Reich, and Julian David Hunt. 2025. "O&G, Geothermal Systems, and Natural Hydrogen Well Drilling: Market Analysis and Review" Energies 18, no. 7: 1608. https://doi.org/10.3390/en18071608
APA StyleNascimento, A., Mantegazini, D. Z., Mathias, M. H., Reich, M., & Hunt, J. D. (2025). O&G, Geothermal Systems, and Natural Hydrogen Well Drilling: Market Analysis and Review. Energies, 18(7), 1608. https://doi.org/10.3390/en18071608