Experimental Study on Pure Ammonia as a Single Fuel in a Range-Extended Electric Vehicle
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Pure Ammonia
3.2. Comparison of Pure Ammonia and Gasoline
4. Conclusions
- (1)
- Under pure ammonia operation, the engine achieved stable operation within a speed range of 1200–3175 rpm. As the engine speed increased, the required IMEP for stable operation gradually rose. Reducing the ignition advance angle shortened the ignition delay period but slightly increased the COV and reduced combustion stability.
- (2)
- At 3175 rpm, the engine achieved an output power of 45 kW, with an indicated thermal efficiency exceeding 40%.
- (3)
- In terms of emissions, even after treatment by a TWC, unburned ammonia and NO emissions remained relatively high, though the ammonia-to-nitrogen oxide ratio was significantly reduced. Additionally, substantial N2O emissions were generated after TWC treatment.
- (4)
- Compared with gasoline, pure ammonia exhibited a longer ignition delay period but a similar combustion duration, necessitating a larger ignition advance angle. Regarding operational boundaries, due to the deactivation of the intake charge air cooler, the intake temperature for pure ammonia was much higher than for gasoline. The intake air volume and intake pressure of pure ammonia were also higher than those of gasoline.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| AER | Ammonia Energy Ratio |
| ASC | Ammonia Slip Catalyst |
| ATDC | After Top Dead Center |
| BMEP | Brake Mean Effective Pressure |
| BTDC | Before Top Dead Center |
| BTE | Brake Thermal Efficiency |
| CA | Crank Angle |
| CA10 | Crank Angle At 10% Mass Fraction Burned |
| CA50 | Crank Angle At 50% Mass Fraction Burned |
| CA90 | Crank Angle At 90% Mass Fraction Burned |
| CI | Compression Ignition |
| COV | Coefficient Of Variation |
| CR | Compression Ratio |
| ECU | Engine Control Unit |
| GHG | Greenhouse Gas |
| HRR | Heat Release Rate |
| IMEP | Indicated Mean Effective Pressure |
| ITE | Indicated Thermal Efficiency |
| PDCU | Power Domain Control Unit |
| SCR | Selective Catalytic Reduction |
| SI | Spark Ignition |
| ST | Spark Timing |
| TDC | Top Dead Center |
| TWC | Three-Way Catalytic Converter |
References
- Qi, Y.; Liu, W.; Liu, S.; Wang, W.; Peng, Y.; Wang, Z. A Review on Ammonia-Hydrogen Fueled Internal Combustion Engines. eTransportation 2023, 18, 100288. [Google Scholar] [CrossRef]
- Gray, J.T.; Dimitroff, E.; Meckel, N.T.; Quillian, R.D. Ammonia Fuel—Engine Compatibility and Combustion. SAE Technical Paper 1966, 660156. [Google Scholar] [CrossRef]
- Sun, Q.; Qi, Y.; Lin, Z.; Liu, Y.; Zhu, W.; Wang, Z. Combustion and Emission Characteristics of an Ammonia-Hydrogen Engine Using Hydrogen-Nitrogen Jet Ignition. Energy 2025, 328, 136544. [Google Scholar] [CrossRef]
- Wang, Z.; Qi, Y.; Sun, Q.; Lin, Z.; Xu, X. Ammonia Combustion Using Hydrogen Jet Ignition (AHJI) in Internal Combustion Engines. Energy 2024, 291, 130407. [Google Scholar] [CrossRef]
- Huang, Z. Fuel Blend Combustion for Decarbonization. Proc. Combust. Inst. 2024, 40, 105776. [Google Scholar] [CrossRef]
- Bicer, Y.; Dincer, I. Life Cycle Assessment of Ammonia Utilization in City Transportation and Power Generation. J. Clean. Prod. 2018, 170, 1594–1601. [Google Scholar] [CrossRef]
- Boero, A.; Mercier, A.; Mounaïm-Rousselle, C.; Valera-Medina, A.; Ramirez, A.D. Environmental Assessment of Road Transport Fueled by Ammonia from a Life Cycle Perspective. J. Clean. Prod. 2023, 390, 136150. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, P.; Jeong, B.; Mesbahi, A.; Mujeeb-Ahmed, M.P.; Jang, H.; Giannakis, A.; Sykaras, K.; Papadakis, A. Life Cycle Analysis of Ammonia Fuelled Ship—Case Ship Studies for Marine Vessels. J. Clean. Prod. 2025, 520, 146105. [Google Scholar] [CrossRef]
- Chalaris, I.; Jeong, B.; Jang, H. Application of Parametric Trend Life Cycle Assessment for Investigating the Carbon Footprint of Ammonia as Marine Fuel. Int. J. Life Cycle Assess. 2022, 27, 1145–1163. [Google Scholar] [CrossRef]
- Ma, F.; Guo, L.; Li, Z.; Zeng, X.; Zheng, Z.; Li, W.; Zhao, F.; Yu, W. A Review of Current Advances in Ammonia Combustion from the Fundamentals to Applications in Internal Combustion Engines. Energies 2023, 16, 6304. [Google Scholar] [CrossRef]
- Zhou, L.; Zhong, L.; Liu, Z.; Wei, H. Toward Highly-Efficient Combustion of Ammonia–Hydrogen Engine: Prechamber Turbulent Jet Ignition. Fuel 2023, 352, 129009. [Google Scholar] [CrossRef]
- Kobayashi, H.; Hayakawa, A.; Somarathne, K.D.K.A.; Okafor, E.C. Science and Technology of Ammonia Combustion. Proc. Combust. Inst. 2019, 37, 109–133. [Google Scholar] [CrossRef]
- Hayakawa, A.; Goto, T.; Mimoto, R.; Arakawa, Y.; Kudo, T.; Kobayashi, H. Laminar Burning Velocity and Markstein Length of Ammonia/Air Premixed Flames at Various Pressures. Fuel 2015, 159, 98–106. [Google Scholar] [CrossRef]
- Han, W.; Dai, P.; Gou, X.; Chen, Z. A Review of Laminar Flame Speeds of Hydrogen and Syngas Measured from Propagating Spherical Flames. Appl. Energy Combust. Sci. 2020, 1–4, 100008. [Google Scholar] [CrossRef]
- Hu, E.; Li, X.; Meng, X.; Chen, Y.; Cheng, Y.; Xie, Y.; Huang, Z. Laminar Flame Speeds and Ignition Delay Times of Methane–Air Mixtures at Elevated Temperatures and Pressures. Fuel 2015, 158, 1–10. [Google Scholar] [CrossRef]
- Liao, Y.-H.; Roberts, W.L. Laminar Flame Speeds of Gasoline Surrogates Measured with the Flat Flame Method. Energy Fuels 2016, 30, 1317–1324. [Google Scholar] [CrossRef]
- Chong, C.T.; Hochgreb, S. Measurements of Laminar Flame Speeds of Liquid Fuels: Jet-A1, Diesel, Palm Methyl Esters and Blends Using Particle Imaging Velocimetry (PIV). Proc. Combust. Inst. 2011, 33, 979–986. [Google Scholar] [CrossRef]
- Dimitriou, P.; Javaid, R. A Review of Ammonia as a Compression Ignition Engine Fuel. Int. J. Hydrogen Energy 2020, 45, 7098–7118. [Google Scholar] [CrossRef]
- Zi, Z.; Jin, S.; Shi, T.; Zhu, L.; Wu, B. Effect of Ammonia Energy Fraction and Diesel Injection Strategy on Load Extension and Greenhouse Gas Reduction Potential of Ammonia-Diesel Premixed-Charge Compression Ignition Engine. Fuel 2025, 398, 135351. [Google Scholar] [CrossRef]
- Zhang, F.; Yang, C.; Wang, Z.; Cheng, X. Comparison of Diesel Single/Double/Triple Injection Strategies and Early/Late Compression Ignition Regimes in an Ammonia/Diesel Dual-Fuel Engine. Energy 2025, 322, 135753. [Google Scholar] [CrossRef]
- Mi, S.; Shi, Z.; Wu, H.; Zheng, L.; Zhao, W.; Qian, Y.; Lu, X. Expanding High Ammonia Energy Ratios in an Ammonia-Diesel Dual-Fuel Engine across Wide-Range Rotational Speeds. Appl. Therm. Eng. 2024, 251, 123608. [Google Scholar] [CrossRef]
- Lin, Z.; Liu, Y.; Chen, Q.; Sun, Q.; Zhu, W.; Qi, Y.; Wang, Z. Experimental Study on the Combustion Pattern in an Ammonia Engine Using Micro Diesel Ignition. Energy 2025, 320, 135480. [Google Scholar] [CrossRef]
- Mounaïm-Rousselle, C.; Bréquigny, P.; Dumand, C.; Houillé, S. Operating Limits for Ammonia Fuel Spark-Ignition Engine. Energies 2021, 14, 4141. [Google Scholar] [CrossRef]
- Frigo, S.; Gentili, R. Analysis of the Behaviour of a 4-Stroke Si Engine Fuelled with Ammonia and Hydrogen. Int. J. Hydrogen Energy 2013, 38, 1607–1615. [Google Scholar] [CrossRef]
- Mørch, C.S.; Bjerre, A.; Gøttrup, M.P.; Sorenson, S.C.; Schramm, J. Ammonia/Hydrogen Mixtures in an SI-Engine: Engine Performance and Analysis of a Proposed Fuel System. Fuel 2011, 90, 854–864. [Google Scholar] [CrossRef]
- Lhuillier, C.; Brequigny, P.; Contino, F.; Rousselle, C. Performance and Emissions of an Ammonia-Fueled SI Engine with Hydrogen Enrichment; SAE Technical Paper 2019-24-0137; SAE International: Warrendale, PA, USA, 2019. [Google Scholar] [CrossRef]
- Zhu, T.; Yan, X.; Gao, Z.; Qiu, Y.; Zhu, L.; Huang, Z. Combustion and Emission Characteristics of Ammonia-Hydrogen Fueled SI Engine with High Compression Ratio. Int. J. Hydrogen Energy 2024, 62, 579–590. [Google Scholar] [CrossRef]
- Pyrc, M.; Gruca, M.; Tutak, W.; Jamrozik, A. Assessment of the Co-Combustion Process of Ammonia with Hydrogen in a Research VCR Piston Engine. Int. J. Hydrogen Energy 2023, 48, 2821–2834. [Google Scholar] [CrossRef]
- Lhuillier, C.; Brequigny, P.; Contino, F.; Mounaïm-Rousselle, C. Experimental Study on Ammonia/Hydrogen/Air Combustion in Spark Ignition Engine Conditions. Fuel 2020, 269, 117448. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, L.; Wei, H. Experimental Investigation on the Performance of Pure Ammonia Engine Based on Reactivity Controlled Turbulent Jet Ignition. Fuel 2023, 335, 127116. [Google Scholar] [CrossRef]
- Sun, Q.; Qi, Y.; Lin, Z.; Liu, Y.; Zhu, W.; Chen, Q.; Peng, Y.; Wang, Z. Experimental Study on Combustion and Emission Characteristics of a Pure Ammonia Engine with Spark Ignition. Energy 2025, 341, 139346. [Google Scholar] [CrossRef]
- Alvarez, L.F.; Ulishney, C.J.; Askari, O.; Dumitrescu, C.E. Neat Ammonia Use in a Heavy-Duty Diesel Engine Converted to Spark Ignition Focused on Lean Operation. Fuel 2025, 382, 133786. [Google Scholar] [CrossRef]
- Ambalakatte, A.; Cairns, A.; Geng, S.; Varaei, A.; Hegab, A.; Harrington, A.; Hall, J.; Bassett, M. Experimental Comparison of Spark and Jet Ignition Engine Operation with Ammonia/Hydrogen Co-Fuelling; SAE Technical Paper 2024-01-2109; SAE International: Warrendale, PA, USA, 2024. [Google Scholar] [CrossRef]
- Lanni, D.; Galloni, E.; Fontana, G.; D’Antuono, G. Assessment of the Operation of an SI Engine Fueled with Ammonia. Energies 2022, 15, 8583. [Google Scholar] [CrossRef]
- Xin, G.; Ji, C.; Wang, S.; Hong, C.; Meng, H.; Yang, J.; Su, F. Experimental Study on the Load Control Strategy of Ammonia-Hydrogen Dual-Fuel Internal Combustion Engine for Hybrid Power System. Fuel 2023, 347, 128396. [Google Scholar] [CrossRef]
- Liu, Z.; Wei, H.; Shu, G.; Zhou, L. Ammonia-Hydrogen Engine with Reactivity-Controlled Turbulent Jet Ignition (RCTJI). Fuel 2023, 348, 128580. [Google Scholar] [CrossRef]
- Xin, G.; Ji, C.; Wang, S.; Meng, H.; Chang, K.; Yang, J. Effect of Ammonia Addition on Combustion and Emission Characteristics of Hydrogen-Fueled Engine under Lean-Burn Condition. Int. J. Hydrogen Energy 2022, 47, 9762–9774. [Google Scholar] [CrossRef]
- Qi, Y.; Wang, W.; Wang, Z. Combustion and Emission Characteristics of an Ammonia-Hydrogen Engine Under Passive- and Active-Jet Ignition; SAE Technical Paper 2024-01-2109; SAE International: Warrendale, PA, USA, 2024. [Google Scholar] [CrossRef]
- Pochet, M.; Truedsson, I.; Foucher, F.; Jeanmart, H.; Contino, F. Ammonia-Hydrogen Blends in Homogeneous-Charge Compression-Ignition Engine; SAE Technical Paper 2017-24-0087; SAE International: Warrendale, PA, USA, 2017. [Google Scholar] [CrossRef]
- Wang, X.; Chen, R.; Li, T.; Huang, S.; Zhou, X.; Li, S.; Wang, N.; Li, Z.; Li, G.; Guo, X. A Novel Exhaust Aftertreatment Technology for the Simultaneous Elimination of NO, NO2 and NH3 of Pilot-Diesel-Ignited Ammonia Engines Based on the Active Exhaust Diversion. J. Energy Inst. 2025, 119, 101981. [Google Scholar] [CrossRef]
- Pochet, M.; Dias, V.; Moreau, B.; Foucher, F.; Jeanmart, H.; Contino, F. Experimental and Numerical Study, under LTC Conditions, of Ammonia Ignition Delay with and without Hydrogen Addition. Proc. Combust. Inst. 2019, 37, 621–629. [Google Scholar] [CrossRef]
- Hurault, F.; Fenard, Y.; Brequigny, P.; Moreau, B.; Haidous, Y.; Foucher, F.; Mounaïm-Rousselle, C. Experimental and Numerical Ignition Delay Times Comparison for Ammonia Mechanisms at High Pressure. Proc. Combust. Inst. 2024, 40, 105625. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, Q.; Qi, Y.; Chu, Z.; Yang, B.; Wang, Z. A Study on Measuring Ammonia-Hydrogen IDTs and Constructing an Ammonia-Hydrogen Combustion Mechanism at Engine-Relevant Thermodynamic and Fuel Concentration Conditions. Int. J. Hydrogen Energy 2024, 82, 786–800. [Google Scholar] [CrossRef]
- Dong, P.; Chen, S.; Dong, D.; Wei, F.; Lu, M.; Wang, P.; Long, W. Characteristics of Ammonia Premixture Combustion Ignited by a Gasoline Ignition Chamber. Int. J. Hydrogen Energy 2024, 49, 923–932. [Google Scholar] [CrossRef]
- Carsten Jespersen, M.; Østerby Holst Rasmussen, T.; Ivarsson, A. Widening the Operation Limits of a SI Engine Running on Neat Ammonia. Fuel 2024, 358, 130159. [Google Scholar] [CrossRef]












| NH3 | H2 | CH4 | Gasoline | Diesel | |
|---|---|---|---|---|---|
| Lower Heating Value (MJ/kg) | 18.6 [12] | 120 [12] | 50 [12] | 44.5 | 45 |
| Auto-ignition Temperature (K) | 930 | 793 | 859 | 503 | 527 |
| Laminar Flame Speed (m/s) | 0.07 [13] | 3.51 [14] | 0.38 [15] | 0.58 [16] | 0.86 [17] |
| Flammability Limits (vol%) | 15–28 | 4.7–75 | 5–15 | 0.6–8 | 1–6 |
| Adiabatic Flame Temperature (°C) | 1800 | 2110 | 1950 | 2138 | 2300 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Q.; Li, R.; Qi, Y.; Pan, H.; Zhu, W.; Lin, Z.; Chen, Q.; Wang, Z. Experimental Study on Pure Ammonia as a Single Fuel in a Range-Extended Electric Vehicle. Energies 2025, 18, 6583. https://doi.org/10.3390/en18246583
Sun Q, Li R, Qi Y, Pan H, Zhu W, Lin Z, Chen Q, Wang Z. Experimental Study on Pure Ammonia as a Single Fuel in a Range-Extended Electric Vehicle. Energies. 2025; 18(24):6583. https://doi.org/10.3390/en18246583
Chicago/Turabian StyleSun, Qiyang, Rulong Li, Yunliang Qi, Hongjian Pan, Wuzhe Zhu, Zhelong Lin, Qingchu Chen, and Zhi Wang. 2025. "Experimental Study on Pure Ammonia as a Single Fuel in a Range-Extended Electric Vehicle" Energies 18, no. 24: 6583. https://doi.org/10.3390/en18246583
APA StyleSun, Q., Li, R., Qi, Y., Pan, H., Zhu, W., Lin, Z., Chen, Q., & Wang, Z. (2025). Experimental Study on Pure Ammonia as a Single Fuel in a Range-Extended Electric Vehicle. Energies, 18(24), 6583. https://doi.org/10.3390/en18246583
