Geothermal Resource Classification in Catalonia (Spain) Using AI-Derived Predictions
Abstract
1. Introduction
2. Study Area and Data Source
3. Clustering Configuration Framework
4. Results and Discussion
4.1. Spatial Distribution of Thermal Conductivity
4.2. Distribution of Geothermal Capacity and Potential
4.3. Analysis of Correlated Geothermal Parameters
4.4. Geothermal Potential Classes
4.5. Technical Insights by Depth-Based Distribution Classes
4.6. Limitations and Future Works
- The matrix of features for clustering, similar to all data-based systems, is constrained by data quality. Therefore, inter-parameter correlations may obscure cluster boundaries. On the other hand, measurement errors and spatial heterogeneity introduce uncertainties affecting cluster resolution and the reliability of geothermal potential classification.
- Economic assessment is essential for the sustainability of geothermal projects, because high-, moderate-, and low-temperature points in this study have similar costs but different levels of exploitable energy. Temperature classification influences both energy potential and the choice of power generation technology. Efficient heat extraction requires careful management to maintain reservoir pressure and may require specific treatment to protect infrastructure and sustain energy output [67,68].
- Thermal conductivity is a key factor influencing heat transfer efficiency. Accurate conductivity data is essential for evaluating reservoir potential, especially for lower-temperature systems requiring detailed site assessments. Since its measurement from drill-core samples is well recognized, the data gathered reflects the complexities encountered in real-world scenarios [69,70].
- Technological innovations drive geothermal energy forward. These technological advances are supported by evolving policy frameworks designed to ensure sustainable and efficient resource use. Integration of advanced AI modeling and infrastructure is essential for maximizing output while minimizing environmental impact [70].
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lund, J.W.; Bjelm, L.; Bloomquist, G.; Mortensen, A.K. Characteristics, development and utilization of geothermal resources—A Nordic perspective. Episodes 2008, 31, 140–147. [Google Scholar] [CrossRef]
- Rohit, R.V.; Vipin Raj, R.; Dennis, C.; Kiplangat Veena, R.; Rajan Jose, A.P.; Pradeepkumar, K.; Satheesh, K. Tracing the evolution and charting the future of geothermal energy research and development. Renew. Sustain. Energy Rev. 2023, 184, 113531. [Google Scholar] [CrossRef]
- Tester, J.W.; Anderson, B.J.; Batchelor, B.J.; Blackwell, D.D.; DiPippo, R.; Drake, E.M.; Garnish, J.; Livesay, B.; Moore, M.C.; Nichols, K.; et al. The Future of Geothermal Energy. In Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century; Renewable Energy and Power Department, Idaho National Laboratory: Idaho Falls, ID, USA, 2006. [Google Scholar]
- Osman, A.I.; Chen, L.; Yang, M. Cost, environmental impact, and resilience of renewable energy under a changing climate: A review. Environ. Chem. Lett. 2023, 21, 741–764. [Google Scholar] [CrossRef]
- Taylor, N.; Georgakaki, A.; Ince, E.; Letout, S.M.; Gea Bermudez, J.; Schmitz, A. Clean Energy Technology Observatory: Geothermal Energy in the European Union; European Commission, Joint Research Centre, 2024 Status Report on Technology Development, Trends, Value Chains and Markets; JRC139312; Publications Office of the European Union: Luxembourg, 2024; Available online: https://data.europa.eu/doi/10.2760/8898786 (accessed on 27 October 2025).
- Chamorro, C.R.; Garcia-Cuesta, J.L.; Modejar, M.E.; Linares, M.M. An estimation of the enhanced geothermal system potential for the Iberian Peninsula. Renew. Energy 2014, 66, 1–14. [Google Scholar] [CrossRef]
- Arrizabalaga, I.; De Gregorio, M.; De Santiago, C.; García de la Noceda, C.; Pérez, P.; Urchueguía, J.F. Geothermal energy use, country update for Spain. In Proceedings of the European Geothermal Congress, Den Haag, The Netherlands, 11–14 June 2019. [Google Scholar]
- Hernando, G.P.; Pfeifer, A.; Frechoso, F.; González, L.J.M.; Duić, N. A novel approach to represent the energy system in integrated assessment models. Energy 2022, 258, 124743. [Google Scholar] [CrossRef]
- Dincer, I.; Ezzat, M.F. Geothermal energy production. Compr. Energy Syst. 2018, 3, 252–303. [Google Scholar] [CrossRef]
- Sanyal, S.K. Classification of geothermal systems; A possible scheme. In Proceedings of the Thirtieth Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, USA, 31 January–2 February 2005; SGP-TR-176. pp. 85–88. [Google Scholar]
- Cano, N.A.; Céspedes, S.; Redondo, J.; Foo, G.; Jaramillo, D.; Martinez, D.; Gutiérrez, M.; Pataquiba, J.; Rojas, J.; Cortés, F.B.; et al. Power from geothermal resources as a co-product of the oil and gas industry: A review. ACS Omega 2022, 7, 40603–40624. [Google Scholar] [CrossRef]
- Williams, C.F.; Reed, M.J.; Anderson, A.F. Updating the classification of geothermal resources. In Proceedings of the Thirty-Sixth Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 31 January–2 February 2011; Volume 1, pp. 50–57, Stanford Geothermal Program Workshop Report SGP-TR-191. [Google Scholar]
- Hochstein, M.P.; Brown, P.R.L. Surface manifestations of geothermal systems with volcanic heat sources. In Encyclopedia of Volcanoes; Sigurdsson, H., Ed.; Academic Press: San Diego, CA, USA, 2000; pp. 835–855. [Google Scholar]
- Montanari, D.; Lupi, M.; Calcagno, P. Geothermal systems: Interdisciplinary approach for an effective exploration. Geofluids 2019, 2019, 9895659. [Google Scholar] [CrossRef]
- Omodeo-Salé, S.; Eruteya, O.E.; Cassola, T.; Baniasad, A.; Moscariello, A. A basin thermal modelling approach to mitigate geothermal energy exploration risks: The St. Gallen case study (eastern Switzerland). Geothermics 2020, 87, 101876. [Google Scholar] [CrossRef]
- Matsumoto, M. An approach for estimating geothermal reservoir productivity under access limitations associated with snowy and mountainous prospects. In Geothermal Energy; Ismail, B.I., Ed.; IntechOpen Press: London, UK, 2021. [Google Scholar] [CrossRef]
- Lesmana, A.; Pratama, H.B.; Ashat, A.; Saptadji, N.M. Sustainability of geothermal development strategy using a numerical reservoir modeling: A case study of Tompaso geothermal field. Geothermics 2021, 96, 102170. [Google Scholar] [CrossRef]
- Ciapala, B.; Georgiou, G.S.; Aresti, L.; Onoufriou, T.; Florides, G.A.; Christodoulides, P. Thermal performance evaluation of energy piles and energy foundations: A comprehensive review of thermal effectiveness testing methods. Energy Build. 2025, 346, 116181. [Google Scholar] [CrossRef]
- Janssen, H.; Van De Walle, W. The impact of pore structure parameters on the thermal conductivity of porous building blocks. Constr. Build. Mater. 2022, 324, 126681. [Google Scholar] [CrossRef]
- Kana, J.D.; Djongyang, N.; Raïdandi, D.; Nouck, P.N.; Dadjé, A. A review of geophysical methods for geothermal exploration. Renew. Sustain. Energy Rev. 2015, 44, 87–95. [Google Scholar] [CrossRef]
- Tende, A.W.; Iiiya, M.M.; Habu, S.; Gajere, J.N.; Iyakwari, S.; Aminu, M.D. GIS-Based Multi-Criteria Predictive Modelling for Geothermal Energy Exploration. Energy Geosci. 2025, 6, 100409. [Google Scholar] [CrossRef]
- Franco, A.; Vaccaro, M. Numerical Simulation of Geothermal Reservoirs for the Sustainable Design of Energy Plants: A Review. Renew. Sustain. Energy Rev. 2014, 30, 987–1002. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, D.; Li, Q.; Yu, B.; Zhang, Y.; Tan, H.; Cheng, Y. An Integrated Approach to Analyze the Formation Models of Geothermal Resources in Complicated Areas with Low Exploration: A Case Study of the Midu County in Yunnan Province, China. Nat. Gas Ind. B 2024, 11, 42–49. [Google Scholar] [CrossRef]
- Zhu, J.; Wright, G.; Wang, J.; Wang, X. A Critical Review of the Integration of Geographic Information System and Building Information Modelling at the Data Level. ISPRS Int. J. Geo-Inf. 2018, 7, 66. [Google Scholar] [CrossRef]
- Choi, Y.; Baek, J.; Park, S. Review of GIS-Based Applications for Mining: Planning, Operation, and Environmental Management. Appl. Sci. 2020, 10, 2266. [Google Scholar] [CrossRef]
- Chen, X.W.; Lin, X. Big Data Deep Learning: Challenges and Perspectives. IEEE Access 2014, 2, 514–525. [Google Scholar] [CrossRef]
- Karpatne, A.; Ebert-Uphoff, I.; Ravela, S.; Babaie, H.A.; Kumar, V. Machine Learning for the Geosciences: Challenges and Opportunities. IEEE Trans. Knowl. Data Eng. 2018, 31, 1544–1554. [Google Scholar] [CrossRef]
- Abbaszadeh Shahri, A.; Shan, C.; Zall, E.; Larsson, S. Spatial Distribution Modeling of Subsurface Bedrock Using a Developed Automated Intelligence Deep Learning Procedure: A Case Study in Sweden. J. Rock Mech. Geotech. Eng. 2021, 13, 1300–1310. [Google Scholar] [CrossRef]
- Mirfallah, S.P.L.; Parcerisa, D.; Himi, M.; Abbaszadeh Shahri, A. Generating 3D Geothermal Maps in Catalonia, Spain Using a Hybrid Adaptive Multitask Deep Learning Procedure. Energies 2022, 15, 4602. [Google Scholar] [CrossRef]
- Luo, J.; Qu, Z.; Guan, J.; Chen, Y.; Wang, Y.; Zhou, W.; Hu, Y.; Zhang, H.; Liang, T.; Fu, G.; et al. Evaluating the Potential Distribution of Deep Geothermal Resources in the North Jiangsu Basin, East China, Using Machine Learning. Geoenergy Sci. Eng. 2025, 252, 213957. [Google Scholar] [CrossRef]
- Qin, Z.; Jiang, A.; Faulder, D.; Cladouhos, T.T.; Jafarpour, B. Physics-Guided Deep Learning for Prediction of Energy Production from Geothermal Reservoirs. Geothermics 2024, 116, 102824. [Google Scholar] [CrossRef]
- Suzuki, A.; Shi, S.; Sakai, T.; Fukui, K.; Onodera, S.; Ishizaki, J.; Hashida, T. Automated Parameter Estimation for Geothermal Reservoir Modeling Using Machine Learning. Renew. Energy 2024, 224, 120243. [Google Scholar] [CrossRef]
- Abbaszadeh Shahri, A.; Khorsand Zak, M.; Abbaszadeh Shahri, H. A Modified Firefly Algorithm Applying on Multi-Objective Radial-Based Function for Blasting. Neural Comput. Appl. 2022, 34, 2455–2471. [Google Scholar] [CrossRef]
- Ma, Z.; Wu, G.; Suganthan, P.N.; Song, A.; Luo, Q. Performance Assessment and Exhaustive Listing of 500+ Nature-Inspired Metaheuristic Algorithms. Swarm Evol. Comput. 2023, 77, 101248. [Google Scholar] [CrossRef]
- Alorf, A. A Survey of Recently Developed Metaheuristics and Their Comparative Analysis. Eng. Appl. Artif. Intell. 2023, 117 Pt A, 105622. [Google Scholar] [CrossRef]
- Mirfallah, S.P.L.; Parcerisa, D.; Himi, M.; Abbaszadeh Shahri, A. A Novel Modified Bat Algorithm to Improve the Spatial Geothermal Mapping Using Discrete Geodata in Catalonia-Spain. Model. Earth Syst. Environ. 2024, 10, 4415–4428. [Google Scholar] [CrossRef]
- Puigdefàbregas, C.; Muñoz, J.A.; Vergés, J. Thrusting and Foreland Basin Evolution in the Southern Pyrenees. In Thrust Tectonics; Chapman and Hall: London, UK, 1992. [Google Scholar] [CrossRef]
- Lladó, X.M.; Vilà, M.; Martí, V.; Rovira, M.; Domènech, J.A.; Pablo, J.D. Trace Element Distribution in Topsoils in Catalonia: Background and Reference Values and Relationship with Regional Geology. Environ. Eng. Sci. 2008, 25, 863–878. [Google Scholar] [CrossRef]
- Martí, J.; Ricci, J.; Planagumà, L.; Aguirre-Díaz, G.J. The Quaternary La Garrotxa Volcanic Field (NE of Iberia): A Geochronological Approach. Quat. Sci. Adv. 2025, 17, 100267. [Google Scholar] [CrossRef]
- Bartolini, S.; Bolós, X.; Martí, J.; Pedra, E.R.; Planagumà, L. Hazard Assessment at the Quaternary La Garrotxa Volcanic Field (NE Iberia). Nat. Hazards 2015, 78, 1349–1367. [Google Scholar] [CrossRef]
- Bartrina, M.T.; Cabrera, L.; Jurado, M.J.; Guimerà, J.; Roca, E. Evolution of the Central Catalan Margin of the Valencia Trough (Western Mediterranean). Tectonophysics 1992, 203, 219–247. [Google Scholar] [CrossRef]
- Peris, S.; Griera, A.; Gómez-Gras, D.; Teixell, A. The Transition from Convergence to Extension in the NW Mediterranean: Insights from the Thermochronologic and Tectono-Sedimentary Record in the Eastern Pyrenees and Empordà Basin (NE Spain). In Proceedings of the EGU General Assembly 2023, Vienna, Austria, 24–28 April 2023. pp. EGU23-7642. [Google Scholar] [CrossRef]
- Lewis, C.J.; Vergés, J.; Marzo, M. High Mountains in a Zone of Extended Crust: Insights into the Neogene–Quaternary Topographic Development of Northeastern Iberia. Tectonics 2000, 19, 86–102. [Google Scholar] [CrossRef]
- ICGC. ICGC Shallow Geothermal Energy. Geoindex (Viewer & Geoservices WMS), Barcelona: Institut Cartogràfic i Geològic de Catalunya. February 2021. Available online: https://www.icgc.cat/en/Tools-and-viewers/Viewers/Geoindex-viewers/Geoindex-Shallow-geothermal-energy (accessed on 1 June 2021).
- ICGC. ICGC Deep Geothermal Energy. Geoindex (Viewer & Geoservices WMS), Barcelona: Institut Cartogràfic i Geològic de Catalunya. October 2020. Available online: https://www.icgc.cat/ (accessed on 1 June 2021).
- Williams, C. Updated Methods for Estimating Recovery Factors for Geothermal Resources. In Proceedings of the Thirty-Second Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 22–24 January 2007. [Google Scholar]
- Limberger, J.; Calcagno, P.; Manzella, A.; Trumpy, E.; Boxem, T.; Pluymaekers, M.; Van Wees, J.D. Assessing the Prospective Resource Base for Enhanced Geothermal Systems in Europe. Geotherm. Energy Sci. 2014, 2, 55–71. [Google Scholar] [CrossRef]
- Grant, M. Stored-Heat Assessments: A Review in the Light of Field Experience. Geotherm. Energy Sci. 2014, 2, 49–54. [Google Scholar] [CrossRef]
- Norden, B.; Förster, A.; Förster, H.J.; Fuchs, S. Temperature and Pressure Corrections Applied to Rock Thermal Conductivity: Impact on Subsurface Temperature Prognosis and Heat-Flow Determination in Geothermal Exploration. Geotherm. Energy 2020, 8, 1. [Google Scholar] [CrossRef]
- Baralis, M.; Barla, M. rOGER: A Method for Determining the Geothermal Potential in Urban Areas. Geothermics 2024, 124, 103148. [Google Scholar] [CrossRef]
- García-Noval, C.; Álvarez, R.; García-Cortés, S.; García, C.; Alberquilla, F.; Ordóñez, A. Definition of a Thermal Conductivity Map for Geothermal Purposes. Geotherm. Energy 2024, 12, 17. [Google Scholar] [CrossRef]
- Luo, J.; Qiao, Y.; Xiang, W.; Rohn, J. Measurements and Analysis of the Thermal Properties of a Sedimentary Succession in Yangtze Plate in China. Renew. Energy 2020, 147 Pt 2, 2708–2723. [Google Scholar] [CrossRef]
- Suft, O.; Hagenauer, H.; Bertermann, D. Relationship between Thermal Conductivity, Mineral Composition and Major Element Composition in Rocks from Central and South Germany. Geosciences 2025, 15, 19. [Google Scholar] [CrossRef]
- Schuster, V.; Rybacki, E.; Schleicher, A.M.; Koirala, R.; Göbel, T.H.W. The Effect of Hydrothermal Alteration and Microcracks on Hydraulic Properties and Poroelastic Deformation: A Case Study of the Blue Mountain Geothermal Field. J. Geophys. Res. Solid Earth 2025, 130, e2024JB030541. [Google Scholar] [CrossRef]
- Mjami, N.B.; Kimambo, C.; Ayeng'o, S.; Orozova-Bekkevold, I. Prospects and Challenges for Utilisation of Low- to Medium-Temperature Geothermal Resources in Tanzania. Geothermics 2025, 129, 103288. [Google Scholar] [CrossRef]
- Heim, E.; Laska, M.; Becker, R.; Klitzsch, N. Estimating the Subsurface Thermal Conductivity and Its Uncertainty for Shallow Geothermal Energy Use—A Workflow and Geoportal Based on Publicly Available Data. Energies 2022, 15, 3687. [Google Scholar] [CrossRef]
- Kolawole, O.; Ispas, I.; Kolawole, F.; Germay, C.; McLennan, J.D. Mechanical Zonation of Rock Properties and the Development of Fluid Migration Pathways: Implications for Enhanced Geothermal Systems in Sedimentary-Hosted Geothermal Reservoirs. Geotherm. Energy 2021, 9, 14. [Google Scholar] [CrossRef]
- Romanov, D.; Leiss, B. Geothermal Energy at Different Depths for District Heating and Cooling of Existing and Future Building Stock. Renew. Sustain. Energy Rev. 2022, 167, 112727. [Google Scholar] [CrossRef]
- Nath, F.; Mahmood, M.D.N.; Ofosu, E.; Khanal, A. Enhanced Geothermal Systems: A Critical Review of Recent Advancements and Future Potential for Clean Energy Production. Geoenergy Sci. Eng. 2024, 243, 213370. [Google Scholar] [CrossRef]
- Björbsson, G.; Bodvarsson, G. A Survey of Geothermal Reservoir Properties. Geothermics 1990, 19, 17–27. [Google Scholar] [CrossRef]
- Guo, L.L.; Zhang, Y.B.; Wang, Z.C.; Zeng, J.; Zhang, Y.J.; Zhang, Z.X. Parameter Sensitivity Analysis and Optimization Strategy Research of Enhanced Geothermal System: A Case Study in Guide Basin, Northwestern China. Renew. Energy 2020, 153, 813–831. [Google Scholar] [CrossRef]
- Shu, B.; Bao, Y.; Markides, C.N.; Besagni, G.; Moore, J. Overview and Outlook of Thermal Processes in Geothermal Energy Extraction. Appl. Therm. Eng. 2025, 272, 126329. [Google Scholar] [CrossRef]
- Carruthers, I.; Chambers, R. Rapid Appraisal for Rural Development. Agric. Adm. 1981, 8, 407–422. [Google Scholar] [CrossRef]
- Peacock, D.C.P.; Sanderson, D.J.; Leiss, B. Use of Analogue Exposures of Fractured Rock for Enhanced Geothermal Systems. Geosciences 2022, 12, 318. [Google Scholar] [CrossRef]
- Naseer, M.T. Spectral Decomposition-Based Temperature and Water Saturation-Constrained Dynamical Simulations Detect High-Temperature Geothermal Energy Resource. Renew. Energy 2026, 256 Pt A, 123356. [Google Scholar] [CrossRef]
- Gürtürk, M. Predicting the Optimal Timing for System Upgrades in Binary Geothermal Power Plants: A Thermodynamic and Exergetic Approach. Energy Convers. Manag. 2025, 343, 120225. [Google Scholar] [CrossRef]
- Farghali, M.; Osman, A.I.; Chen, Z.; Abdelhaleem, A.; Ihara, A.; Mohamed, I.M.A.; Yap, P.S.; Rooney, D.W. Social, Environmental, and Economic Consequences of Integrating Renewable Energies in the Electricity Sector: A Review. Environ. Chem. Lett. 2023, 21, 1381–1418. [Google Scholar] [CrossRef]
- Al Mubarak, F.; Rezaee, R.; Wood, D.A. Economic, Societal, and Environmental Impacts of Available Energy Sources: A Review. Eng 2024, 5, 1232–1265. [Google Scholar] [CrossRef]
- Koray, A.M.; Gyimah, E.; Metwally, M.; Rahnema, H.; Tomomewo, O. Leveraging Machine Learning for Enhanced Reservoir Permeability Estimation in Geothermal Hotspots: A Case Study of the Williston Basin. Geotherm. Energy 2025, 13, 8. [Google Scholar] [CrossRef]
- Vaccaro, M. Multidisciplinary Approach for the Sustainable Utilization of Medium–Low Temperature Geothermal Resources. 2013, Università degli Studi di Pisa. Available online: https://hdl.handle.net/20.500.14242/131298 (accessed on 27 October 2025).










| Category | Temperature Range | Reservoir Type | Fluid Phase | Primary Applications | Key Features |
|---|---|---|---|---|---|
| High temperature | >150 °C | Steam or brine- hydrothermal | Steam and/or liquid | Electricity generation/Binary systems | High power generation potential/Heat transfer controlled by thermal conductivity/assessing via lab testing or geological studies/efficient extraction depends on subsurface heat conduction modeling |
| Medium temperature | 90–150 °C | Liquid-based | Predominantly liquid | Direct thermal applications/Power generation via binary cycle technology | widely distributed/easier well completion and lower maintenance/global interest, especially in Europe/economically attractive for renewable development |
| Low temperature | <90 °C | Shallow sedimentary reservoirs | Predominantly liquid | Direct use (heating, agriculture, recreation)/Supplemental power generation in hybrid systems | Limited thermal energy output per unit volume/prone to rapid thermal depletion/long-term sustainability depends on integration with power generation or thermal energy management system |
| λsurface(W/mK) | λ50 m | λ 120 m | λ150 m | λ180 m | G (°C/Km) | Pd50 m (MWh/y) | Pd120 m (MWh/y) | Pd150 m (MWh/y) | Pd180 m (MWh/y) | Cd50 m (kW) | Cd120 m (kW) | Cd150 m (kW) | Cd180 m (kW) | T120 (°C) | T180 (°C) | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| λsurface (W/mK) | 1.00 | |||||||||||||||
| λ50 m | 1.00 | 1.00 | ||||||||||||||
| λ120 m | 1.00 | 1.00 | 1.00 | |||||||||||||
| λ150 m | 1.00 | 1.00 | 1.00 | 1.00 | ||||||||||||
| λ180 m | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | |||||||||||
| G (°C/Km) | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 1.00 | ||||||||||
| Pd50 m (MWh/y) | 0.76 | 0.76 | 0.76 | 0.76 | 0.76 | 0.09 | 1.00 | |||||||||
| Pd120 m (MWh/y) | 0.76 | 0.76 | 0.76 | 0.76 | 0.76 | 0.09 | 1.00 | 1.00 | ||||||||
| Pd150 m (MWh/y) | 0.76 | 0.76 | 0.76 | 0.76 | 0.76 | 0.09 | 1.00 | 1.00 | 1.00 | |||||||
| Pd180 m (MWh/y) | 0.76 | 0.76 | 0.76 | 0.76 | 0.76 | 0.09 | 1.00 | 1.00 | 1.00 | 1.00 | ||||||
| Cd50 m (kW) | 0.76 | 0.76 | 0.76 | 0.76 | 0.76 | 0.09 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | |||||
| Cd120 m (kW) | 0.76 | 0.76 | 0.76 | 0.76 | 0.76 | 0.09 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | ||||
| Cd150 m (kW) | 0.76 | 0.76 | 0.76 | 0.76 | 0.76 | 0.09 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | |||
| Cd180 m (kW) | 0.76 | 0.76 | 0.76 | 0.76 | 0.76 | 0.09 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | ||
| T120 (°C) | −0.20 | −0.20 | −0.20 | −0.20 | −0.20 | 0.41 | −0.25 | −0.25 | −0.25 | −0.25 | −0.25 | −0.25 | −0.25 | −0.25 | 1.00 | |
| T180 (°C) | −0.18 | −0.18 | −0.18 | −0.18 | −0.18 | 0.47 | −0.23 | −0.23 | −0.23 | −0.23 | −0.23 | −0.23 | −0.23 | −0.23 | 1.00 | 1.00 |
High correlation Low correlation | ||||||||||||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mirfallah Lialestani, S.P.; Parcerisa, D.; Himi, M.; Abbaszadeh Shahri, A. Geothermal Resource Classification in Catalonia (Spain) Using AI-Derived Predictions. Energies 2025, 18, 6040. https://doi.org/10.3390/en18226040
Mirfallah Lialestani SP, Parcerisa D, Himi M, Abbaszadeh Shahri A. Geothermal Resource Classification in Catalonia (Spain) Using AI-Derived Predictions. Energies. 2025; 18(22):6040. https://doi.org/10.3390/en18226040
Chicago/Turabian StyleMirfallah Lialestani, Seyed Poorya, David Parcerisa, Mahjoub Himi, and Abbas Abbaszadeh Shahri. 2025. "Geothermal Resource Classification in Catalonia (Spain) Using AI-Derived Predictions" Energies 18, no. 22: 6040. https://doi.org/10.3390/en18226040
APA StyleMirfallah Lialestani, S. P., Parcerisa, D., Himi, M., & Abbaszadeh Shahri, A. (2025). Geothermal Resource Classification in Catalonia (Spain) Using AI-Derived Predictions. Energies, 18(22), 6040. https://doi.org/10.3390/en18226040


