Review on Noise Generation Issues and Noise Mitigation Methods in Electric Vehicle Charging Systems
Abstract
1. Introduction
2. Identification of Noise Sources
2.1. General Construction of DC EV Chargers
2.2. Main Noise Sources
2.2.1. AC/DC Converter
Test Method
Results of Acoustic Measures of AC/DC Converters
2.2.2. HPC Cable Chiller
2.2.3. Liquid-Cooled AC/DC Converters
2.2.4. Converter Power Block
3. Noise Emission from EV Chargers
- —sound pressure level at a distance R from the sound source;
- —sound power level of the source (4);
- —correction for the solid angle of radiation emission and directional interaction (10);
- —the influence of air on sound attenuation (11);
- —the effect of distance on sound attenuation (12);
- —the influence of screens and terrain obstacles on sound propagation (13);
- —the influence of screens and terrain obstacles on sound propagation (14).
4. Noise Reduction Methods
4.1. Passive Methods
4.2. Active Methods
4.2.1. ANC Level I
4.2.2. ANC Level II
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Basner, M.; Babisch, W.; Davis, A.; Brink, M.; Clark, C.; Janssen, S.; Stansfeld, S. Auditory and non-auditory effects of noise on health. Lancet 2014, 383, 1325–1332. [Google Scholar] [CrossRef]
- Munzel, T.; Schmidt, F.P.; Steven, S.; Herzog, J.; Daiber, A.; Sørensen, M. Environmental Noise and the Cardiovascular System. J. Am. Coll. Cardiol. 2018, 71, 688–697. [Google Scholar] [CrossRef]
- Halperin, D. Environmental noise and sleep disturbances: A threat to health? Sleep Sci. 2014, 7, 209–212. [Google Scholar] [CrossRef]
- Ising, H.; Kruppa, B. Health effects caused by noise: Evidence in the literature from the past 25 years. Noise Health 2003, 6, 5–13. [Google Scholar]
- Hahad, O.; Kuntic, M.; Al-Kindi, S.; Kuntic, I.; Gilan, D.; Petrowski, K.; Daiber, A.; Münzel, T. Noise and mental health: Evidence, mechanisms, and consequences. J. Expo. Sci. Environ. Epidemiol. 2024, 1–8. [Google Scholar] [CrossRef]
- Farooqi, Z.U.R.; Ahmad, I.; Ditta, A.; Ilic, P.; Amin, M.; Navee, A.B.; Gulzar, A. Types, sources, socioeconomic impacts, and control strategies of environmental noise: A review. Environ. Sci. Pollut. Res. 2022, 29, 81087–81111. [Google Scholar] [CrossRef]
- WHO. Environmental Noise Guidelines for the European Region; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Clark, C.; Paunovic, K. WHO Environmental Noise Guidelines for the European Region: A Systematic Review on Environmental Noise and Quality of Life, Wellbeing and Mental Health. Int. J. Environ. Res. Public Health 2018, 15, 2400. [Google Scholar] [CrossRef]
- Waseem, M.; Sreeshobha, E.; Reddy, K.S.; Donateo, T. State-of-the-Art and Advancement of Charging Infrastructure in Electric Mobility: An Integrated Review. Energies 2024, 17, 6137. [Google Scholar] [CrossRef]
- Brown, A.; Cappellucci, J.; Schayowitz, A.; White, E.; Heinrich, A.; Cost, E. Electric Vehicle Charging Infrastructure Trends from the Alternative Fueling Station Locator: First Quarter 2022; Technical Report NREL/TP-5400-82987; National Renewable Energy Laboratory: Golden, CO, USA, 2022. [Google Scholar]
- Aduama, P.; Al-Sumaiti, A.S.; Al-Hosani, K.H. Electric Vehicle Charging Infrastructure and Energy Resources: A Review. Energies 2023, 16, 1965. [Google Scholar] [CrossRef]
- Mortimer, B.J.; Hecht, C.; Goldbeck, R.; Sauer, D.U.; De Doncker, R.W. Electric Vehicle Public Charging Infrastructure Planning Using Real-World Charging Data. World Electr. Veh. J. 2022, 13, 94. [Google Scholar] [CrossRef]
- Deb, S.; Tammi, K.; Kalita, K.; Mahanta, P. Review of recent trends in charging infrastructure planning for electric vehicles. WIREs Energy Environ. 2018, 7, e306. [Google Scholar] [CrossRef]
- Kumar, U.; Mittal, M. Advancements in Electric Vehicle Charging Infrastructure: A Comprehensive Review of Technologies, Optimization Techniques, and Future Directions. In Proceedings of the 2023 Second IEEE International Conference on Measurement, Instrumentation, Control and Automation (ICMICA), Kurukshetra, India, 3–5 May 2024; pp. 3–5. [Google Scholar] [CrossRef]
- Zentani, A.; Almaktoof, A.; Kahn, M.T. A Comprehensive Review of Developments in Electric Vehicles Fast Charging Technology. Appl. Sci. 2024, 14, 4728. [Google Scholar] [CrossRef]
- Moskwik, K.; Marszałkowski, M.; Pogroszewski, S. Report—Prospects for the Development of Electromobility in Poland: Market Leaders, Cooperation, Challenges; Technical Report; Instytut Jagielloński: Warsaw, Poland, 2023. (In Polish) [Google Scholar]
- Shi, L.; Hao, Y.; Lv, S.; Cipcigan, L.; Liang, J. A comprehensive charging network planning scheme for promoting EV charging infrastructure considering the Chicken-Eggs dilemma. Res. Transp. Econ. 2021, 88, 100837. [Google Scholar] [CrossRef]
- Agency, I.E. Global EV Outlook 2023. Catching Up with Climate Ambitions. 2023. Available online: https://iea.blob.core.windows.net/assets/dacf14d2-eabc-498a-8263-9f97fd5dc327/GEVO2023.pdf (accessed on 18 December 2024).
- BloombergNEF. Electric Vehicle Outlook 2023. Available online: https://assets.bbhub.io/professional/sites/24/2431510_BNEFElectricVehicleOutlook2023_ExecSummary.pdf (accessed on 18 December 2024).
- Kumar, R.R.; Guha, P.; Chakraborty, A. Comparative assessment and selection of electric vehicle diffusion models: A global outlook. Energy 2022, 238, 121932. [Google Scholar] [CrossRef]
- CharIN. Available online: https://www.charin.global/technology/mcs/ (accessed on 18 December 2024).
- CharIN. CharIN Whitepaper Megawatt Charging System (MCS). Recommendations and Requirements for MCS Related Standards Bodies and Solution Suppliers; Technical Report; Charging Interface Initiative (CharIN) e.V.: Berlin, Germany, 2022. [Google Scholar]
- Radha, M.K.; Starke, M.; Dean, B.; Aswad, A.; Campbell, S.; Sudhan, C.M. Megawatt Scale Charging System Architecture. In Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 9–13 October 2022. [Google Scholar]
- CharIN. CharIN Position Paper of Charging interface Initiative e.V. DC CCS Power Classes V7.2; Charging Interface Initiative (CharIN) e.V.: Berlin, Germany, 2021. [Google Scholar]
- Muehlbauer, K.; Bachl, F.; Gerling, D. Analysis of power losses in AC/DC-converter for electric vehicle drive. In Proceedings of the 2011 IEEE Vehicle Power and Propulsion Conference, Chicago, IL, USA, 6–9 September 2011. [Google Scholar] [CrossRef]
- Laird, I.; Wang, J.; Yuan, X. Device power loss calculation for a multi-level DC-AC converter design optimisation tool. In Proceedings of the 11th International Conference on Power Electronics, Machines and Drives (PEMD 2022), online, 21–23 June 2022. [Google Scholar] [CrossRef]
- Kodani, K.; Tsukinari, T.; Matsumoto, T. New power module concept by forced-air cooling system for power converter. In Proceedings of the 2010 International Power Electronics Conference—ECCE ASIA, Sapporo, Japan, 21–24 June 2010. [Google Scholar] [CrossRef]
- Abramushkina, E.; Zhaksylyk, A.; Geury, T.; El Baghdadi, M.; Hegazy, O. A Thorough Review of Cooling Concepts and Thermal Management Techniques for Automotive WBG Inverters: Topology, Technology and Integration Level. Energies 2021, 14, 4981. [Google Scholar] [CrossRef]
- Ibrahim, A.; Salem, M.; Kamarol, M.; Delgado, M.T.; Mat Desa, M.K. Review of Active Thermal Control for Power Electronics: Potentials, Limitations, and Future Trends. IEEE Open J. Power Electron. 2024, 5, 414–435. [Google Scholar] [CrossRef]
- Wang, C. Noise source analysis for two identical small axial-flow fans in series under operating condition. Appl. Acoust. 2018, 129, 13–26. [Google Scholar] [CrossRef]
- Dong, X.; Chen, S.; Lei, Z.; Zhu, Z.; Chen, Y. Experimental Study on Fan Aerodynamic Noise Variation Characteristics under Non-Proportional Variation Law. Sustainability 2023, 15, 2025. [Google Scholar] [CrossRef]
- Technische Anleitung zum Schutz Gegen Lärm—TA Lärm. Available online: https://www.umweltpakt.bayern.de/laerm/recht/bund/119/ta-laerm-technische-anleitung-zum-schutz-gegen-laerm (accessed on 18 December 2024).
- Ministry of Environment. Regulation of the Minister of the Environment of 14 June 2007 on Permissible Noise Levels in the Environment; Ministry of Environment of the Republic of Poland: Warsaw, Poland, 2007; Available online: https://sip.lex.pl/akty-prawne/dzu-dziennik-ustaw/dopuszczalne-poziomy-halasu-w-srodowisku-17361247 (accessed on 18 December 2024).
- Position Paper/Recommendation of Charging Interface Initiative e.V., Subgroup “Charging Acoustic Function”. Available online: https://www.charin.global/media/pages/technology/knowledge-base/cf47e92885-1716816156/charin_positionpaper_acoustic_function_v1.1.pdf (accessed on 18 December 2024).
- PN-EN ISO 3744; Acoustics—Determination of sound power levels and sound energy levels of noise sources using sound pressure—Engineering methods for an essentially free field over a reflecting plane. Technical report; Polish Committee for Standardization: Warsaw, Poland, 2011.
- PN-EN ISO 3745; Acoustics—Determination of sound power levels and sound energy levels of noise sources using sound pressure—Precision methods for anechoic rooms and hemi-anechoic rooms. Technical report; Polish Committee for Standardization: Warsaw, Poland, 2017.
- PN-EN ISO 3746; Acoustics—Determination of sound power levels and sound energy levels of noise sources using sound pressure—Survey method using an enveloping measurement surface over a reflecting plane. Technical report; Polish Committee for Standardization: Warsaw, Poland, 2011.
- PN-EN ISO 9613-2; Acoustics—Attenuation of sound during propagation outdoors. Technical report; Polish Committee for Standardization: Warsaw, Poland, 2024.
- Loyau, T. Determination of sound power levels using sound pressure: The uncertainties related with the measurement surface and the number of microphones. Noise Control Eng. J. 2007, 55, 89–97. [Google Scholar] [CrossRef]
- Purwanto, B.; Sabrina, M.; Rusjadi, D. The difference between several methods of sound power level for determining the sound energy emitted by a sound source. J. Phys. Conf. Ser. 2019, 1568, 012008. [Google Scholar] [CrossRef]
- Defrance, J.; Gabillet, Y. A new analytical method for the calculation of outdoor noise propagation. Appl. Acoust. 1999, 57, 109–127. [Google Scholar] [CrossRef]
- Habault, D. Outdoor Sound Propagation; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Bies, D.A.; Hansen, C.H. Engineering Noise Control. Theory and Practice, 3rd ed.; Spon Press, Taylor & Francis Group: London, UK; New York, NY, USA, 2003. [Google Scholar]
- Miljković, D. Brief Introduction to Active Noise Control. In Proceedings of the 2023 46th MIPRO ICT and Electronics Convention (MIPRO), Opatija, Croatia, 22–26 May 2023. [Google Scholar] [CrossRef]
- Elliott, S.J.; Nelson, P.A. Active sound control. IEEE Signal Process. Mag. 1993, 10, 12–35. [Google Scholar] [CrossRef]
Name | Power Classes | [V] | [V] | [V] | Duration [A] | Density [kW/] |
---|---|---|---|---|---|---|
Low-Power Charging | LPC | 200–920 | ≤80 A | <20 | inf | – |
DC Charging | DC | 200–920 | 80–125 | ≥20 | inf | 25–50 |
Fast Charging | FC | 200–920 | 125–250 | ≥125 | ≥30 min | 50–150 |
Ultra-Fast Charging | UFC | 200–920 | 250–500 | ≥250 | ≥20 min | 247.9 |
High-Power Charging | HPC | 200–920 | ≥500 | ≥500 | ≥10 min | >200 |
Megawatt Charging System | MCS | 200–1250 | ≤3000 | * n.d. | * n.d. | * n.d. |
Type of Area (Environment) | Day | Night | ||
---|---|---|---|---|
PL | DE | PL | DE | |
Spas, hospitals, nursing homes | * 45 | 45 | 40 | 35 |
** 50 | ||||
residential, city center, agglomerations over 100 thousand inhabitants | 55 | 60 | 45 | 45 |
residential, commercial, less than 100 thousand inhabitants | 55 | 40 |
Measuring Device | Type | Function/Measurement |
---|---|---|
4-channel sound analyser | SVAN 958A | Sound pressure level, acoustic spectrum |
Acoustic camera Norsonic | Nor848B/HEX-K1 | Acoustic imaging, acoustic spectrum |
Acoustic imaging system | MEZZO I-Track system | Acoustic imaging, sound intensity |
Model of AC/DC Converter | Rated Power | Power Density | Sound Pressure Level | Number of Fans |
---|---|---|---|---|
[kW] | [db(A)] | |||
AC/DC_1 | 30 | 2135.9 | 64.0 | 3 |
AC/DC_2 | 30 | 1796.4 | 64.1 | 4 |
AC/DC_3 | 30 | 1642.9 | 67.6 | 3 |
AC/DC_4 | 30 | 2752.3 | 70.0 | 3 |
AC/DC_5 | 30 | 2727.3 | 78.2 | 3 |
AC/DC_6 | 40 | 3491 | 71.9 | 2 |
AC/DC_7 | 40 | 2847.9 | 76.0 | 3 |
AC/DC_8 | 40 | 3624 | 74.1 | 3 |
Type of Material | Absorption Coefficient | |||||
---|---|---|---|---|---|---|
125 Hz | 250 Hz | 500 Hz | 1 kHz | 2 kHz | 4 kHz | |
Air intake/outlet grille 50% clearance | 0.30 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
Mineral wool thickness 100 mm | 0.351 | 0.647 | 0.653 | 0.732 | 0.821 | 0.893 |
Mineral wool PT80 thickness 50 mm | 0.20 | 0.60 | 1.00 | 0.90 | 0.85 | 0.85 |
Polyurethane acoustic foam 50 mm | 0.30 | 0.65 | 0.95 | 0.92 | 0.98 | 0.98 |
Absorber Rolsound SGP VL80 30 mm | 0.32 | 0.65 | 0.87 | 0.94 | 0.93 | 0.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jarnut, M.; Kaniewski, J.; Buciakowski, M. Review on Noise Generation Issues and Noise Mitigation Methods in Electric Vehicle Charging Systems. Energies 2025, 18, 778. https://doi.org/10.3390/en18040778
Jarnut M, Kaniewski J, Buciakowski M. Review on Noise Generation Issues and Noise Mitigation Methods in Electric Vehicle Charging Systems. Energies. 2025; 18(4):778. https://doi.org/10.3390/en18040778
Chicago/Turabian StyleJarnut, Marcin, Jacek Kaniewski, and Mariusz Buciakowski. 2025. "Review on Noise Generation Issues and Noise Mitigation Methods in Electric Vehicle Charging Systems" Energies 18, no. 4: 778. https://doi.org/10.3390/en18040778
APA StyleJarnut, M., Kaniewski, J., & Buciakowski, M. (2025). Review on Noise Generation Issues and Noise Mitigation Methods in Electric Vehicle Charging Systems. Energies, 18(4), 778. https://doi.org/10.3390/en18040778