Analysis of the Characteristics of Heat Island Intensity Based on Local Climate Zones in the Transitional Season of Shenyang
Abstract
:1. Introduction
2. Aims and Scope
- (a)
- Conducting a comprehensive analysis of the UHI intensity characteristics across different LCZs in Shenyang during transitional seasons, with a detailed exploration of their spatiotemporal variation patterns.
- (b)
- Validating the applicability of the LCZ classification method in severe cold regions, providing methodological references for subsequent related research.
- (c)
- Acquiring high-precision meteorological data to supply reliable parameters for urban energy consumption models and building energy efficiency models, thereby improving the accuracy of energy consumption predictions.
3. Materials and Methods
3.1. Study Area
3.2. LCZ Site Selection
3.3. Data Sources
3.3.1. Field Measurement
3.3.2. Meteorological Observation Data
3.4. Data Analysis
3.4.1. Typical Meteorological Day Selection
3.4.2. Calculation of UHII
3.4.3. Warming and Cooling Rates
4. Results
4.1. Air Temperature Analysis
4.1.1. Diurnal Variation in Air Temperature
4.1.2. Daily Maximum and Minimum Temperature
4.2. Heat Island Intensity Analysis
4.2.1. Diurnal Variation in Heat Island Intensity
4.2.2. Average Heat Island Intensity
4.3. Analysis of Warming and Cooling Rates
5. Discussion
5.1. Formation Mechanism of the UCI Effect
5.2. Comparison with Previous Studies
5.3. Limitations and Perspectives
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- United Nations Report: Carbon Emissions from Buildings and Construction Reach Historic Highs. Available online: https://news.un.org/zh/story/2022/11/1112252/ (accessed on 30 November 2024).
- Singh, M.; Sharston, R. Quantifying the dualistic nature of urban heat Island effect (UHI) on building energy consumption. Energy Build. 2022, 255, 111649. [Google Scholar] [CrossRef]
- Manley, G. On the frequency of snowfall in metropolitan England. Q. J. R. Meteorol. Soc. 1958, 84, 70–72. [Google Scholar] [CrossRef]
- Howard, L. The Climate of London: Deduced from Meteorological Observations; Cambridge University Press: Cambridge, UK, 2012; Volume 1. [Google Scholar]
- Li, X.; Zhou, Y.; Asrar, G.R.; Imhoff, M.; Li, X. The surface urban heat island response to urban expansion: A panel analysis for the conterminous United States. Sci. Total Environ. 2017, 605, 426–435. [Google Scholar] [CrossRef] [PubMed]
- Magli, S.; Lodi, C.; Lombroso, L.; Muscio, A.; Teggi, S. Analysis of the urban heat island effects on building energy consumption. Int. J. Energy Environ. Eng. 2015, 6, 91–99. [Google Scholar] [CrossRef]
- Su, M.A.; Ngarambe, J.; Santamouris, M.; Yun, G.Y. Empirical evidence on the impact of urban overheating on building cooling and heating energy consumption. iScience 2021, 24, 102495. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y.; Yu, S.; Jia, G.; Li, H.; Li, W. Urban heat island impacts on building energy consumption: A review of approaches and findings. Energy 2019, 174, 407–419. [Google Scholar] [CrossRef]
- Chan, A. Developing a modified typical meteorological year weather file for Hong Kong taking into account the urban heat island effect. Build. Environ. 2011, 46, 2434–2441. [Google Scholar] [CrossRef]
- Hirano, Y.; Fujita, T. Evaluation of the impact of the urban heat island on residential and commercial energy consumption in Tokyo. Energy 2012, 37, 371–383. [Google Scholar] [CrossRef]
- Guattari, C.; Evangelisti, L.; Balaras, C.A. On the assessment of urban heat island phenomenon and its effects on building energy performance: A case study of Rome (Italy). Energy Build. 2018, 158, 605–615. [Google Scholar] [CrossRef]
- Santamouris, M.; Papanikolaou, N.; Livada, I.; Koronakis, I.; Georgakis, C.; Argiriou, A.; Assimakopoulos, D. On the impact of urban climate on the energy consumption of buildings. Sol. Energy 2001, 70, 201–216. [Google Scholar] [CrossRef]
- Ignatius, M.; Wong, N.H.; Jusuf, S.K. The significance of using local predicted temperature for cooling load simulation in the tropics. Energy Build. 2016, 118, 57–69. [Google Scholar] [CrossRef]
- Kolokotroni, M.; Ren, X.; Davies, M.; Mavrogianni, A. London’s urban heat island: Impact on current and future energy consumption in office buildings. Energy Build. 2012, 47, 302–311. [Google Scholar] [CrossRef]
- Zinzi, M.; Carnielo, E. Impact of urban temperatures on energy performance and thermal comfort in residential buildings. The case of Rome, Italy. Energy Build. 2017, 157, 20–29. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Lowry, W.P. Empirical estimation of urban effects on climate: A problem analysis. J. Appl. Meteorol. Climatol. 1977, 16, 129–135. [Google Scholar] [CrossRef]
- Stewart, I.D. Redefining the Urban Heat Island; University of British Columbia: Vancouver, BC, Canada, 2011. [Google Scholar]
- Stewart, I.D. A systematic review and scientific critique of methodology in modern urban heat island literature. Int. J. Climatol. 2011, 31, 200–217. [Google Scholar] [CrossRef]
- Feng, W.; Liu, J. A literature survey of local climate zone classification: Status, application, and prospect. Buildings 2022, 12, 1693. [Google Scholar] [CrossRef]
- Aslam, A.; Rana, I.A. The use of local climate zones in the urban environment: A systematic review of data sources, methods, and themes. Urban Clim. 2022, 42, 101120. [Google Scholar] [CrossRef]
- Bechtel, B.; Alexander, P.J.; Böhner, J.; Ching, J.; Conrad, O.; Feddema, J.; Mills, G.; See, L.; Stewart, I. Mapping local climate zones for a worldwide database of the form and function of cities. ISPRS Int. J. Geo-Inf. 2015, 4, 199–219. [Google Scholar] [CrossRef]
- Demuzere, M.; Kittner, J.; Generator, B.B.L. A web application to create Local Climate Zone maps. Front. Environ. Sci. 2021, 9, 637455. [Google Scholar] [CrossRef]
- Cai, M.; Ren, C.; Xu, Y.; Lau, K.K.-L.; Wang, R. Investigating the relationship between local climate zone and land surface temperature using an improved WUDAPT methodology—A case study of Yangtze River Delta, China. Urban Clim. 2018, 24, 485–502. [Google Scholar] [CrossRef]
- Yu, W.; Yang, J.; Wu, F.; He, B.; Yu, H.; Ren, J.; Xiao, X.; Xia, J.C. Downscaling mapping method for local climate zones from the perspective of deep learning. Urban Clim. 2023, 49, 101500. [Google Scholar] [CrossRef]
- Middel, A.; Häb, K.; Brazel, A.J.; Martin, C.A.; Guhathakurta, S. Impact of urban form and design on mid-afternoon microclimate in Phoenix Local Climate Zones. Landsc. Urban Plan. 2014, 122, 16–28. [Google Scholar] [CrossRef]
- Yang, J.; Jin, S.; Xiao, X.; Jin, C.; Xia, J.C.; Li, X.; Wang, S. Local climate zone ventilation and urban land surface temperatures: Towards a performance-based and wind-sensitive planning proposal in megacities. Sustain. Cities Soc. 2019, 47, 101487. [Google Scholar] [CrossRef]
- Chen, X.; Xu, Y.; Yang, J.; Wu, Z.; Zhu, H. Remote sensing of urban thermal environments within local climate zones: A case study of two high-density subtropical Chinese cities. Urban Clim. 2020, 31, 100568. [Google Scholar] [CrossRef]
- Shi, Y.; Ren, C.; Lau, K.K.-L.; Ng, E. Investigating the influence of urban land use and landscape pattern on PM2.5 spatial variation using mobile monitoring and WUDAPT. Landsc. Urban Plan. 2019, 189, 15–26. [Google Scholar] [CrossRef]
- Geletič, J.; Lehnert, M.; Dobrovolný, P. Land surface temperature differences within local climate zones, based on two central European cities. Remote Sens. 2016, 8, 788. [Google Scholar] [CrossRef]
- Zhou, X.; Okaze, T.; Ren, C.; Cai, M.; Ishida, Y.; Watanabe, H.; Mochida, A. Evaluation of urban heat islands using local climate zones and the influence of sea-land breeze. Sustain. Cities Soc. 2020, 55, 102060. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R.; Krayenhoff, E.S. Evaluation of the ‘local climate zone’ scheme using temperature observations and model simulations. Int. J. Climatol. 2014, 34, 1062–1080. [Google Scholar] [CrossRef]
- Anjos, M.; Targino, A.C.; Krecl, P.; Oukawa, G.Y.; Braga, R.F. Analysis of the urban heat island under different synoptic patterns using local climate zones. Build. Environ. 2020, 185, 107268. [Google Scholar] [CrossRef]
- Dunjić, J.; Milošević, D.; Kojić, M.; Savić, S.; Lužanin, Z.; Šećerov, I.; Arsenović, D. Air humidity characteristics in “local climate zones” of Novi Sad (Serbia) based on long-term data. ISPRS Int. J. Geo-Inf. 2021, 10, 810. [Google Scholar] [CrossRef]
- Alexander, P.J.; Mills, G. Local climate classification and Dublin’s urban heat island. Atmosphere 2014, 5, 755–774. [Google Scholar] [CrossRef]
- Leconte, F.; Bouyer, J.; Claverie, R.; Pétrissans, M. Using Local Climate Zone scheme for UHI assessment: Evaluation of the method using mobile measurements. Build. Environ. 2015, 83, 39–49. [Google Scholar] [CrossRef]
- Kotharkar, R.; Ghosh, A.; Kapoor, S.; Reddy, D.G.K. Approach to local climate zone based energy consumption assessment in an Indian city. Energy Build. 2022, 259, 111835. [Google Scholar] [CrossRef]
- Wang, Z.; Xing, W.; Huang, Y.; Xie, T. Studying the Urban Heat Island Using a Local Climate Zone Scheme. Pol. J. Environ. Stud. 2016, 25, 2609–2616. [Google Scholar] [CrossRef]
- Yang, X.; Yao, L.; Jin, T.; Peng, L.L.; Jiang, Z.; Hu, Z.; Ye, Y. Assessing the thermal behavior of different local climate zones in the Nanjing metropolis, China. Build. Environ. 2018, 137, 171–184. [Google Scholar] [CrossRef]
- Chen, G.; Chen, Y.; Tan, X.; Zhao, L.; Cai, Y.; Li, L. Assessing the urban heat island effect of different local climate zones in Guangzhou, China. Build. Environ. 2023, 244, 110770. [Google Scholar] [CrossRef]
- Bansal, P.; Quan, S.J. Relationships between building characteristics, urban form and building energy use in different local climate zone contexts: An empirical study in Seoul. Energy Build. 2022, 272, 112335. [Google Scholar] [CrossRef]
- Benjamin, K.; Luo, Z.; Wang, X. Crowdsourcing Urban Air Temperature Data for Estimating Urban Heat Island and Building Heating/Cooling Load in London. Energies 2021, 14, 5208. [Google Scholar] [CrossRef]
- Du, R.; Liu, C.-H.; Li, X.-X.; Lin, C.-Y. Effect of local climate zone (LCZ) and building category (BC) classification on the simulation of urban climate and air-conditioning load in Hong Kong. Energy 2023, 271, 127004. [Google Scholar] [CrossRef]
- Verichev, K.; Salazar-Concha, C.; Díaz-López, C.; Carpio, M. The influence of the urban heat island effect on the energy performance of residential buildings in a city with an oceanic climate during the summer period: Case of Valdivia, Chile. Sustain. Cities Soc. 2023, 97, 104766. [Google Scholar] [CrossRef]
- Shi, L.; Luo, Z.; Matthews, W.; Wang, Z.; Li, Y.; Liu, J. Impacts of urban microclimate on summertime sensible and latent energy demand for cooling in residential buildings of Hong Kong. Energy 2019, 189, 116208. [Google Scholar] [CrossRef]
- Yang, X.; Peng, L.L.H.; Jiang, Z.; Chen, Y.; Yao, L.; He, Y.; Xu, T. Impact of urban heat island on energy demand in buildings: Local climate zones in Nanjing. Appl. Energy 2020, 260, 114279. [Google Scholar] [CrossRef]
- Yang, X.; Yao, L.; Peng, L.L.H.; Jiang, Z.; Jin, T.; Zhao, L. Evaluation of a diagnostic equation for the daily maximum urban heat island intensity and its application to building energy simulations. Energy Build. 2019, 193, 160–173. [Google Scholar] [CrossRef]
- Shenyang Bureau of Statistics. 2023 Shenyang Statistical Yearbook; Shenyang Bureau of Statistics: Shenyang, China, 2023.
- Atlas, W. Weather Atlas. Available online: https://www.weather-atlas.com/zh/china/shenyang-climate#temperature (accessed on 20 April 2024).
- Ching, J.; Mills, G.; Bechtel, B.; See, L.; Feddema, J.; Wang, X.; Ren, C.; Brousse, O.; Martilli, A.; Neophytou, M.; et al. WUDAPT: An Urban Weather, Climate, and Environmental Modeling Infrastructure for the Anthropocene. Bull. Am. Meteorol. Soc. 2018, 99, 1907–1924. [Google Scholar] [CrossRef]
- Oke, T.R. Initial Guidance to Obtain Representative Meteorological Observations at Urban Sites; World Meteorological Organization: Geneva, Switzerland, 2004; Volume 81. [Google Scholar]
- China Meteorological Data Service Centre. Available online: https://data.cma.cn/en (accessed on 20 April 2024).
- Oke, T. An algorithmic scheme to estimate hourly heat island magnitude. In Proceedings of the Second Symposium on Urban Environment, Albuquerque, NM, USA, 2–5 November 1998; pp. 80–83. [Google Scholar]
- Oke, T.R. Boundary Layer Climates; Routledge: London, UK, 2002. [Google Scholar]
- Runnalls, K.; Oke, T. Dynamics and controls of the near-surface heat island of Vancouver British, Columbia. Phys. Geogr. 2000, 21, 283–304. [Google Scholar] [CrossRef]
- Skarbit, N.; Stewart, I.D.; Unger, J.; Gál, T. Employing an urban meteorological network to monitor air temperature conditions in the ‘local climate zones’ of Szeged, Hungary. Int. J. Climatol. 2017, 37, 582–596. [Google Scholar] [CrossRef]
- Oke, T.R. City size and the urban heat island. Atmos. Environ. (1967) 1973, 7, 769–779. [Google Scholar] [CrossRef]
- Chieppa, J.; Bush, A.; Mitra, C. Using “Local Climate Zones” to Detect Urban Heat Island on Two Small Cities in Alabama. Earth Interact. 2018, 22, 1–22. [Google Scholar] [CrossRef]
- Sang, J.; Liu, H.; Liu, H.; Zhang, Z. Observational and numerical studies of wintertime urban boundary layer. J. Wind Eng. Ind. Aerodyn. 2000, 87, 243–258. [Google Scholar] [CrossRef]
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Steeneveld, G.J.; Koopmans, S.; Heusinkveld, B.G.; van Hove, L.W.A.; Holtslag, A.A.M. Quantifying urban heat island effects and human comfort for cities of variable size and urban morphology in the Netherlands. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Theeuwes, N.E.; Steeneveld, G.-J.; Ronda, R.J.; Rotach, M.W.; Holtslag, A.A.M. Cool city mornings by urban heat. Environ. Res. Lett. 2015, 10, 114022. [Google Scholar] [CrossRef]
- Yang, X.; Yao, L.; Jin, T.; Jiang, Z.; Peng, L.; Ye, Y. Temporal and spatial variations of local temperatures in the summer of Nanjing. J. Civ. Environ. Eng. 2019, 41, 160–167+174. [Google Scholar]
- Chen, G.; Li, N.; Cai, Y.; He, M. Analysis of the Characteristics of Heat Island Intensity Based on LCZ in the Summer of Guangzhou. Build. Sci. 2021, 37, 96–104. [Google Scholar] [CrossRef]
LCZ Type | Area/Ha | Percentage |
---|---|---|
LCZ 1 | 1410 | 0.29% |
LCZ 2 | 10,925 | 2.23% |
LCZ 3 | 5700 | 1.16% |
LCZ 4 | 16,082 | 3.28% |
LCZ 5 | 11,501 | 2.34% |
LCZ 6 | 62,252 | 12.68% |
LCZ 7 | 1219 | 0.25% |
LCZ 8 | 21,056 | 4.29% |
LCZ 9 | 17,310 | 3.53% |
LCZ 10 | 7947 | 1.62% |
LCZ A | 34,471 | 7.02% |
LCZ B | 8623 | 1.76% |
LCZ C | 9705 | 1.98% |
LCZ D | 259,691 | 52.89% |
LCZ E | 1090 | 0.22% |
LCZ F | 7646 | 1.56% |
LCZ G | 14,333 | 2.92% |
LCZ Type | Satellite Image | Site Location | Characteristic Parameter Values | |
---|---|---|---|---|
Actual Plot Value | Property Range | |||
LCZ 2: Compact midrise | SVF: 0.47 H/W: 1.07 BSF: 37.08% * ISF: 46.75% HRE: 23 m | 0.3–0.6 0.75–2 40–70% 30–50% 10–25 m | ||
LCZ 4: Open high-rise | SVF: 0.55 H/W: 0.96 BSF: 22.17% ISF: 39.51% HRE: 51 m | 0.5–0.7 0.75–1.25 20–40% 30–40% >25 m | ||
LCZ 5: Open midrise | SVF: 0.64 H/W: 0.48 BSF: 25.00% ISF: 35.17% HRE: 22 | 0.5–0.8 0.3–0.75 20–40% 30–50% 10–25 m | ||
LCZ 6: Open low-rise | SVF: 0.91 * H/W: 0.19 * BSF: 18.84% * ISF: 21.18% HRE: 59.97% | 0.6–0.9 0.3–0.75 20–40% 20–50% 3–10 m | ||
LCZ 8: Large low-rise | SVF: 0.91 H/W: 0.07 * BSF: 32.83% ISF: 40.02% HRE: 7 | >0.7 0.1–0.3 30–50% 40–50% 3–10 m | ||
LCZ 10: Heavy industry | SVF: 0.89 H/W: 0.18 * BSF: 15.65% * ISF: 39.14% HRE: 7 | 0.6–0.9 0.2–0.5 20–30% 20–40% 5–15 m | ||
LCZ A: Dense trees | SVF: - H/W: >1 BSF: 0.52% ISF: 0.92% HRE: 3 | <0.4 >1 <10% <10% 3–30 m | ||
LCZ D: Low plants | SVF: 1 H/W: - BSF: 0.00% ISF: 0.58% HRE: 0 | >0.9 <0.1 <10% <10% <1 m |
LCZ Type | 24 May | 24 May | 24 May | 24 May | 24 June | 24 June | 24 June | 24 June | 24 June | 24 June | 24 June | 24 June | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LCZ 2 | UHIImax | 6.97 | 9.08 | 7.27 | 2.62 | 5.63 | 6.29 | 4.00 | 6.66 | 7.06 | 5.87 | 7.10 | 6.77 |
time | 5:30 | 0:30 | 2:30 | 5:30 | 22:30 | 23:00 | 4:00 | 1:00 | 0:30 | 1:30 | 4:00 | 22:00 | |
UHIImin | −0.84 | −0.42 | −0.63 | −0.10 | −0.16 | −0.26 | −1.07 | 0.18 | −0.32 | 1.13 | 0.56 | −0.38 | |
time | 9:30 | 15:30 | 14:30 | 7:00 | 17:30 | 18:30 | 7:00 | 8:00 | 7:00 | 8:00 | 8:00 | 7:30 | |
LCZ 4 | UHIImax | 6.59 | 6.64 | 6.52 | 2.45 | 3.93 | 5.46 | 3.82 | 6.05 | 6.38 | 5.37 | 6.43 | 6.36 |
time | 5:30 | 1:30 | 2:30 | 5:30 | 0:30 | 1:30 | 4:00 | 1:00 | 0:30 | 1:30 | 23:00 | 22:00 | |
UHIImin | −1.28 | −0.61 | −0.87 | −0.24 | −0.17 | −1.02 | −0.74 | −0.46 | −0.22 | 0.54 | 0.03 | −0.49 | |
time | 9:00 | 17:00 | 9:00 | 9:00 | 17:30 | 18:30 | 7:00 | 9:30 | 7:00 | 9:00 | 9:30 | 7:30 | |
LCZ 5 | UHIImax | 5.64 | 6.88 | 5.80 | 1.63 | 3.42 | 3.76 | 1.76 | 5.45 | 5.87 | 5.01 | 5.90 | 5.55 |
time | 5:30 | 1:00 | 0:30 | 18:00 | 22:30 | 2:00 | 4:00 | 1:00 | 0:30 | 1:30 | 4:00 | 22:00 | |
UHIImin | −1.31 | −1.69 | −0.70 | −1.32 | −0.27 | −0.62 | −1.11 | −0.74 | −1.16 | −0.48 | −0.48 | −0.77 | |
time | 8:30 | 6:30 | 7:00 | 13:00 | 11:30 | 10:30 | 10:00 | 9:30 | 7:00 | 8:00 | 11:00 | 7:30 | |
LCZ 6 | UHIImax | 2.78 | 2.45 | 1.82 | 0.93 | 2.27 | 3.37 | 1.33 | 3.32 | 3.34 | 2.41 | 3.07 | 2.95 |
time | 3:00 | 6:00 | 2:30 | 5:30 | 22:30 | 22:00 | 4:00 | 1:00 | 22:30 | 1:30 | 21:00 | 0:30 | |
UHIImin | −1.17 | −0.85 | −0.30 | −0.62 | −0.92 | −0.44 | −0.45 | −0.65 | −0.63 | −0.23 | −0.43 | −0.24 | |
time | 23:30 | 20:00 | 18:30 | 17:00 | 20:30 | 3:30 | 6:30 | 4:30 | 6:00 | 6:30 | 6:30 | 6:30 | |
LCZ 8 | UHIImax | 5.46 | 4.62 | 5.80 | 1.97 | 3.67 | 3.95 | 3.18 | 5.34 | 5.70 | 5.43 | 5.81 | 5.88 |
time | 5:30 | 1:30 | 2:30 | 5:30 | 0:30 | 1:30 | 4:00 | 1:00 | 0:30 | 1:30 | 23:00 | 22:00 | |
UHIImin | −0.66 | −0.40 | −0.49 | −0.23 | −0.63 | −0.84 | −0.73 | −0.25 | −0.12 | 0.62 | −0.01 | −0.49 | |
time | 9:30 | 6:30 | 7:00 | 12:30 | 20:30 | 20:30 | 9:30 | 12:30 | 7:00 | 5:30 | 10:30 | 7:30 | |
LCZ 10 | UHIImax | 3.96 | 4.56 | 5.34 | 1.24 | 4.12 | 3.80 | 2.18 | 4.23 | 4.77 | 4.06 | 5.05 | 4.63 |
time | 5:30 | 1:00 | 2:00 | 3:00 | 12:30 | 2:00 | 4:00 | 1:00 | 0:30 | 1:30 | 4:00 | 22:00 | |
UHIImin | −1.04 | −1.98 | −0.84 | −1.41 | −0.80 | −1.44 | −1.30 | −1.05 | −1.34 | −0.36 | −0.76 | −0.88 | |
time | 16:00 | 6:30 | 18:30 | 13:00 | 17:30 | 18:30 | 7:00 | 9:30 | 7:30 | 8:00 | 7:00 | 7:30 | |
LCZ A | UHIImax | 5.72 | 4.29 | 5.62 | 0.90 | 1.45 | 4.71 | 2.29 | 4.48 | 4.63 | 3.81 | 5.39 | 4.35 |
time | 5:30 | 22:30 | 2:00 | 5:30 | 22:30 | 22:30 | 4:00 | 20:30 | 0:30 | 1:30 | 4:00 | 22:00 | |
UHIImin | −1.94 | −2.69 | −1.98 | −1.77 | −1.61 | −2.86 | −2.07 | −2.40 | −2.34 | −3.31 | −1.27 | −1.82 | |
time | 8:30 | 7:00 | 7:00 | 11:30 | 5:30 | 7:00 | 7:00 | 7:00 | 7:30 | 8:00 | 8:00 | 7:30 |
City | Urban Area (km2) | Built-Up Area (km2) | Population | Climate | Urbanization Rate | Study Period | Sunrise Time | Sunset Time |
---|---|---|---|---|---|---|---|---|
Guangzhou | 7434.4 | 1380.60 | 18.096 million | Subtropical monsoon climate (Cfa) | 86.46% | 12 July–10 September 2019 | 05:49–06:12 | 18:35–19:16 |
Nanjing | 6597 | 923.8 | 8.3 million | Subtropical monsoon climate (Cfa) | 81.4% | 21 July–15 September 2015 | 05:13–05:48 | 18:10–19:09 |
Shenyang | 5116 | 573 | 8.3 million | Temperate continental monsoon climate (Dwa) | 84.99% | 27 April–30 June 2024 | 04:14–04:47 | 18:40–19:25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xi, T.; Li, J.; Yang, N.; Liu, X.; Guo, F. Analysis of the Characteristics of Heat Island Intensity Based on Local Climate Zones in the Transitional Season of Shenyang. Energies 2025, 18, 1053. https://doi.org/10.3390/en18051053
Xi T, Li J, Yang N, Liu X, Guo F. Analysis of the Characteristics of Heat Island Intensity Based on Local Climate Zones in the Transitional Season of Shenyang. Energies. 2025; 18(5):1053. https://doi.org/10.3390/en18051053
Chicago/Turabian StyleXi, Tianyu, Jin Li, Nuannuan Yang, Xinyu Liu, and Fei Guo. 2025. "Analysis of the Characteristics of Heat Island Intensity Based on Local Climate Zones in the Transitional Season of Shenyang" Energies 18, no. 5: 1053. https://doi.org/10.3390/en18051053
APA StyleXi, T., Li, J., Yang, N., Liu, X., & Guo, F. (2025). Analysis of the Characteristics of Heat Island Intensity Based on Local Climate Zones in the Transitional Season of Shenyang. Energies, 18(5), 1053. https://doi.org/10.3390/en18051053