Alternative Fuels’ Techno-Economic and Environmental Impacts on Ship Energy Efficiency with Shaft Generator Integration
Abstract
1. Introduction
2. Background
3. Research Motivation and Innovation
4. Methodology and Numerical Model
5. Case Study and Discussion
5.1. Ship Characteristics for Case Study
5.2. Results and Discussion
- Fuel price variation: random multipliers within a ±20% range of the baseline fuel prices are applied, generating 1000 possible realizations of daily savings.
- SG capital cost variation: 1000 random investment costs are drawn from a uniform distribution in the range of $250,000–$500,000, representing typical values reported for a 640 kW shaft generator installation.
6. Conclusions and Future Recommendations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
| APS | Auxiliary Power Systems |
| CAPEX | Investment cost of the system |
| CFuel | Fuel price |
| CO2 | Carbon dioxide |
| CV | Calorific value |
| DG | Diesel generators |
| dyear | Number of operating days per year |
| EEDI | Energy efficiency design index |
| EEXI | Energy Efficiency Existing Ship Index |
| EF | Emission factor |
| FCDG | Auxiliary fuel consumption |
| FCME | Fuel consumption of the main engine |
| FCME-DG | Total consumption of main engine and DG |
| FCME-SG | Total consumption of main engine while adding the loads from SG |
| FOC | Field-oriented control |
| GHG | Greenhouse gas |
| HFO | Heavy fuel oil |
| IMO | International Maritime Organization |
| IQR | Interquartile range |
| IRR | Internal Rate of Return |
| LNG | Liquified natural gas |
| MAPSO | Modified adaptive particle swarm optimization |
| MCR | Maximum Continuous Rating |
| MDO | Marine diesel oil |
| MEOPs | Minimum emission operating points |
| NCR | Normal Continuous Rating |
| NOx | Nitrogen oxides |
| NPV | Net Present Value |
| PBP | Payback period |
| PE | Effective power |
| PME | Brake power demand of the main engine |
| PMSM | Permanent Magnet Synchronous Machine |
| PSG | SG power demand |
| PTI | Power Take-In |
| PTO | Power Take-Off |
| Q | Quarter |
| RT | Total resistance |
| SFOC | Specific Fuel Oil Consumption |
| SFuel-Cost | Fuel cost savings |
| SG | Shaft generator |
| SOx | Sulphur oxides |
| VFD | Variable frequency drives |
| VS | Ship speed |
| ΔFC | Net saving |
| ηD | Propeller efficiency |
| ηH | Hull efficiency |
| ηR | Relative rotative efficiency |
| ηS | Shaft efficiency |
References
- UNCTAD. Review of Maritime Transport 2018; UNCTAD: New York, NY, USA, 2018.
- Ceylan, B.O.; Akyar, D.A.; Celik, M.S. A novel FMEA approach for risk assessment of air pollution from ships. Mar. Policy 2023, 150, 105536. [Google Scholar] [CrossRef]
- Tadros, M.; Ventura, M.; Guedes Soares, C. Review of the IMO Initiatives for Ship Energy Efficiency and Their Implications. J. Mar. Sci. Appl. 2023, 22, 662–680. [Google Scholar] [CrossRef]
- IMO—MEPC. Reduction of GHG emissions from ships. In Fourth IMO GHG Study 2020; IMO: London, UK, 2020; Volume 53, pp. 1689–1699. [Google Scholar]
- Tadros, M.; Ventura, M.; Guedes Soares, C. Review of current regulations, available technologies, and future trends in the green shipping industry. Ocean Eng. 2023, 280, 114670. [Google Scholar] [CrossRef]
- Karatuğ, Ç.; Ejder, E.; Tadros, M.; Arslanoğlu, Y. Environmental and Economic Evaluation of Dual-Fuel Engine Investment of a Container Ship. J. Mar. Sci. Appl. 2023, 22, 823–836. [Google Scholar] [CrossRef]
- Trivyza, N.L.; Rentizelas, A.; Theotokatos, G.; Boulougouris, E. Decision support methods for sustainable ship energy systems: A state-of-the-art review. Energy 2022, 239, 122288. [Google Scholar] [CrossRef]
- Wang, Y.; Iris, Ç. Transition to near-zero emission shipping fleet powered by alternative fuels under uncertainty. Transp. Res. D Transp. Environ. 2025, 142, 104689. [Google Scholar] [CrossRef]
- Tadros, M.; Ventura, M.; Guedes Soares, C. Optimization procedure to minimize fuel consumption of a four-stroke marine turbocharged diesel engine. Energy 2019, 168, 897–908. [Google Scholar] [CrossRef]
- Theotokatos, G.; Stoumpos, S.; Bolbot, V.; Boulougouris, E. Simulation-based investigation of a marine dual-fuel engine. J. Mar. Eng. Technol. 2020, 19, 5–16. [Google Scholar] [CrossRef]
- Gnanasekaran, S.; Saravanan, N.; Ilangkumaran, M. Influence of injection timing on performance, emission and combustion characteristics of a DI diesel engine running on fish oil biodiesel. Energy 2016, 116, 1218–1229. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J.; Zhao, H. Optimization of the injection parameters and combustion chamber geometries of a diesel/natural gas RCCI engine. Energy 2018, 164, 837–852. [Google Scholar] [CrossRef]
- Wang, H.; Gan, H.; Theotokatos, G. Parametric investigation of pre-injection on the combustion, knocking and emissions behaviour of a large marine four-stroke dual-fuel engine. Fuel 2020, 281, 118744. [Google Scholar] [CrossRef]
- Ma, C.; Yao, C.; Song, E.-Z.; Ding, S.-L. Prediction and optimization of dual-fuel marine engine emissions and performance using combined ANN with PSO algorithms. Int. J. Engine Res. 2022, 23, 560–576. [Google Scholar] [CrossRef]
- Guan, W.; Luo, S.; Wu, J.; Lou, H.; Wang, L.; Wu, F.; Li, L.; Huang, F.; He, H. The Impact of Diesel Injection Strategy and In-Cylinder Temperature on the Combustion and Emissions of Ammonia/Diesel Dual-Fuel Marine Engine. Energies 2025, 18, 3631. [Google Scholar] [CrossRef]
- Nain, A. Turbocharger Optimization of Diesel Engine for Fuel Economy Improvement Using 1-D Thermodynamic Analysis; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2020. [Google Scholar] [CrossRef]
- Ma, Z.; Gu, Y.; Zhu, S.; Yang, M.; Deng, K. Analysis on capability of power recovery of marine diesel engine at high backpressure conditions. Appl. Therm. Eng. 2022, 204, 117933. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, F.; Leng, L.; Ren, Z.; Shi, L.; Deng, K. Matching and optimization to minimize fuel consumption and NOx emission for a marine diesel engine with turbo-assisted exhaust gas recirculation. Proc. Inst. Mech. Eng. Part D 2023, 239, 651–664. [Google Scholar] [CrossRef]
- Shen, H.; Yang, F.; Jiang, D.; Lu, D.; Jia, B.; Liu, Q.; Zhang, X. Parametric Investigation on the Influence of Turbocharger Performance Decay on the Performance and Emission Characteristics of a Marine Large Two-Stroke Dual Fuel Engine. J. Mar. Sci. Eng. 2024, 12, 1298. [Google Scholar] [CrossRef]
- Martinić-Cezar, S.; Jurić, Z.; Assani, N.; Račić, N. Controlling Engine Load Distribution in LNG Ship Propulsion Systems to Optimize Gas Emissions and Fuel Consumption. Energies 2025, 18, 485. [Google Scholar] [CrossRef]
- Altosole, M.; Benvenuto, G.; Campora, U.; Laviola, M.; Trucco, A. Waste Heat Recovery from Marine Gas Turbines and Diesel Engines. Energies 2017, 10, 718. [Google Scholar] [CrossRef]
- Ouyang, T.; Huang, G.; Lu, Y.; Liu, B.; Hu, X. Multi-criteria assessment and optimization of waste heat recovery for large marine diesel engines. J. Clean. Prod. 2021, 309, 127307. [Google Scholar] [CrossRef]
- Kallis, G.; Roumpedakis, T.C.; Pallis, P.; Koutantzi, Z.; Charalampidis, A.; Karellas, S. Life cycle analysis of a waste heat recovery for marine engines Organic Rankine Cycle. Energy 2022, 257, 124698. [Google Scholar] [CrossRef]
- Jia, M.; Xie, M.; Wang, T.; Peng, Z. The effect of injection timing and intake valve close timing on performance and emissions of diesel PCCI engine with a full engine cycle CFD simulation. Appl. Energy 2011, 88, 2967–2975. [Google Scholar] [CrossRef]
- Fontana, G.; Galloni, E. Variable valve timing for fuel economy improvement in a small spark-ignition engine. Appl. Energy 2009, 86, 96–105. [Google Scholar] [CrossRef]
- Martins, M.E.S.; Lanzanova, T.D.M. Full-load Miller cycle with ethanol and EGR: Potential benefits and challenges. Appl. Therm. Eng. 2015, 90, 274–285. [Google Scholar] [CrossRef]
- Tadros, M.; Ventura, M.; Guedes Soares, C. A nonlinear optimization tool to simulate a marine propulsion system for ship conceptual design. Ocean Eng. 2020, 210, 107417. [Google Scholar] [CrossRef]
- Cao, J.; Liu, Z.; Shi, H.; Dong, D.; Kang, S.; Bu, L. A Review of Marine Dual-Fuel Engine New Combustion Technology: Turbulent Jet-Controlled Premixed-Diffusion Multi-Mode Combustion. Energies 2025, 18, 3903. [Google Scholar] [CrossRef]
- MAN Energy Solutions. Shaft Generators for Low Speed Main Engines; MAN Energy Solutions: Augsburg, Germany, 2021. [Google Scholar]
- Gully, B.H.; Webber, M.E.; Seepersad, C.C. Shaft Motor-Generator Design Assessment for Increased Operational Efficiency in Container Ships. In Proceedings of the ASME 2011 5th International Conference on Energy Sustainability, Washington, DC, USA, 7–10 August 2011; pp. 1813–1819. [Google Scholar]
- Souflis-Rigas, A.; Prousalidis, J.; Dimopoulos, G. Assessing the implementation of Power Take Off (PTO) system onboard Liquified Natural Gas (LNG) carriers. In Proceedings of the 2021 IEEE Electric Ship Technologies Symposium (ESTS), Online, 3–6 August 2021; pp. 1–8. [Google Scholar]
- Stanic, G.; Bonato, S.; Groppo, M.; Tessarolo, A. Hybrid synchronous motor-alternator with dual AC/DC excitation system for shipboard generation and propulsion applications. In Proceedings of the 2014 International Conference on Electrical Machines (ICEM), Berlin, Germany, 2–5 September 2014; pp. 2362–2367. [Google Scholar]
- Reusser, C.A.; Perez, M.; Perez, J. Ship‘s PTO/PTI Torque Field Oriented Control scheme, with optimization strategy, for EEDI index improvement. In Proceedings of the 2018 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC), Nottingham, UK, 7–9 November 2018; pp. 1–6. [Google Scholar]
- Łosiewicz, Z.; Mironiuk, W.; Cioch, W.; Sendek-Matysiak, E.; Homik, W. Application of Generator-Electric Motor System for Emergency Propulsion of a Vessel in the Event of Loss of the Full Serviceability of the Diesel Main Engine. Energies 2022, 15, 2833. [Google Scholar] [CrossRef]
- Sui, C.; de Vos, P.; Hopman, H.; Visser, K.; Stapersma, D.; Ding, Y. Effects of adverse sea conditions on propulsion and manoeuvring performance of low-powered ocean-going cargo ship. Ocean Eng. 2022, 254, 111348. [Google Scholar] [CrossRef]
- Fan, A.; Tian, Z.; Li, Y.; Liu, H.; Qiu, H.; Liufu, Y.; Vladimir, N. MAPSO-based mode transition process optimisation of ship parallel hybrid power system. J. Mar. Eng. Technol. 2025, 24, 417–431. [Google Scholar] [CrossRef]
- Chun, H.H.; Kim, M.C.; Lee, I.; Kim, K.; Lee, J.K.; Jung, K.H. Experimental investigation on stern-boat deployment system and operability for Korean coast guard ship. Int. J. Nav. Archit. Ocean. Eng. 2012, 4, 488–503. [Google Scholar] [CrossRef][Green Version]
- Carlton, J. Marine Propellers and Propulsion, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 2012. [Google Scholar]
- Watson, D.G.M. Practical Ship Design; Elsevier Science Ltd.: Oxford, UK, 1998. [Google Scholar]
- Heywood, J.B. Internal Combustion Engine Fundamentals; McGraw-Hill: New York, NY, USA, 1988. [Google Scholar]
- Kristensen, H.O. Energy Demand and Exhaust Gas Emissions of Marine Engines; Technical University of Denmark: Kongens Lyngby, Denmark, 2012. [Google Scholar]
- Sallam, S.K.; Elgohary, M.M.; Seddiek, I.S. Methanol as an Eco-Environmental Alternative Fuel for Ships: A Case Study. J. Mar. Sci. Technol. 2023, 31, 205–214. [Google Scholar] [CrossRef]
- Tadros, M.; Ventura, M.; Guedes Soares, C. Optimization of the performance of marine diesel engines to minimize the formation of SOx emissions. J. Mar. Sci. Appl. 2020, 19, 473–484. [Google Scholar] [CrossRef]
- Bortnowska, M. Projected Reductions in CO2 Emissions by Using Alternative Methanol Fuel to Power a Service Operation Vessel. Energies 2023, 16, 7419. [Google Scholar] [CrossRef]
- Ejder, E.; Arslanoğlu, Y. Evaluation of ammonia fueled engine for a bulk carrier in marine decarbonization pathways. J. Clean. Prod. 2022, 379, 134688. [Google Scholar] [CrossRef]
- Uyan, E. Tecno-econo-enviro-social assessment of clean electrification for a marine equipment manufacturing plant in Türkiye through hybrid renewable energy system with demand response. Energy 2024, 304, 132015. [Google Scholar] [CrossRef]
- Flexible Academy of Finance. Ship Financing Options. Available online: https://academyflex.com/ship-financing-options/ (accessed on 9 July 2025).
- IMO GreenVoyage2050. Shaft Generator. Available online: https://greenvoyage2050.imo.org/technology/shaft-generator/?utm_source=chatgpt.com (accessed on 7 July 2025).
- WinGD. General Technical Data. Available online: https://wingd.com/products-solutions/engines/general-technical-data (accessed on 7 November 2025).
- Ship & Bunker. World Bunker Prices. Available online: https://shipandbunker.com/prices (accessed on 8 June 2025).
- Albrecht, F.G.; König, D.H.; Baucks, N.; Dietrich, R.-U. A standardized methodology for the techno-economic evaluation of alternative fuels—A case study. Fuel 2017, 194, 511–526. [Google Scholar] [CrossRef]








| Unit | HFO | MDO | FAME | Methanol | |
|---|---|---|---|---|---|
| EFCO2 | tCO2/tFuel | 3.114 | 3.206 | 2.99 | 1.375 |
| EFNOx | kgNOx/tFuel | 89 | 89 | 91.35 | 13 |
| EFSOx | tSOx/tFuel | 20× (0.5%) | 20× (0.5%) | 20× (0.5%) | 20× (0.0%) |
| Characteristic | Unit | Value | |
|---|---|---|---|
| Ship | Ship type | - | Bulk carrier |
| Waterline Length | m | 200 | |
| Breadth | m | 23.8 | |
| Draft | m | 10.8 | |
| Deadweight | tonne | 35,000 | |
| Design speed at 85% MCR | knots | 13.5 | |
| Main Engine | Rated power | kW | 6400 |
| Rated speed | rpm | 85.2 | |
| SFOC | g/kWh | 170 | |
| CV | kJ/kg | 42,700 | |
| Diesel Generator | Number | - | 3 |
| Rated power | kWe | 640 | |
| Rated speed | rpm | 900 | |
| SFOC | g/kWh | 205 |
| Fuel Types | ME + DG | ME + SG | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| DG Loads (kW) | SG Loads (kW) | |||||||||
| Vs | 300 | 400 | 500 | 600 | Vs | 300 | 400 | 500 | 600 | |
| HFO | 10 | 10.58 | 11.07 | 11.56 | 12.06 | 10 | 10.33 | 10.74 | 11.14 | 11.55 |
| 11 | 13.59 | 14.09 | 14.58 | 15.07 | 11 | 13.34 | 13.75 | 14.16 | 14.57 | |
| 11.3 | 14.61 | 15.10 | 15.60 | 16.09 | 11.3 | 14.36 | 14.77 | 15.18 | 15.58 | |
| 12 | 17.21 | 17.70 | 18.19 | 18.68 | 12 | 16.96 | 17.36 | 17.77 | 18.18 | |
| 12.3 | 18.42 | 18.91 | 19.40 | 19.89 | 12.3 | 18.17 | 18.57 | 18.98 | 19.39 | |
| 13 | 21.48 | 21.97 | 22.46 | 22.95 | 13 | 21.23 | 21.63 | 22.04 | 22.45 | |
| 13.2 | 22.41 | 22.91 | 23.40 | 23.89 | 13.2 | 22.16 | 22.57 | 22.98 | 23.39 | |
| 13.5 | 23.88 | 24.37 | 24.86 | 25.35 | 13.5 | 23.62 | 24.03 | 24.44 | 24.85 | |
| FAME | 10 | 11.65 | 12.14 | 12.64 | 13.13 | 10 | 11.54 | 12.00 | 12.46 | 12.91 |
| 11 | 15.02 | 15.51 | 16.00 | 16.49 | 11 | 14.91 | 15.37 | 15.82 | 16.28 | |
| 11.3 | 16.16 | 16.65 | 17.14 | 17.63 | 11.3 | 16.05 | 16.51 | 16.96 | 17.42 | |
| 12 | 19.06 | 19.55 | 20.04 | 20.53 | 12 | 18.95 | 19.41 | 19.86 | 20.32 | |
| 12.3 | 20.41 | 20.90 | 21.39 | 21.89 | 12.3 | 20.30 | 20.76 | 21.21 | 21.67 | |
| 13 | 23.83 | 24.32 | 24.81 | 25.31 | 13 | 23.72 | 24.18 | 24.63 | 25.09 | |
| 13.2 | 24.88 | 25.37 | 25.86 | 26.35 | 13.2 | 24.77 | 25.23 | 25.68 | 26.14 | |
| 13.5 | 26.51 | 27.00 | 27.49 | 27.99 | 13.5 | 26.40 | 26.86 | 27.31 | 27.77 | |
| Methanol-Diesel | 10 | 18.74 | 19.23 | 19.72 | 20.21 | 10 | 19.58 | 20.36 | 21.13 | 21.90 |
| 11 | 24.45 | 24.94 | 25.44 | 25.93 | 11 | 25.30 | 26.07 | 26.84 | 27.62 | |
| 11.3 | 26.38 | 26.88 | 27.37 | 27.86 | 11.3 | 27.23 | 28.00 | 28.78 | 29.55 | |
| 12 | 31.31 | 31.80 | 32.29 | 32.78 | 12 | 32.15 | 32.92 | 33.70 | 34.47 | |
| 12.3 | 33.60 | 34.09 | 34.58 | 35.08 | 12.3 | 34.44 | 35.22 | 35.99 | 36.77 | |
| 13 | 39.40 | 39.89 | 40.39 | 40.88 | 13 | 40.25 | 41.02 | 41.79 | 42.57 | |
| 13.2 | 41.18 | 41.67 | 42.16 | 42.66 | 13.2 | 42.02 | 42.80 | 43.57 | 44.35 | |
| 13.5 | 43.95 | 44.44 | 44.93 | 45.42 | 13.5 | 44.79 | 45.57 | 46.34 | 47.11 | |
| Fuel Types | ME + DG | ME + SG | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| DG Loads (kW) | SG Loads (kW) | |||||||||
| Vs | 300 | 400 | 500 | 600 | Vs | 300 | 400 | 500 | 600 | |
| HFO | 10 | 5924 | 6315 | 6706 | 7096 | 10 | 5391 | 5604 | 5817 | 6030 |
| 11 | 7497 | 7888 | 8279 | 8669 | 11 | 6964 | 7177 | 7390 | 7603 | |
| 11.3 | 8029 | 8420 | 8810 | 9201 | 11.3 | 7496 | 7709 | 7922 | 8135 | |
| 12 | 9384 | 9775 | 10,165 | 10,556 | 12 | 8851 | 9064 | 9277 | 9490 | |
| 12.3 | 10,015 | 10,406 | 10,797 | 11,187 | 12.3 | 9482 | 9695 | 9908 | 10,121 | |
| 13 | 11,613 | 12,003 | 12,394 | 12,785 | 13 | 11,080 | 11,293 | 11,506 | 11,719 | |
| 13.2 | 12,102 | 12,493 | 12,883 | 13,274 | 13.2 | 11,569 | 11,782 | 11,995 | 12,208 | |
| 13.5 | 12,864 | 13,255 | 13,646 | 14,036 | 13.5 | 12,331 | 12,544 | 12,757 | 12,970 | |
| FAME | 10 | 8457 | 8848 | 9239 | 9629 | 10 | 8265 | 8591 | 8918 | 9244 |
| 11 | 10,869 | 11,259 | 11,650 | 12,041 | 11 | 10,676 | 11,003 | 11,329 | 11,656 | |
| 11.3 | 11,684 | 12,075 | 12,465 | 12,856 | 11.3 | 11,491 | 11,818 | 12,144 | 12,471 | |
| 12 | 13,761 | 14,152 | 14,542 | 14,933 | 12 | 13,569 | 13,895 | 14,222 | 14,548 | |
| 12.3 | 14,729 | 15,120 | 15,510 | 15,901 | 12.3 | 14,537 | 14,863 | 15,190 | 15,516 | |
| 13 | 17,178 | 17,568 | 17,959 | 18,350 | 13 | 16,985 | 17,312 | 17,638 | 17,965 | |
| 13.2 | 17,928 | 18,319 | 18,709 | 19,100 | 13.2 | 17,736 | 18,062 | 18,388 | 18,715 | |
| 13.5 | 19,097 | 19,487 | 19,878 | 20,269 | 13.5 | 18,904 | 19,231 | 19,557 | 19,884 | |
| Methanol-Diesel | 10 | 7597 | 7988 | 8378 | 8769 | 10 | 7289 | 7577 | 7865 | 8153 |
| 11 | 9724 | 10,115 | 10,505 | 10,896 | 11 | 9416 | 9704 | 9992 | 10,280 | |
| 11.3 | 10,443 | 10,833 | 11,224 | 11,615 | 11.3 | 10,135 | 10,423 | 10,711 | 10,999 | |
| 12 | 12,275 | 12,665 | 13,056 | 13,447 | 12 | 11,967 | 12,255 | 12,542 | 12,830 | |
| 12.3 | 13,128 | 13,519 | 13,910 | 14,300 | 12.3 | 12,820 | 13,108 | 13,396 | 13,684 | |
| 13 | 15,288 | 15,679 | 16,069 | 16,460 | 13 | 14,980 | 15,268 | 15,556 | 15,844 | |
| 13.2 | 15,950 | 16,340 | 16,731 | 17,122 | 13.2 | 15,642 | 15,930 | 16,217 | 16,505 | |
| 13.5 | 16,980 | 17,371 | 17,762 | 18,152 | 13.5 | 16,672 | 16,960 | 17,248 | 17,536 | |
| Fuel Types | CO2 Emissions | NOx Emissions | SOx Emissions | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Vs | 300 | 400 | 500 | 600 | Vs | 300 | 400 | 500 | 600 | Vs | 300 | 400 | 500 | 600 | |
| HFO | 10 | 32.2 | 33.4 | 34.7 | 36.0 | 10 | 0.919 | 0.956 | 0.992 | 1.028 | 10 | 0.103 | 0.107 | 0.111 | 0.116 |
| 11 | 41.5 | 42.8 | 44.1 | 45.4 | 11 | 1.187 | 1.224 | 1.260 | 1.296 | 11 | 0.133 | 0.137 | 0.142 | 0.146 | |
| 11.3 | 44.7 | 46.0 | 47.3 | 48.5 | 11.3 | 1.278 | 1.314 | 1.351 | 1.387 | 11.3 | 0.144 | 0.148 | 0.152 | 0.156 | |
| 12 | 52.8 | 54.1 | 55.3 | 56.6 | 12 | 1.509 | 1.545 | 1.582 | 1.618 | 12 | 0.170 | 0.174 | 0.178 | 0.182 | |
| 12.3 | 56.6 | 57.8 | 59.1 | 60.4 | 12.3 | 1.617 | 1.653 | 1.689 | 1.726 | 12.3 | 0.182 | 0.186 | 0.190 | 0.194 | |
| 13 | 66.1 | 67.4 | 68.6 | 69.9 | 13 | 1.889 | 1.925 | 1.962 | 1.998 | 13 | 0.212 | 0.216 | 0.220 | 0.224 | |
| 13.2 | 69.0 | 70.3 | 71.6 | 72.8 | 13.2 | 1.972 | 2.009 | 2.045 | 2.081 | 13.2 | 0.222 | 0.226 | 0.230 | 0.234 | |
| 13.5 | 73.6 | 74.8 | 76.1 | 77.4 | 13.5 | 2.102 | 2.139 | 2.175 | 2.211 | 13.5 | 0.236 | 0.240 | 0.244 | 0.248 | |
| FAME | 10 | 34.5 | 35.9 | 37.2 | 38.6 | 10 | 1.054 | 1.096 | 1.138 | 1.179 | 10 | 0.115 | 0.120 | 0.125 | 0.129 |
| 11 | 44.6 | 45.9 | 47.3 | 48.7 | 11 | 1.362 | 1.404 | 1.445 | 1.487 | 11 | 0.149 | 0.154 | 0.158 | 0.163 | |
| 11.3 | 48.0 | 49.4 | 50.7 | 52.1 | 11.3 | 1.466 | 1.508 | 1.549 | 1.591 | 11.3 | 0.160 | 0.165 | 0.170 | 0.174 | |
| 12 | 56.7 | 58.0 | 59.4 | 60.8 | 12 | 1.731 | 1.773 | 1.814 | 1.856 | 12 | 0.190 | 0.194 | 0.199 | 0.203 | |
| 12.3 | 60.7 | 62.1 | 63.4 | 64.8 | 12.3 | 1.855 | 1.896 | 1.938 | 1.980 | 12.3 | 0.203 | 0.208 | 0.212 | 0.217 | |
| 13 | 70.9 | 72.3 | 73.7 | 75.0 | 13 | 2.167 | 2.209 | 2.250 | 2.292 | 13 | 0.237 | 0.242 | 0.246 | 0.251 | |
| 13.2 | 74.1 | 75.4 | 76.8 | 78.2 | 13.2 | 2.263 | 2.304 | 2.346 | 2.388 | 13.2 | 0.248 | 0.252 | 0.257 | 0.261 | |
| 13.5 | 78.9 | 80.3 | 81.7 | 83.0 | 13.5 | 2.412 | 2.454 | 2.495 | 2.537 | 13.5 | 0.264 | 0.269 | 0.273 | 0.278 | |
| Methanol-Diesel | 10 | 28.7 | 29.9 | 31.0 | 32.1 | 10 | 0.329 | 0.342 | 0.355 | 0.368 | 10 | 0.010 | 0.010 | 0.011 | 0.011 |
| 11 | 37.1 | 38.2 | 39.4 | 40.5 | 11 | 0.425 | 0.438 | 0.451 | 0.464 | 11 | 0.013 | 0.013 | 0.013 | 0.014 | |
| 11.3 | 39.9 | 41.1 | 42.2 | 43.3 | 11.3 | 0.457 | 0.470 | 0.483 | 0.496 | 11.3 | 0.014 | 0.014 | 0.014 | 0.015 | |
| 12 | 47.2 | 48.3 | 49.4 | 50.6 | 12 | 0.540 | 0.553 | 0.566 | 0.579 | 12 | 0.016 | 0.016 | 0.017 | 0.017 | |
| 12.3 | 50.5 | 51.6 | 52.8 | 53.9 | 12.3 | 0.579 | 0.592 | 0.605 | 0.618 | 12.3 | 0.017 | 0.018 | 0.018 | 0.018 | |
| 13 | 59.0 | 60.2 | 61.3 | 62.4 | 13 | 0.676 | 0.689 | 0.702 | 0.715 | 13 | 0.020 | 0.021 | 0.021 | 0.021 | |
| 13.2 | 61.6 | 62.8 | 63.9 | 65.0 | 13.2 | 0.706 | 0.719 | 0.732 | 0.745 | 13.2 | 0.021 | 0.021 | 0.022 | 0.022 | |
| 13.5 | 65.7 | 66.8 | 68.0 | 69.1 | 13.5 | 0.753 | 0.766 | 0.779 | 0.792 | 13.5 | 0.022 | 0.023 | 0.023 | 0.024 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tadros, M.; Boulougouris, E.; Ypsilantis, A.M.; Hadjioannou, N.; Sakellis, V. Alternative Fuels’ Techno-Economic and Environmental Impacts on Ship Energy Efficiency with Shaft Generator Integration. Energies 2025, 18, 6070. https://doi.org/10.3390/en18226070
Tadros M, Boulougouris E, Ypsilantis AM, Hadjioannou N, Sakellis V. Alternative Fuels’ Techno-Economic and Environmental Impacts on Ship Energy Efficiency with Shaft Generator Integration. Energies. 2025; 18(22):6070. https://doi.org/10.3390/en18226070
Chicago/Turabian StyleTadros, Mina, Evangelos Boulougouris, Antonios Michail Ypsilantis, Nicolas Hadjioannou, and Vasileios Sakellis. 2025. "Alternative Fuels’ Techno-Economic and Environmental Impacts on Ship Energy Efficiency with Shaft Generator Integration" Energies 18, no. 22: 6070. https://doi.org/10.3390/en18226070
APA StyleTadros, M., Boulougouris, E., Ypsilantis, A. M., Hadjioannou, N., & Sakellis, V. (2025). Alternative Fuels’ Techno-Economic and Environmental Impacts on Ship Energy Efficiency with Shaft Generator Integration. Energies, 18(22), 6070. https://doi.org/10.3390/en18226070

