First-Generation Biofuels vs. Energy Security: An Overview of Biodiesel and Bioethanol
Abstract
1. Introduction
2. Results
2.1. Energy Security
2.2. Major First-Generation Biofuels
2.2.1. Biodiesel
2.2.2. Bioethanol
2.3. Advantages and Disadvantages of First-Generation Biofuels
2.3.1. Environmental Effects
2.3.2. Economic Aspects
2.3.3. Social and Policy Dimensions
2.4. Synthesis and Critical Insights
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mehedintu, A.; Sterpu, M.; Soava, G. Estimation and forecasts for the share of renewable energy consumption in final energy consumption by 2020 in the European Union. Sustainability 2018, 10, 1515. [Google Scholar] [CrossRef]
- Soltero, V.M.; Chacartegui, R.; Ortiz, C.; Velázquez, R. Potential of biomass district heating systems in rural areas. Energy 2018, 156, 132–143. [Google Scholar] [CrossRef]
- Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the Promotion of the Use of Energy From Renewable Sources and Amending and Subsequently Repealing Directives 2001/77/EC and 2003/30/EC. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:140:0016:0062:en:PDF (accessed on 13 November 2025).
- Chavez, E.; Liu, D.H.; Zhao, X.B. Biofuels production development and prospects in China. J. Biobased Mater. Bioenergy 2010, 4, 221–242. [Google Scholar] [CrossRef]
- Yıldızbaşı, Z. Biofuels, E-Fuels, and Waste-Derived Fuels: Advances, Challenges, and Future Directions. Sustainability 2025, 17, 6145. [Google Scholar] [CrossRef]
- Visković, J.; Dunđerski, D.; Adamović, B.; Jaćimović, G.; Latković, D.; Vojnović, Đ. Toward an Environmentally Friendly Future: An Overview of Biofuels from Corn and Potential Alternatives in Hemp and Cucurbits. Agronomy 2024, 14, 1195. [Google Scholar] [CrossRef]
- REN21. Renewables 2022 Global Status Report. Available online: https://www.ren21.net/wp-content/uploads/2019/05/GSR2022_Full_Report.pdf (accessed on 9 September 2025).
- International Energy Agency (IEA). Energy Statistics Data Browser. 2024. Available online: https://www.iea.org/data-and-statistics (accessed on 9 September 2025).
- International Energy Agency (IEA). World Energy Outlook 2021. Available online: https://iea.blob.core.windows.net/assets/4ed140c1-c3f3-4fd9-acae-789a4e14a23c/WorldEnergyOutlook2021.pdf (accessed on 9 September 2025).
- Nunez, C. Fossil Fuels, Explained. 2019. Available online: https://www.nationalgeographic.com/environment/energy/reference/fossil-fuels/ (accessed on 9 September 2025).
- Zhang, Y. The links between the price of oil and the value of us dollar. Int. J. Energy Econ. Policy 2013, 3, 341–351. [Google Scholar]
- Zielińska-Chmielewska, A.; Olszańska, A.; Kaźmierczyk, J.; Andrianova, E.V. Advantages and Constraints of Eco-Efficiency Measures: The Case of the Polish Food Industry. Agronomy 2021, 11, 299. [Google Scholar] [CrossRef]
- Farrell, A.E.; Plevin, R.J.; Turner, B.T.; Jones, A.D.; O’Hare, M.; Kammen, D.M. Ethanol can contribute to energy and environmental goals. Science 2006, 311, 506–508. [Google Scholar] [CrossRef] [PubMed]
- Fischer, G.; Prieler, S.; van Velthuizen, H.; Lensink, S.M.; Londo, M.; de Wit, M. Biofuel production potentials in Europe: Sustainable use of cultivated land and pastures. Part I: Land productivity potentials. Biomass Bioenergy 2010, 34, 159–172. [Google Scholar] [CrossRef]
- Hill, J.; Nelson, E.; Tilman, D.; Polasky, S.; Tiffany, D. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc. Natl. Acad. Sci. USA 2006, 103, 11206–11210. [Google Scholar] [CrossRef]
- Graham-Rowe, D. Agriculture: Beyond food versus fuel. Nature 2011, 474, S6–S8. [Google Scholar] [CrossRef]
- Arodudu, O.T.; Helming, K.; Wiggering, H.; Voinov, A. Towards a more holistic sustainability assessment framework for agro-bioenergy systems—A review. Environ. Impact Assess. Rev. 2017, 62, 61–75. [Google Scholar] [CrossRef]
- Bielski, S. Economic and legal aspects of biofuel production for own use. Acta Sci. Pol. Oeconomia 2012, 11, 5–15. Available online: https://aspe.sggw.edu.pl/article/view/556 (accessed on 3 October 2025).
- Nigam, P.S.; Singh, A. Production of liquid biofuels from renewable resources. Prog. Energy Combust. Sci. 2011, 37, 52–68. [Google Scholar] [CrossRef]
- Dorado, M.P. Raw materials to produce low-cost biodiesel. In Biofuels Refining and Performance; Nag, A., Ed.; McGraw-Hill: New York, NY, USA, 2008; pp. 107–147. [Google Scholar]
- Marks-Bielska, R.; Bielski, S.; Pik, K.; Kurowska, K. The importance of renewable energy sources in Poland’s energy mix. Energies 2020, 13, 4624. [Google Scholar] [CrossRef]
- Cherp, A.; Jewell, J. The Concept of Energy Security: Beyond the Four As. Energy Policy 2014, 75, 415–421. [Google Scholar] [CrossRef]
- Lewandowski, M. Bezpieczeństwo energetyczne w problematyce bezpieczeństwa narodowego. De Secur. Et Defensione. O Bezpieczeństwie I Obron. 2019, 1, 168–185. (In Polish) [Google Scholar] [CrossRef]
- Sutrisno, A.; Normaler, Ö.; Alkemade, F. Has the global expansion of energy markets truly improved energy security? Energy Policy 2021, 148, 111931. [Google Scholar] [CrossRef]
- Prohorovs, A. Russia’s War in Ukraine: Consequences for European Countries’ Businesses and Economies. J. Risk Financ. Manag. 2022, 15, 295. [Google Scholar] [CrossRef]
- Escobar, J.A.; Lora, E.E.; Venturini, O.J.; Yánez, E.; Castillo, E.F.; Almazán, O. Biofuels: Environment, technology and food security. Renew. Sustain. Energy Rev. 2009, 13, 1275–1287. [Google Scholar] [CrossRef]
- Hirani, A.A.; Javed, N.; Asif, M.; Basu, S.K.; Kumar, A. A Review on First- and Second-Generation Biofuel Productions. In Biofuels: Greenhouse Gas Mitigation and Global Warming; Springer: Berlin/Heidelberg, Germany, 2018; pp. 141–154. [Google Scholar]
- Bielski, S.; Zielińska-Chmielewska, A.; Marks-Bielska, R. Use of Environmental Management Systems and Renewable Energy Sources in Selected Food Processing Enterprises in Poland. Energies 2021, 14, 3212. [Google Scholar] [CrossRef]
- Oladosu, G.; Msangi, S. Biofuel-Food Market Interactions: A Review of Modeling Approaches and Findings. Agriculture 2013, 3, 53–71. [Google Scholar] [CrossRef]
- Godfray, C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef]
- Koizumi, T. Biofuel and food security in China and Japan. Renew. Sustain. Energy Rev. 2013, 21, 102–109. [Google Scholar] [CrossRef]
- House of Commons Environmental Audit Committee. Are Biofuels Sustainable? First Report of Session 2007–2008. 2008; Volume 1, p. 16. Available online: https://publications.parliament.uk/pa/cm200708/cmselect/cmenvaud/76/76.pdf (accessed on 9 September 2025).
- Marks-Bielska, R.; Bielski, S.; Novikova, A.; Romaneckas, K. Straw stocks as a source of renewable energy. A case study of a district in Poland. Sustainability 2019, 11, 4714. [Google Scholar] [CrossRef]
- Jacobus, A.P.; Gross, J.; Evans, J.H.; Ceccato-Antonini, S.R.; Gombert, A.K. Saccharomyces cerevisiae strains used industrially for bioethanol production. Essays Biochem. 2021, 65, 147–161. [Google Scholar] [CrossRef]
- Altieri, M.A. The ecological impacts of large-scale agrofuel monoculture production systems in the Americas. Bull. Sci. Technol. Soc. 2009, 29, 236–244. [Google Scholar] [CrossRef]
- Zakari, A.; Toplak, J.; Tomažič, L.M. Exploring the Relationship between Energy and Food Security in Africa with Instrumental Variables Analysis. Energies 2022, 15, 5473. [Google Scholar] [CrossRef]
- Geddes, C.C.; Nieves, I.U.; Ingram, L.O. Advances in ethanol production. Curr. Opin. Biotechnol. 2011, 22, 312–319. [Google Scholar] [CrossRef]
- Tilman, D.G.; Socolow, R.; Foley, J.A.; Hill, J.; Larson, E.; Lynd, L.; Pacala, S.; Reilly, J.; Searchinger, T.; Somerville, C.; et al. Beneficial biofuels—The food, energy, and environment trilemma. Science 2009, 325, 270–271. [Google Scholar] [CrossRef]
- Gutierrez, A.P.; Ponti, L. Bioeconomic sustainability of cellulosic biofuel production on marginal lands. Bull. Sci. Technol. Soc. 2009, 29, 213–225. [Google Scholar] [CrossRef]
- Ravindranath, N.H.; Sita Lakshmi, C.; Manuvie, R.; Balachandra, P. Biofuel production and implications for land use, food production and environment in India. Energy Policy 2011, 39, 5737–5745. [Google Scholar] [CrossRef]
- Meka, P.K.; Tripathi, V.; Singh, R.P. Synthesis of biodiesel fuel from safflower oil using various reaction parameters. J. Oleo Sci. 2007, 56, 9–12. [Google Scholar] [CrossRef]
- Miao, X.; Wu, Q. Biodiesel production from heterotrophic microalgal oil. Bioresour. Technol. 2006, 97, 841–846. [Google Scholar] [CrossRef]
- Carraretto, C.; Macor, A.; Mirandola, A.; Stoppato, A.; Tonon, S. Biodiesel as alternative fuel: Experimental analysis and energetic evaluations. Energy 2004, 29, 2195–2211. [Google Scholar] [CrossRef]
- Demirbaş, A. Diesel fuel from vegetable oil via transesterification and soap pyrolysis. Energ. Source. 2002, 24, 835–841. [Google Scholar] [CrossRef]
- Shahid, E.M.; Jamal, Y. Production of biodiesel: A technical review. Renew. Sustain. Energy Rev. 2011, 15, 4732–4745. [Google Scholar] [CrossRef]
- Chhetri, A.B.; Islam, M.R. Towards producing a truly green biodiesel. Energy Sources Part A Recovery Util. Environ. Eff. 2008, 30, 754–764. [Google Scholar] [CrossRef]
- Van Gerpen, J. Biodiesel processing and production. Fuel Process. Technol. 2005, 86, 1097–1107. [Google Scholar] [CrossRef]
- IRENA. 2024. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2021/Jan/IRENA_Innovation_Renewable_Methanol_2021.pdf?utm_source=chatgpt.com (accessed on 3 November 2025).
- Agyekum, E.B.; Okonkwo, P.C.; Rashid, F.L. Research on biomass energy and CO2 conversion to methanol: A combination of conventional and bibliometric review analysis. Carbon Res. 2025, 4, 4. [Google Scholar] [CrossRef]
- Haas, M.J.; Foglia, T.A. Alternate feed stocks and technologies for biodiesel production. In Biodiesel Handbook; Knothe, G., Krahl, J., Gerpen, J.V., Eds.; AOCS Press: Urbana, IL, USA, 2005; pp. 42–61. [Google Scholar]
- Susanne, R.S. Making the best of wastewater. Biodiesel Magazine. 2008, p. 16. Available online: http://www.biodieselmagazine.com/articles/2776/making-the-best-of-wastewater (accessed on 9 September 2025).
- Mondala, A.; Liang, K.; Toghiani, H.; Hernandez, R.; French, T. Biodiesel production by in situ transesterification of municipal primary and secondary sludges. Bioresour. Technol. 2009, 100, 1203–1210. [Google Scholar] [CrossRef]
- Revellame, E.; Hernandez, R.; French, W.; Holmes, W.; Alley, E.; Callahan, R. II Production of biodiesel from wet activated sludge. J. Chem. Technol. Biotechnol. 2011, 86, 61–68. [Google Scholar] [CrossRef]
- Sharma, P.; Usman, M.; Salama, E.S.; Redina, M.; Thakur, N.; Li, X. Evaluation of various waste cooking oils for biodiesel production: A comprehensive analysis of feedstock. Waste Manag. 2021, 136, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, B.O.; Oladepo, S.A.; Ganiyu, S.A. Biodiesel production from waste cooking oil via β-zeolite-supported sulfated metal oxide catalyst systems. ACS Omega 2003, 8, 23720–23732. [Google Scholar] [CrossRef] [PubMed]
- Vyas, A.P.; Verma, J.L.; Subrahmanyam, N. A review on FAME production processes. Fuel 2010, 89, 1–9. [Google Scholar] [CrossRef]
- Hall, C.A.S.; Balogh, S.; Murphy, D.J.R. What is the minimum EROI that a sustainable society must have? Energies 2009, 2, 25–47. [Google Scholar] [CrossRef]
- Hall, C.A.S.; Lambert, J.G.; Balogh, S.B. EROI of different fuels and the implications for society. Energy Policy 2014, 64, 141–152. [Google Scholar] [CrossRef]
- Gomiero, T. Are biofuels an effective and viable energy strategy for industrialized societies? A reasoned overview of potentials and limits. Sustainability 2015, 7, 8491–8521. [Google Scholar] [CrossRef]
- Murphy, D.J.; Raugei, M.; Carbajales-Dale, M.; Rubio Estrada, B. Energy Return on Investment of Major Energy Carriers: Review and Harmonization. Sustainability 2022, 14, 7098. [Google Scholar] [CrossRef]
- Arshad, M.; Mohanty, A.K.; Van Acker, R.; Riddle, R.; Todd, J.; Khalil, H.; Misra, M. Valorization of camelina oil to biobased materials and biofuels for new industrial uses: A review. RSC Adv. 2022, 12, 27230–27245. [Google Scholar] [CrossRef]
- Bouter, A.; Duval-Dachary, S.; Besseau, R. Life cycle assessment of liquid biofuels: What does the scientific literature tell us? A statistical environmental review on climate change. Biomass Bioenergy 2024, 190, 107418. [Google Scholar] [CrossRef]
- Papagianni, S.; Capellán-Pérez, I.; Adam, A.; Pastor, A. Review and meta-analysis of Energy Return on Investment and environmental indicators of biofuels. Renew. Sustain. Energy Rev. 2024, 203, 114737. [Google Scholar] [CrossRef]
- Malik, K.; Capareda, S.C.; Kamboj, B.R.; Malik, S.; Singh, K.; Arya, S.; Bishnoi, D.K. Biofuels production: A review on sustainable alternatives to traditional fuels and energy sources. Fuels 2024, 5, 157–175. [Google Scholar] [CrossRef]
- Kardan, A.; Gilani, N.; Mottaghitalab, V. From CO2 to methanol: A comprehensive analysis of carbon, semiconductor, and mof-based catalysts. Iran. J. Chem. Chem. Eng. 2024, 43, 3701–3736. [Google Scholar]
- Duque, A.; Álvarez, C.; Doménech, P.; Manzanares, P.; Moreno, A.D. Advanced Bioethanol Production: From Novel Raw Materials to Integrated Biorefineries. Processes 2021, 9, 206. [Google Scholar] [CrossRef]
- Satari, B.; Karimi, K.; Kumar, R. Cellulose solvent based pretreatment for enhanced second—Generation biofuel production: A review. Sustain. Energy Fuels 2019, 3, 11–62. [Google Scholar] [CrossRef]
- Manochio, C.; Andrade, B.R.; Rodriguez, R.P.; Moraes, B.S. Ethanol from biomass: A comparative overview. Renew. Sustain. Energy Rev. 2017, 80, 743–755. [Google Scholar] [CrossRef]
- Linoj, K.N.V.; Dhavala, P.; Goswami, A.; Maithel, S. Liquid biofuels in South Asia: Resources and technologies. Asian Biotechnol. Dev. Rev. 2006, 8, 31–49. Available online: https://ris.org.in/sites/default/files/article3_v8n2.pdf (accessed on 9 September 2025).
- Yang, H.; Lv, Y.; Wang, L.; Shen, L. The ecology risk of large scale planation of energy crops in China. J. Anhui Agric. Sci. 2012, 40, 13941–14151. [Google Scholar]
- Rubin, E.M. Genomics of cellulosic biofuels. Nature 2008, 454, 841–845. [Google Scholar] [CrossRef]
- Rastogi, M.; Shrivastava, S. Recent advances in second generation bioethanol production: An insight to pretreatment, saccharification and fermentation processes. Renew. Sustain. Energy Rev. 2017, 80, 330–340. [Google Scholar] [CrossRef]
- Galbe, M.; Zacchi, G. A review of the production of ethanol from softwood. Appl. Microbiol. Biotechnol. 2002, 59, 618–628. [Google Scholar] [CrossRef] [PubMed]
- Tilman, D.; Hill, J.; Lehman, C. Carbon-negative biofuels from low-input high-diversity grassland biomass. Science 2006, 314, 1598–1600. [Google Scholar] [CrossRef]
- Sims, R.E.; Mabee, W.; Saddler, J.N.; Taylor, M. An overview of second generation biofuel technologies. Bioresour. Technol. 2010, 101, 1570–1580. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, W.W.; Johnson, J.M.F.; Karlen, D.L.; Lightle, D.T. Corn stover to sustain soil organic carbon further constrains biomass supply. Agron. J. 2007, 99, 1665–1667. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Lal, R.; Post, W.P.; Owens, L.B. Changes in long-term no-till corn growth and yield under different rates of stover mulch. Agron. J. 2006, 98, 1128–1136. [Google Scholar] [CrossRef]
- Wang, X.; He, C.; Liu, B.; Zhao, X.; Liu, Y.; Wang, Q.; Zhang, H. Effects of residue returning on soil organic carbon storage and sequestration rate in China’s croplands: A meta-analysis. Agronomy 2020, 10, 691. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Lal, R. Crop Residue Removal Impacts on Soil Productivity and Environmental Quality. Crit. Rev. Plant Sci. 2009, 28, 139–163. [Google Scholar] [CrossRef]
- Lin, B.J.; Li, R.C.; Liu, K.C.; Pelumi Oladele, O.; Xu, Z.Y.; Lal, R.; Zhao, X.; Zhang, H.L. Management--induced changes in soil organic carbon and related crop yield dynamics in China’s cropland. Glob. Change Biol. 2023, 29, 3575–3590. [Google Scholar] [CrossRef]
- Huang, H.J.; Ramaswamy, S.; Al Dajani, W.; Tschirner, U.; Cairncross, R.A. Effect of biomass species and plant size on cellulosic ethanol: A comparative process and economic analysis. Biomass Bioenerg. 2009, 33, 234–246. [Google Scholar] [CrossRef]
- Bhaskar, T.; Bhavya, B.; Singh, R.; Naik, D.V.; Kumar, A.; Goyal, H.B. Thermochemical conversion of biomass to biofuels. In Biofuels—Alternative Feedstocks and Conversion Processes; Pandey, A., Larroche, C., Ricke, S.C., Dussap, C.G., Gnansounou, E., Eds.; Academic Press: Oxford, UK, 2011; pp. 51–77. [Google Scholar] [CrossRef]
- Kumar, R.; Tabatabaei, M.; Karimi, K.; Horváth, I.S. Recent updates on lignocellulosic biomass derived ethanol—A review. Biofuel Res. J. 2016, 9, 347–356. [Google Scholar] [CrossRef]
- Ferreira-Leitao, V.; Gottschalk, L.M.F.; Ferrara, M.A.; Nepomuceno, A.L.; Molinari, H.B.C.; Bon, E.P.S. Biomass residues in Brazil: Availability and potential uses. Waste Biomass Valoriz. 2010, 1, 65–76. [Google Scholar] [CrossRef]
- Warner, E.; Moriarty, K.; Lewis, J.; Milbrandt, A.; Schwab, A. 2015 Bioenergy Market Report; National Renewable Energy Laboratory: Golden, CO, USA, 2015. Available online: https://www.nrel.gov/docs/fy17osti/66995.pdf (accessed on 9 September 2025).
- Demirbaş, M.F.; Balat, M.; Balat, H. Potential contribution of biomass to the sustainable energy development. Energy Convers. Manag. 2009, 50, 1746–1760. [Google Scholar] [CrossRef]
- Ericsson, K.; Nilsson, L.J. Assessment of the potential biomass supply in Europe using a resource-focused approach. Biomass Bioenergy 2006, 30, 1–15. [Google Scholar] [CrossRef]
- Nizami, A.; Murphy, J.D. What type of digester configurations should be employed to produce biomethane from grass silage? Renew. Sustain. Energy Rev. 2010, 14, 1558–1568. [Google Scholar] [CrossRef]
- Richards, K.; Richardson, J.; Saddler, J.; Smith, T.; Popescu, O. Biofuels and bioenergy: Challenges and opportunities. Biomass Bioenergy 2006, 35, 4495–4496. [Google Scholar] [CrossRef]
- Bušić, A.; Marđetko, N.; Kundas, S.; Morzak, G.; Belskaya, H.; Ivančić Šantek, M.; Komes, D.; Novak, S.; Šantek, B. Bioethanol production from renewable raw materials and its separation and purification: A Review. Food. Technol. Biotechnol. 2018, 56, 289–311. [Google Scholar] [CrossRef] [PubMed]
- Renewable Fuels Association (RFA). Available online: https://ethanolrfa.org/markets-and-statistics/annual-ethanol-production (accessed on 3 November 2025).
- ePURE. European Renewable Ethanol—Key Figures 2023/2024. Available online: https://www.epure.org/wp-content/uploads/2025/09/250908-DEF-PR-European-renewable-ethanol-Key-figures-2024.pdf (accessed on 3 November 2025).
- UNICA/USD FAS. Biofuels Annual. Available online: https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=Biofuels+Annual_Brasilia_Brazil_BR2024-0022.pdf (accessed on 3 November 2025).
- World Bioenergy Assotiation (WBA)/REN21/IEA. Available online: https://www.worldbioenergy.org/uploads/WBA%20Global%20Bioenergy%20Statistics%202015.pdf (accessed on 3 November 2025).
- FAO/OECD/USDA. Biofuels Annual. Available online: https://apps.fas.usda.gov/newgainapi/api/report/downloadreportbyfilename?filename=biofuels+annual_the+hague_eu-28_7-15-2015.pdf (accessed on 3 November 2025).
- Pimentel, D.; Patzek, T. Ethanol production using corn, switchgrass, and wood; biodiesel production using soybean and sunflower. Nat. Resour. Res. 2005, 14, 65–76. [Google Scholar] [CrossRef]
- Koh, L.P.; Ghazoul, J. Biofuels, biodiversity, and people: Understanding the conflicts and finding opportunities. Biol. Conserv. 2008, 141, 2450–2460. [Google Scholar] [CrossRef]
- Demirbaş, A. Biofuels: Securing the Planet’s Future Energy Needs; Springer: London, UK, 2009. [Google Scholar] [CrossRef]
- Marks-Bielska, R.; Bielski, S.; Kurowska, K.; Kryszk, H. Potential ability to increase the area of winter rapeseed cultivation for biofuel production in Poland. Proc. Eng. Rural. Dev. 2015, 14, 330–335. Available online: http://www.tf.llu.lv/conference/proceedings2015/Papers/054_Marks-Bielska.pdf (accessed on 9 September 2025).
- Giampietro, M.; Mayumi, K. The Biofuel Delusion: The Fallacy of Large Scale Agro-Biofuels Production; Earthscan: London, UK, 2009. [Google Scholar]
- Chiaramonti, D.; Recchia, L. Is life cycle assessment (LCA) a suitable method for quantitative CO2 saving estimations? The impact of field input on the LCA results for a pure vegetable oil chain. Biomass Bioenergy 2010, 34, 787–797. [Google Scholar] [CrossRef]
- Ridley, C.E.; Clark, C.M.; LeDuc, S.D.; Bierwagen, B.G.; Lin, B.B.; Mehl, A.; Tobias, D.A. Biofuels: Network analysis of the literature reveals key environmental and economic unknowns. Environ. Sci. Technol. 2012, 46, 1309–1315. [Google Scholar] [CrossRef]
- Searchinger, T.; Edwards, R.; Mulligan, D.; Heimlich, R.; Plevin, R. Do biofuel policies seek to cut emissions by cutting food? Science 2015, 15, 1420–1422. [Google Scholar] [CrossRef] [PubMed]
- Farigione, J.; Hill, J.; Polasky, S.; Hawthorne, P. Land clearing and the biofuel carbon debt. Science 2008, 319, 1235–1238. [Google Scholar] [CrossRef]
- Altieri, M.A.; Bravo, E. The Ecological and Social Tragedy of Crop-Based Biofuel Production in the Americas. 2007. Available online: https://pdfs.semanticscholar.org/79d6/6ccf6a5dbb66ca68e633a385be0514022fde.pdf?_ga=2.85671385.1775323319.1572984889-809263266.1563614110 (accessed on 9 September 2025).
- Li, K.; Liu, S.; Liu, X. An overview of algae bioethanol production. Int. J. Energy Res. 2014, 38, 965–977. [Google Scholar] [CrossRef]
- Agarwal, A.K. Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog. Energ. Combust. 2007, 33, 233–271. [Google Scholar] [CrossRef]
- Charles, C.; Gerasimchuk, I.; Bridle, R.; Moerenhout, T.; Asmelash, E.; Laan, T. Biofuels—At What Cost? A Review of Costs and Benefits of EU Biofuel Policies; The International Institute for Sustainable Development: Geneva, Switzerland, 2013; Available online: https://www.iisd.org/gsi/sites/default/files/biofuels_subsidies_eu_review.pdf (accessed on 9 September 2025).
- Lopez, G.P.; Laan, T. Biofuels—At What Cost? Government Support for Biodiesel in Malaysia; The International Institute for Sustainable Development: Geneva, Switzerland, 2009; Available online: https://www.iisd.org/system/files/publications/biofuels_subsidies_malaysia.pdf (accessed on 9 September 2025).
- Wang, Q.; Tian, Z. Biofuels and the policy implications for China. Asian-Pac. Econ. Lit. 2011, 25, 161–168. [Google Scholar] [CrossRef]
- Daniel, R.; Lebel, L.; Gheewala, S.H. Agrofuels in Thailand: Policies, practices and prospects. In Sustainable Production Consumption Systems: Knowledge, Engagement and Practice; Lebel, L., Lorek, S., Daniel, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 97–122. [Google Scholar] [CrossRef]
- Murphy, D.J.; Hall, C.A.S. Year in review—EROI or energy return on (energy) invested 2010. Ann. N. Y. Acad. Sci. 2010, 1185, 102–118. [Google Scholar] [CrossRef]
- Patzek, T. Thermodynamics of the corn-ethanol biofuel cycle. Crit. Rev. Plant. Sci. 2004, 23, 519–567. [Google Scholar] [CrossRef]
- Bielski, S.; Jankowski, K.; Budzyński, W. The energy efficiency of oil seed crops production and their biomass conversion into liquid fuels. Przem. Chem. 2014, 93/12, 2270–2273. (In Polish) [Google Scholar]
- Bielski, S.; Romaneckas, K.; Novikova, A.; Šarauskis, E. Are higher input levels to triticale growing technologies effective in biofuel production system? Sustainability 2019, 11, 5915. [Google Scholar] [CrossRef]
- Arodudu, O.; Helming, K.; Wiggering, H.; Voinov, A. Bioenergy from low-intensity agricultural systems: An energy efficiency analysis. Energies 2017, 10, 29. [Google Scholar] [CrossRef]
- Donke, A.; Nogueira, A.; Matai, P.; Kulay, L. Environmental and energy performance of ethanol production from the integration of sugarcane, corn, and grain sorghum in a multipurpose plant. Resources 2016, 6, 1. [Google Scholar] [CrossRef]
- McPhail, L.L.; Babcock, B.A. Impact of US biofuel policy on US corn and gasoline price variability. Energy 2012, 37/1, 505–513. [Google Scholar] [CrossRef]
- de Gorter, H.; Drabik, D.; Just, D.R. Biofuel policies and food grain commodity prices 2006–2012: All boom and no bust? Ag. Bio. Forum 2013, 16, 1–13. Available online: https://agbioforum.org/wp-content/uploads/2021/02/AgBioForum-16-1-1.pdf (accessed on 9 September 2025).
- Tyner, W.E.; Taheripour, F.; Hurt, C. Potential Impacts of a Partial Waiver of the Ethanol Blending Rules; Oak Brook: Farm Foundation, IL, USA, 2012; pp. 1–13. Available online: https://www.alimenterre.org/system/files/ressources/pdf/388-purdue_paper_final.pdf (accessed on 9 September 2025).
- Helbling, T.; Mercer-Blackman, V.; Cheng, K. Riding a Wave. Financ. Dev. 2008, 45, 10–15. Available online: https://www.imf.org/external/pubs/ft/fandd/2008/03/pdf/helbling.pdf (accessed on 9 September 2025).
- Hamulczuk, M. Biofuel policy and agricultural commodity prices—Selected issues. Roczniki Naukowe SERiA 2014, 16, 82–87. Available online: https://rnseria.com/resources/html/article/details?id=172658 (accessed on 9 September 2025). (In Polish).
- Serra, T.; Zilberman, D.; Gil, J.M.; Goodwin, B.K. Nonlinearities in the U.S. corn-ethanol-oilgasoline price system. Agric. Econ. 2011, 42, 35–45. [Google Scholar] [CrossRef]
- Cotula, L.; Dyer, N.; Vermeulen, S. Fuelling Exclusion? The Biofuels Boom and Poor People’s Access to Land; International Institute for Environment and Development: London, UK, 2008; Available online: http://pubs.iied.org/pdfs/12551IIED.pdf (accessed on 9 September 2025).
- Creutzig, F.; Corbera, E.; Bolwig, S.; Hunsberger, C. Integrating place-specific livelihood and equity outcomes into global assessments of bioenergy deployment. Environ. Res. Lett. 2013, 8, 1–11. [Google Scholar] [CrossRef]
- Obidzinski, K.; Andriani, R.; Komarudin, H.; Andrianto, A. Environmental and social impacts of oil palm plantations and their implications for biofuel production in Indonesia. Ecol. Soc. 2012, 17, 25. [Google Scholar] [CrossRef]
- Bindraban, P.S.; Bulte, E.H.; Conijn, S.G. Can large-scale biofuels production be sustainable by 2020? Agric. Syst. 2009, 101, 197–199. [Google Scholar] [CrossRef]
- Robertson, G.P.; Gross, K.L.; Hamilton, S.K.; Landis, D.A.; Schmidt, T.M.; Snapp, S.S.; Swinton, S.M. Farming for ecosystem services: An ecological approach to production agriculture. Bioscience 2012, 64, 404–415. [Google Scholar] [CrossRef]
- Gomiero, T.; Pimentel, D.; Paoletti, M.G. Is there a need for a more sustainable agriculture? Crit. Rev. Plant Sci. 2011, 30, 6–23. [Google Scholar] [CrossRef]
- Quintarelli, V.; Radicetti, E.; Allevato, E.; Stazi, S.R.; Haider, G.; Abideen, Z.; Bibi, S.; Jamal, A.; Mancinelli, R. Cover crops for sustainable cropping systems: A review. Agriculture 2022, 12, 2076. [Google Scholar] [CrossRef]
- Von Cossel, M.; Scordia, D.; Altieri, M.; Gresta, F. Spotlight on agroecological cropping practices to improve the resilience of farming systems: A qualitative review of meta-analytic studies. Front. Agron. 2025, 7, 1495846. [Google Scholar] [CrossRef]
- Crutzen, P.J.; Mosier, A.R.; Smith, K.A.; Winiwarter, W. N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos. Chem. Phys. Discuss. 2007, 7, 11191–11205. [Google Scholar] [CrossRef]
- Robertson, G.P.; Dale, V.H.; Doering, O.C.; Hamburg, S.P.; Melillo, J.M.; Wander, M.M.; Parton, W.J.; Adler, P.R.; Barney, J.N.; Cruse, R.M.; et al. Agriculture. Sustainable biofuels redux. Science 2008, 322, 49–50. [Google Scholar] [CrossRef]
- OECD-FAO. Agricultural Outlook. Available online: https://stats.oecd.org/Index.aspx?datasetcode=HIGH_AGLINK_2019# (accessed on 9 September 2025).
- Szajner, P. (Ed.) World Biofuel Production in the Context of Food Security; Wyd. IEiGŻ Warszawa: Warszawa, Poland, 2013; Available online: https://open.icm.edu.pl/items/c65be717-41fa-45c4-9819-80b6179d3ea3 (accessed on 9 September 2025). (In Polish)
- Phan, A.N.; Phan, T.M. Biodiesel production from waste cooking oils. Fuel 2008, 87, 3490–3496. [Google Scholar] [CrossRef]
- Cafaro, V.; Testa, G.; Patanè, C. Castor: A Renewed Oil Crop for the Mediterranean Environment. Agronomy 2025, 15, 1402. [Google Scholar] [CrossRef]
- Angelini, L.G.; Abou Chehade, L.; Foschi, L.; Tavarini, S. Performance and potentiality of camelina (Camelina sativa L. Crantz) genotypes in response to sowing date under Mediterranean environment. Agronomy 2020, 10, 1929. [Google Scholar] [CrossRef]
- Yan, J.; Zheng, X.; Li, S. A novel and robust recombinant Pichia pastoris yeast whole cell biocatalyst with intracellular over expression of a Thermomyces lanuginosus lipase: Preparation, characterization and application in biodiesel production. Bioresour. Technol. 2014, 151, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Bobadilla, M.C.; Lorza, R.L.; García, R.E.; Gómez, F.S.; González, E.P.V. An improvement in biodiesel production from waste cooking oil by applying thought multi-response surface methodology using desirability functions. Energies 2017, 10, 30. [Google Scholar] [CrossRef]
| Authors | Region/Scope | Feedstock/Focus | Methodology/Type of Study | Main Findings/Notes | Limitations |
|---|---|---|---|---|---|
| Hill et al. (2006) [15] | USA/global | Corn ethanol, biodiesel | Comparative environmental/economic analysis | Low net GHG benefits for some feedstocks due to upstream inputs; raised food–fuel concerns. | Focuses on early-generation technologies; limited life-cycle data and outdated agricultural practices. |
| Graham-Rowe (2011) [16] | Global | Mixed | Policy review | Highlights food security risks | Limited data integration |
| Hall et al. (2009, 2014) [57,58] | Global | Various biofuels | Conceptual EROI framework | Identifies minimum EROI threshold | Theoretical framework; not based on empirical production data |
| Gomiero (2015) [59] | Global | Palm oil | Socio-economic assessment | Describes “energy colonialism” | Limited quantitative data; lacks updated LCA comparisons |
| Murphy et al. (2022) [60] | Global | Major energy carriers, incl. biofuels | EROI review & harmonization | Harmonizes EROI estimates across fuels | Limited coverage of new conversion technologies |
| Arshad et al. (2022) [61] | Global | Camelina (bio-based uses) | Review on camelina valorization | Camelina as a promising non-traditional oilseed for bio-based products and fuels | Limited LCA or EROI evaluation |
| Bouter et al. (2024) [62] | Global | Biofuels (various) | Meta-analysis of LCA studies | Quantified mean carbon footprint for ethanol and biodiesel; regional emission variability | Meta-analysis limited by inconsistent functional units and reporting standards |
| Papagianni et al. (2024) [63] | Global | Ethanol, biodiesel | Review and meta-analysis of EROI studies | Identifies methodological causes of EROI variation (feedstock, system boundary) | Lacks differentiation between first- and second-generation biofuels |
| Malik (2024) [64] | Global | Sustainable alternatives and policy context | Narrative review | Synthesizes policy drivers, market dynamics and sustainability constraints | Lacks quantitative modeling or case analysis |
| Kardan et al. (2024) [65] | Global | Renewable methanol | Review on CO2 hydrogenation to methanol | Advances in routes for renewable methanol (relevance to biodiesel feedstock inputs) | Focuses on process engineering; not integrated with biofuel life-cycle impacts |
| Region | 2010 | 2015 | 2020 | 2024 |
|---|---|---|---|---|
| bioethanol | ||||
| European Union | 5300 | 5250 | 5000 | 6200 |
| South America | 26,200 | 27,260 | 32,500 | 36,000 |
| North America | 52,000 | 56,000 | 52,800 | 61,400 |
| China | 3150 | 720 | 5000 | 4540 |
| World | 86,000 | 116,000 | 105,000 | 118,200 |
| biodiesel (FAME—Fatty Acid Methyl Esters) | ||||
| European Union | 9000 | 11,000 | 11,500 | 12,000 |
| South America | 3500 | 5000 | 8000 | 9000 |
| North America | 2500 | 3500 | 8500 | 9500 |
| China | 1000 | 1500 | 2000 | 2700 |
| World | 13,000 | 31,000 | 39,000 | 41,000 |
| biodiesel (HVO—Hydrotreated Vegetable Oil) | ||||
| European Union | 100 | 300 | 1500 | 2500 |
| South America | 50 | 100 | 300 | 400 |
| North America | 200 | 800 | 3000 | 5000 |
| China | 0 | 50 | 200 | 300 |
| World | 400 | 1500 | 5200 | 8200 |
| Feedstock/Fuel | Region | Reported EROI Range | Source(s) |
|---|---|---|---|
| Maize ethanol | USA, EU | 0.75–1.1 | [63,96,112,113] |
| Sugarcane ethanol | Brazil | 8–10 | [57,117] |
| Rapeseed biodiesel | EU | 1.1–1.7 | [57,60,114] |
| Soybean biodiesel | USA, South America | 1.2–2.5 | [63,117] |
| Camelina biodiesel | Europe | 0.5–0.8 | [64,114] |
| White mustard biodiesel | Europe | 0.5–0.8 | [114] |
| Palm-oil biodiesel | Southeast Asia | 2.8–4.5 | [62,117] |
| Maize stover ethanol (residues) | USA | 2.0–3.5 | [117] |
| Petroleum diesel | Global | 20–30 | [57,117] |
| Petroleum gasoline | Global | 25–30+ | [57,117] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marks-Bielska, R.; Bielski, S.; Kurowska, K.; Zielińska-Chmielewska, A. First-Generation Biofuels vs. Energy Security: An Overview of Biodiesel and Bioethanol. Energies 2025, 18, 6055. https://doi.org/10.3390/en18226055
Marks-Bielska R, Bielski S, Kurowska K, Zielińska-Chmielewska A. First-Generation Biofuels vs. Energy Security: An Overview of Biodiesel and Bioethanol. Energies. 2025; 18(22):6055. https://doi.org/10.3390/en18226055
Chicago/Turabian StyleMarks-Bielska, Renata, Stanisław Bielski, Krystyna Kurowska, and Anna Zielińska-Chmielewska. 2025. "First-Generation Biofuels vs. Energy Security: An Overview of Biodiesel and Bioethanol" Energies 18, no. 22: 6055. https://doi.org/10.3390/en18226055
APA StyleMarks-Bielska, R., Bielski, S., Kurowska, K., & Zielińska-Chmielewska, A. (2025). First-Generation Biofuels vs. Energy Security: An Overview of Biodiesel and Bioethanol. Energies, 18(22), 6055. https://doi.org/10.3390/en18226055
