Assessment of Decarbonization Scenarios for the Portuguese Road Sector
Abstract
1. Introduction
2. Materials and Methods
2.1. Fleet Forecast
2.2. Vehicle Propulsion Systems
2.3. Energy Source
2.4. Scenario Definition
2.4.1. Scenario 1: Technological Replacement and Transition to Electrification
2.4.2. Scenario 2: Transition to Alternative Energy Sources (Diesel and Gasoline)
2.4.3. Scenario 3: Technology Replacement and Transition to Alternative Energy Sources
3. Results
3.1. Scenario 1: Technological Replacement and Transition to Electrification
3.2. Scenario 2: Transition to Alternative Energy Sources (Diesel and Gasoline)
3.3. Scenario 3: Technology Replacement and Transition to Alternative Energy Sources
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Eurostat. Final Energy Consumption in Transport—Detailed Statistics. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Final_energy_consumption_in_transport_-_detailed_statistics (accessed on 31 October 2025).
- International Energy Agency. Portugal 2021 Energy Policy Review; International Energy Agency: Paris, France, 2021. [Google Scholar]
- Presidency of the Council of Ministers. Decree Law No. 84/2022. Available online: https://diariodarepublica.pt/dr/en/detail/decree-law/84-2022-204502328 (accessed on 31 October 2025).
- Entidade Reguladora dos Serviços Energéticos. Análise do Mercado de Biocombustíveis 2018–2020; Entidade Reguladora dos Serviços Energéticos: Lisbon, Portugal, 2024; Available online: https://www.erse.pt/media/eknhoezr/relat%C3%B3rio-biocombust%C3%ADveis.pdf (accessed on 31 October 2025).
- Rosa, M. Situação Actual Dos Biocombustíveis e Perspectivas Futuras. In Gazeta de Física; Sociedade Portuguesa de Física: Lisbon, Portugal, 2006. [Google Scholar]
- Porsche Newsroom Innovation. Sustainability. Performance. Available online: https://newsroom.porsche.com/dam/jcr:ac039d97-97ed-4b22-8c9d-0e6c7363197e/PAG-Media-Workshop-Innovation-Sustainability-Performance-en.pdf (accessed on 31 October 2025).
- Sanguesa, J.A.; Torres-Sanz, V.; Garrido, P.; Martinez, F.J.; Marquez-Barja, J.M. A Review on Electric Vehicles: Technologies and Challenges. Smart Cities 2021, 4, 372–404. [Google Scholar] [CrossRef]
- Timmers, V.R.J.H.; Achten, P.A.J. Non-Exhaust PM Emissions from Electric Vehicles. Atmos. Environ. 2016, 134, 10–17. [Google Scholar] [CrossRef]
- International Renewable Energy Agency Hydrogen. Available online: https://www.irena.org/Energy-Transition/Technology/Hydrogen (accessed on 31 October 2025).
- European Commission. Regulation (EU) 2024/1257 of the European Parliament and of the Council of 24 April 2024 on Type-Approval of Motor Vehicles and Engines and of Systems, Components and Separate Technical Units Intended for Such Vehicles, with Respect to Their Emissions and Battery Durability (Euro 7), Amending Regulation (EU) 2018/858 of the European Parliament and of the Council and Repealing Regulations (EC) No 715/2007 and (EC) No 595/2009 of the European Parliament and of the Council, Commission Regulation (EU) No 582/2011, Commission Regulation (EU) 2017/1151, Commission Regulation (EU) 2017/2400 and Commission Implementing Regulation (EU) 2022/1362Text with EEA Relevance. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=OJ:L_202401257 (accessed on 31 October 2025).
- European Parliament. Regulation (EU) 2023/851 of the European Parliament and of the Council of 19 April 2023 Amending Regulation (EU) 2019/631 as Regards Strengthening the CO2 Emission Performance Standards for New Passenger Cars and New Light Commercial Vehicles in Line with the Union’s Increased Climate Ambition. Available online: https://eur-lex.europa.eu/eli/reg/2023/851/oj/eng (accessed on 31 October 2025).
- European Parliament. Regulation (EU) 2019/631 of the European Parliament and of the Council—Of 17 April 2019—Setting CO2 Emission Performance Standards for New Passenger Cars and for New Light Commercial Vehicles, and Repealing Regulations (EC) No 443/2009 and (EU) No 510/2011. Available online: https://eur-lex.europa.eu/eli/reg/2019/631/oj/eng (accessed on 31 October 2025).
- European Commission. Cars and Vans-Climate Action-European Commission. Available online: https://climate.ec.europa.eu/eu-action/transport-decarbonisation/road-transport/cars-and-vans_en (accessed on 4 November 2025).
- The Internation Council on Clean Transportation. European Vehicle Market Statistics-Pocketbook 2024/25; International Council on Clean Transportation Europe: Berlin, Germany, 2025. [Google Scholar]
- European Automobile Manufacturers’ Association (ACEA). The Automobile Industry-Pocketguide 2024/2025; ACEA: Brussels, Belgium, 2025. [Google Scholar]
- Mickūnaitis, V.; Pikūnas, A.; Mackoit, I. Reducing Fuel Consumption and CO2 Emission in Motor Cars. Transport 2007, 22, 160–163. [Google Scholar] [CrossRef]
- European Automobile Manufacturers’ Association (ACEA). New Car Registrations: -0.1% in August 2025 Year-to-Date; Battery-Electric 15.8% Market Share. ACEA—European Automobile Manufacturers’ Association. 2025. Available online: https://www.acea.auto/pc-registrations/new-car-registrations-0-1-in-august-2025-year-to-date-battery-electric-15-8-market-share/ (accessed on 31 October 2025).
- Ritchie, H.; Rosado, P. Electricity Mix. In Our World in Data; Global Change Data Lab: Oxford, UK, 2020; Available online: https://ourworldindata.org/electricity-mix (accessed on 31 October 2025).
- Kelly, J.C.; Kim, T.; Kolodziej, C.P.; Iyer, R.K.; Tripathi, S.; Elgowainy, A.; Wang, M. Comprehensive Cradle to Grave Life Cycle Analysis of On-Road Vehicles in the United States Based on GREET; SAE International: Warrendale, PA, USA, 2024. [Google Scholar]
- Elgowainy, A.; Han, J.; Ward, J.; Joseck, F.; Gohlke, D.; Lindauer, A.; Ramsden, T.; Biddy, M.; Alexander, M.; Barnhart, S.; et al. Current and Future United States Light-Duty Vehicle Pathways: Cradle-to-Grave Lifecycle Greenhouse Gas Emissions and Economic Assessment. Environ. Sci. Technol. 2018, 52, 2392–2399. [Google Scholar] [CrossRef]
- Ricardo Energy and Environment. Lifecycle Analysis of UK Road Vehicles; Ricardo Energy and Environment: Shoreham-by-Sea, UK, 2021. [Google Scholar]
- Kim, H.C.; Wallington, T.J.; Arsenault, R.; Bae, C.; Ahn, S.; Lee, J. Cradle-to-Gate Emissions from a Commercial Electric Vehicle Li-Ion Battery: A Comparative Analysis. Environ. Sci. Technol. 2016, 50, 7715–7722. [Google Scholar] [CrossRef]
- Negri, M.; Bieker, G. Life-Cycle Greenhouse Gas Emissions from Passenger Cars in the European Union: A 2025 Update and Key Factors to Conside; International Council on Clean Transportation: Washington, DC, USA, 2025. [Google Scholar]
- Bieker, G. A Global Comparison of the Life-Cycle Greenhouse Gas Emissions of Combustion Engine and Electric Passenger Cars—White Paper; International Council on Clean Transportation: Washington, DC, USA, 2021. [Google Scholar]
- European Commission Joint Research Centre. JEC Well-to-Tank Report V5: JEC Well to Wheels Analysis: Well to Wheels Analysis of Future Automotive Fuels and Powertrains in the European Context; Publications Office: Luxembourg, 2020.
- Powell, N.; Hill, N.; Bates, J.; Bottrell, N.; Biedka, M.; White, B.; Pine, T.; Carter, S.; Patterson, J.; Yucel, S. Impact Analysis of Mass EV Adoption and Low Carbon Intensity Fuels Scenarios—Summary Report; Ricardo: Shoreham-by-Sea, UK, 2018. [Google Scholar]
- Ricardo. Impact Analysis of Mass EV Adoption and Low-Carbon Intensity Fuels Scenarios; Ricardo: Shoreham-by-Sea, UK, 2018. [Google Scholar]
- European Road Transport Research Advisory Council (ERTRAC). Carbon-Neutral Road Transport 2050: A Technical Study from a Well-to-Wheels Perspective; European Road Transport Research Advisory Council: Brussels, Belgium, 2021. [Google Scholar]
- Mock, P.; Díaz, S. Pathways to Decarbonization: The European Passenger Car Market in the Years 2021–2035; International Council on Clean Transportation: Washington, DC, USA, 2021. [Google Scholar]
- International Energy Agency. Net Zero Roadmap: A Global Pathway to Keep the 1.5 °C Goal in Reach (2023 Update); International Energy Agency: Paris, France, 2024. [Google Scholar]
- International Energy Agency. Net Zero by 2050: A Roadmap for the Global Energy Sector; International Energy Agency: Paris, France, 2021. [Google Scholar]
- Portuguese Republic. Roteiro Para a Neutralidade Carbónica 2050 (RNC2050); Portuguese Republic: Lisbon, Portugal, 2019. [Google Scholar]
- Presidency of the Council of Ministers. Resolution n. 149/2024; Presidency of the Council of Ministers: Rome, Italy, 2024.
- Portuguese Republic. Plano Nacional de Energia e Clima 2021–2030 (PNEC 2030); Portuguese Republic: Lisbon, Portugal, 2024. [Google Scholar]
- ACAP. Available online: http://acap.pt/index.php?route=base/pt/estatisticas (accessed on 4 November 2025).
- Baptista, P. Evaluation of the Impacts of the Introduction of Alternative Fuelled Vehicles in the Road Transportation Sector. Ph.D. Thesis, Instituto Superior Técnico, Lisbon, Portugal, 2011. [Google Scholar]
- Dargay, J.; Gately, D.; Sommer, M. Vehicle Ownership and Income Growth, Worldwide: 1960–2030. Energy J. 2007, 28, 143–170. [Google Scholar] [CrossRef]
- Alatawneh, A.; Torok, A. Potential Autonomous Vehicle Ownership Growth in Hungary Using the Gompertz Model. Prod. Eng. Arch. 2023, 29, 155–161. [Google Scholar] [CrossRef]
- Portuguese Environment Agency. Relatório do Estado do Ambiente 2024; Agência Portuguesa do Ambiente: Lisbon, Portugal, 2024. [Google Scholar]
- National Statistics Institute. Projeção População Residente 2018–2080; Instituto Nacional de Estatística: Lisbon, Portugal, 2018. [Google Scholar]
- European Automobile Manufacturers’ Association (ACEA). Vehicles on European Roads (2024); ACEA: Brussels, Belgium, 2024. [Google Scholar]
- Portuguese Environment Agency. National Inventory Report 2023 Portugal; Agência Portuguesa do Ambiente: Lisbon, Portugal, 2023. [Google Scholar]
- European Automobile Manufacturers’ Association (ACEA). New Car Registrations: +13.9% in 2023; Battery Electric 14.6% Market Share. 2024. Available online: https://www.acea.auto/pc-registrations/new-car-registrations-13-9-in-2023-battery-electric-14-6-market-share/ (accessed on 31 October 2025).
- European Automobile Manufacturers’ Association (ACEA). New Commercial Vehicle Registrations: Vans +14.6%, Trucks +16.3%, Buses +19.4% in 2023. 2024. Available online: https://www.acea.auto/cv-registrations/new-commercial-vehicle-registrations-vans-14-6-trucks-16-3-buses-19-4-in-2023/ (accessed on 31 October 2025).
- Nissan Reveals European EV Drivers Are Travelling Further than Petrol and Diesel Motorists. Available online: https://europe.nissannews.com/en-GB/releases/nissan-reveals-european-ev-drivers-are-travelling-further-than-petrol-and-diesel-motorists (accessed on 4 November 2025).
- Lu, S. Vehicle Survivability and Travel Mileage Schedules; National Highway Traffic Safety Administration: Washington, DC, USA, 2006. [Google Scholar]
- United Nations Economic Commission for Europe (UNECE). Manual on Tests and Criteria for the Determination of Fuel Consumption and CO₂ Emissions of Light-Duty Vehicles (WLTP Guidelines). UNECE Regulation No. 101—Uniform Provisions Concerning the Approval of Passenger Cars Powered by an Internal Combustion Engine or an Electric Motor with Regard to the Measurement of the Emission of Carbon Dioxide and Fuel Consumption; UNECE: Geneva, Switzerland, 2020. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Volume 2—Energy, Chapter 2: Stationary Combustion; Institute for Global Environmental Strategies (IGES): Hayama, Japan, 2006; Volume 2. [Google Scholar]
- 2023 (Full Year) Europe: Top 20 Best-Selling Electric Car Models—Car Sales Statistics. Available online: https://www.best-selling-cars.com/europe/2023-full-year-europe-top-20-best-selling-electric-car-models/ (accessed on 4 November 2025).
- MPG and Cost Calculator and Tracker—Spritmonitor. Available online: https://www.spritmonitor.de/en/ (accessed on 4 November 2025).
- European Environment Agency. Greenhouse Gas Emission Intensity of Electricity Generation in Europe. Available online: https://www.eea.europa.eu/en/analysis/indicators/greenhouse-gas-emission-intensity-of-1 (accessed on 4 November 2025).
- Porsche eFuels Pilot Plant in Chile Officially Opened. Available online: https://newsroom.porsche.com/en/2022/company/porsche-highly-innovative-fuels-hif-opening-efuels-pilot-plant-haru-oni-chile-synthetic-fuels-30732.html (accessed on 6 November 2025).
- Yugo, M.; Soler, A. Concawe Review; Concawe: Brussels, Belgium, 2019. [Google Scholar]
- European Environment Agency. Greenhouse Gas Emissions from Transport in Europe. Available online: https://www.eea.europa.eu/en/analysis/indicators/greenhouse-gas-emissions-from-transport (accessed on 4 November 2025).
- European Environment Agency Climate. Available online: https://www.eea.europa.eu/en/analysis/publications/sustainability-of-europes-mobility-systems/climate (accessed on 5 November 2025).
- DGEG—Direção Geral de Energia e Geologia. Balanço Energético Nacional 2022; DGEG: Lisbon, Portugal, 2023. [Google Scholar]
- European Automobile Manufacturers’ Association (ACEA). A Mere 10% of Combustion Engine Cars on EU Roads Set to Fall under Euro 7 Rules in 2035. 2023. Available online: https://www.acea.auto/figure/a-mere-10-of-combustion-engine-cars-on-eu-roads-set-to-fall-under-euro-7-rules-in-2035/ (accessed on 31 October 2025).













| Passenger Vehicles | Light-Duty Vans | |||
|---|---|---|---|---|
| EURO | Number of Vehicles | % on Fleet | Number of Vehicles | % on Fleet |
| 0 | ---- | ---- | 185,767 | 18 |
| 1 | 307,343 | 9 | 119,092 | 12 |
| 2 | 692,290 | 19 | 183,425 | 18 |
| 3 | 991,127 | 28 | 254,623 | 25 |
| 4 | 991,975 | 28 | 214,938 | 21 |
| 5 | 620,250 | 17 | 67,178 | 7 |
| Total (2021) | 3,602,985 | 100 | 1,025,023 | 100 |
| Years in Circulation | |||||
|---|---|---|---|---|---|
| Year | 2023 | 2024 | … | 2049 | 2050 |
| 2023 | … | ||||
| 2024 | 0 | ||||
| … | 0 | 0 | |||
| 2049 | 0 | 0 | … | ||
| 2050 | 0 | 0 | … | 0 | |
| Total | |||||
| Passenger Vehicles | Light-Duty Vans | |
|---|---|---|
| km/Year | km/Year | |
| ICEV (diesel) | 10,995 | 10,957 |
| ICEV (gasoline) | 6421 | 2840 |
| HEV | 9675 | 9675 |
| LPG | 7945 | 7945 |
| PHEV | 9675 | 9675 |
| BEV | 9138 | 9138 |
| FCEV | 10,995 | 10,995 |
| Passenger Vehicles | Light-Duty Vans | |||
|---|---|---|---|---|
| Average Energy Use (MJ/km) | EURO 6 Average Energy Use (MJ/km) | Average Energy Use (MJ/km) | EURO 6 Average Energy Use (MJ/km) | |
| ICEVdiesel | 2.62 | 2.52 | 3.16 | 3.24 |
| ICEVgasoline | 2.69 | 2.67 | 3.62 | 2.72 |
| HEV | 1.88 | 1.87 | 2.26 | ---- |
| LPG | 2.75 | 2.91 | 3.32 | ---- |
| PHEVgasoline | 1.41 | ---- | 1.70 | ---- |
| PHEVelectric | 0.69 | ---- | 0.84 | ---- |
| BEV | 0.69 | ---- | 0.84 | ---- |
| FCEV | 1.19 | ---- | 1.43 | ---- |
| Passenger Vehicles | Light-Duty Vans | |||
|---|---|---|---|---|
| Average Emissions (CO2 g/km) | EURO 6 Average Emissions (CO2 g/km) | Average Emissions (CO2 g/km) | EURO 6 Average Emissions (CO2 g/km) | |
| ICEVdiesel | 192.8 | 185.2 | 232.1 | 238.3 |
| ICEVgasoline | 201.9 | 200.7 | 266.1 | 199.5 |
| HEV | 140.8 | 140.7 | 169.5 | 169.5 |
| LPG | 191.0 | 192.4 | 230.0 | 230.0 |
| PHEVgasoline | 105.7 | 105.7 | 127.3 | 127.3 |
| PHEVelectric | 0.0 | 0.0 | 0.0 | 0.0 |
| BEV | 0.0 | 0.0 | 0.0 | 0.0 |
| FCEV | 0.0 | 0.0 | 0.0 | 0.0 |
| Energy Source | CO2 Emission Factor (g/MJ) |
|---|---|
| Fossil gasoline | 17.0 |
| Ethanol | 57.3 |
| ETBE | 28.4 |
| Synthetic gasoline | 0.90 |
| Fossil diesel | 18.9 |
| FAME | 25.2 |
| HVO | 32.5 |
| Synthetic diesel | 0.90 |
| Natural gas | 11.4 |
| Electricity | 48.1 |
| Hydrogen | 9.50 |
| Well-to-Wheel | Well-to-Wheel | |||
|---|---|---|---|---|
| Direct CO2 Emissions (Mton) | Variation (%) Ref. 2022 | Net CO2 Emissions (Mton) | Variation (%) Ref. 2022 | |
| 2022 | 16.88 | ---- | 15.35 | ---- |
| 2030 | 12.56 | −25.5 | 11.35 | −26.1 |
| 2040 | 5.12 | −69.7 | 4.55 | −70.3 |
| 2050 | 1.19 | −93.0 | 1.05 | −93.2 |
| Well-to-Wheel | Well-to-Wheel | |||
|---|---|---|---|---|
| Direct CO2 Emissions (Mton) | Variation (%) Ref. 2022 | Net CO2 Emissions (Mton) | Variation (%) Ref. 2022 | |
| 2022 | 16.88 | ---- | 15.35 | ---- |
| 2030 | 12.69 | −24.8 | 9.30 | −39.4 |
| 2040 | 7.60 | −54.9 | 2.13 | −86.1 |
| 2050 | 5.44 | −67.7 | 0.44 | −97.1 |
| Well-to-Wheel | Well-to-Wheel | |||
|---|---|---|---|---|
| Direct CO2 Emissions (Mton) | Variation (%) Ref. 2022 | Net CO2 Emissions (Mton) | Variation (%) Ref. 2022 | |
| 2022 | 16.88 | ---- | 15.35 | ---- |
| 2030 | 12.85 | −23.8 | 11.31 | −26.3 |
| 2040 | 7.18 | −57.5 | 4.60 | −70.0 |
| 2050 | 4.08 | −75.8 | 1.26 | −91.8 |
| RNC 2050 [32] | Scenario 1 | Scenario 2 | Scenario 3 | |
|---|---|---|---|---|
| 2030 | 5.81 | 8.70 | 6.97 | 8.70 |
| 2040 | 1.66 | 3.51 | 1.15 | 3.17 |
| 2050 | 0.24 | 0.78 | 0.22 | 0.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salvador, J.; Duarte, G.O.; Baptista, P.C. Assessment of Decarbonization Scenarios for the Portuguese Road Sector. Energies 2025, 18, 6587. https://doi.org/10.3390/en18246587
Salvador J, Duarte GO, Baptista PC. Assessment of Decarbonization Scenarios for the Portuguese Road Sector. Energies. 2025; 18(24):6587. https://doi.org/10.3390/en18246587
Chicago/Turabian StyleSalvador, João, Gonçalo O. Duarte, and Patrícia C. Baptista. 2025. "Assessment of Decarbonization Scenarios for the Portuguese Road Sector" Energies 18, no. 24: 6587. https://doi.org/10.3390/en18246587
APA StyleSalvador, J., Duarte, G. O., & Baptista, P. C. (2025). Assessment of Decarbonization Scenarios for the Portuguese Road Sector. Energies, 18(24), 6587. https://doi.org/10.3390/en18246587

