Machine Learning-Driven Site Selection for Wind Farms in Poland
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
- Input layer: Corresponding to the 28 features representing environmental, topographical, and meteorological factors;
- Hidden layers: Three layers with 64, 128, and 64 neurons, respectively, to capture intricate feature interactions;
- Activation function: The hyperbolic tangent (tanh) activation function was applied in the hidden layers [91]:
3. Results
3.1. Preliminary Stage
3.2. The MLP Model Performance
- The origin of these values is unclear; however, it is hypothesized by the authors that they may be associated with the construction year of the wind farms and border changes;
- Randomly generated points in the training and testing datasets exhibited zero values more frequently and were deemed unsuitable for analysis. For instance, random points situated in the center of Warsaw or within lakes represent locations where wind turbines cannot be constructed and, therefore, these were removed prior to the analysis.
3.3. The MLP Model Validation
4. Discussion
5. Conclusions
- Scalability and adaptability to high-dimensional datasets;
- The ability to identify intricate spatial patterns across multiple variables;
- Improved prediction accuracy and objectivity;
- Dynamic adaptation to new incoming data, allowing for continuous model refinement.
- Dependence on data quality, where incomplete or biased datasets may affect model accuracy;
- Difficulties in incorporating non-quantifiable factors, like social acceptance;
- Risk of overfitting or increased model complexity.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wind Energy—European Commission. Available online: https://research-and-innovation.ec.europa.eu/research-area/energy/wind-energy_en (accessed on 19 November 2024).
- Executive Summary—Renewables 2024—Analysis—IEA. Available online: https://www.iea.org/reports/renewables-2024/executive-summary (accessed on 19 November 2024).
- 1TW Celebration—Global Wind Energy Council. Available online: https://gwec.net/gwec-news/ (accessed on 19 November 2024).
- Wind Industry Reaches 1 Terawatt Wind Energy Capacity Milestone—GEV Wind Power. Available online: https://www.gevwindpower.com/wind-industry-news/wind-energy-capacity/ (accessed on 19 November 2024).
- China: Installed Wind Power Capacity 2023 | Statista. Available online: https://www.statista.com/statistics/950342/china-accumulated-installed-wind-power-capacity/ (accessed on 19 November 2024).
- China’s Solar Power Capacity Soared by 55% in 2023 and Wind Capacity by 21%|Enerdata. Available online: https://www.enerdata.net/publications/daily-energy-news/chinas-solar-power-capacity-soared-55-2023-and-wind-capacity-21.html (accessed on 19 November 2024).
- Wind Energy in Europe: 2023 Statistics and the Outlook for 2024-2030|WindEurope. Available online: https://windeurope.org/intelligence-platform/product/wind-energy-in-europe-2023-statistics-and-the-outlook-for-2024-2030/ (accessed on 19 November 2024).
- Net Zero by 2050—Analysis—IEA. Available online: https://www.iea.org/reports/net-zero-by-2050 (accessed on 19 November 2024).
- Japan’s Strategy to Expand Renewable Energy Contributes to the World’s Efforts Toward Tripling Renewable Energy. Available online: https://www.enecho.meti.go.jp/en/category/special/article/detail_198.html (accessed on 19 November 2024).
- China’s Net-Zero Ambitions: The next Five-Year Plan Will Be Critical for an Accelerated Energy Transition—Analysis—IEA. Available online: https://www.iea.org/commentaries/china-s-net-zero-ambitions-the-next-five-year-plan-will-be-critical-for-an-accelerated-energy-transition (accessed on 19 November 2024).
- China’s Green Efforts to Gain Momentum—Chinadaily.Com.Cn. Available online: https://global.chinadaily.com.cn/a/202409/05/WS66d90d9fa3108f29c1fca3fe.html (accessed on 19 November 2024).
- French Policies to Tackle Climate Change | Climate Change Observations. 2023. Available online: https://www.statistiques.developpement-durable.gouv.fr/edition-numerique/chiffres-cles-du-climat-2023/en/19-french-policies-to-tackle-climate (accessed on 19 November 2024).
- Energy Policy of Poland Until 2040 (EPP2040)—Ministry of Climate and Environment—Gov.Pl Website. Available online: https://www.gov.pl/web/climate/energy-policy-of-poland-until-2040-epp2040 (accessed on 19 November 2024).
- What the Government Is Doing for the Climate. Available online: https://www.bundesregierung.de/breg-en/issues/climate-action/government-climate-policy-1779414 (accessed on 19 November 2024).
- Green Transition—European Commission. Available online: https://reform-support.ec.europa.eu/what-we-do/green-transition_en (accessed on 19 November 2024).
- IEA Policy Review Highlights Leadership of United States on Energy Security and Clean Energy Transitions—News—IEA. Available online: https://www.iea.org/news/iea-policy-review-highlights-leadership-of-united-states-on-energy-security-and-clean-energy-transitions (accessed on 19 November 2024).
- Powering Up Britain: Net Zero Growth Plan—GOV.UK. Available online: https://www.gov.uk/government/publications/powering-up-britain/powering-up-britain-net-zero-growth-plan (accessed on 19 November 2024).
- Federal Sustainability Plan: Catalyzing America’s Clean Energy Industries and Jobs | Office of the Federal Chief Sustainability Officer. Available online: https://www.sustainability.gov/federalsustainabilityplan (accessed on 19 November 2024).
- Go Green with Australia | Austrade International. Available online: https://international.austrade.gov.au/en/why-australia/go-green-with-australia (accessed on 19 November 2024).
- Overview and Key Findings—World Energy Investment 2024—Analysis—IEA. Available online: https://www.iea.org/reports/world-energy-investment-2024/overview-and-key-findings (accessed on 19 November 2024).
- Global Renewable Energy Investments by Region 2023 | Statista. Available online: https://www.statista.com/statistics/186923/new-investments-worldwide-in-sustainable-energy-by-region/ (accessed on 19 November 2024).
- Raporty Za Rok 2023—PSE. Available online: https://www.pse.pl/dane-systemowe/funkcjonowanie-kse/raporty-roczne-z-funkcjonowania-kse-za-rok/raporty-za-rok-2023#r6_1 (accessed on 25 October 2024).
- Polska Przekroczyła 30-Proc. Udział Pogodozależnych OZE w Produkcji Energii w Kwietniu 2024—OPINIE. Available online: https://www.cire.pl/artykuly/opinie/polska-przekroczyla-30-proc-udzial-pogodozaleznych-oze-w-produkcji-energii-w-kwietniu-2024 (accessed on 25 October 2024).
- Poland Onshore Wind Energy 10H Distance Rule Liberalized. Available online: https://www.trade.gov/market-intelligence/poland-onshore-wind-energy-10h-distance-rule-liberalized (accessed on 21 June 2023).
- Nowe Odległości Farm Wiatrowych Od Domów—Ustawa Wiatrakowa Obowiązuje. Available online: https://www.muratorplus.pl/biznes/prawo/nowe-odleglosci-farm-wiatrowych-od-domow-ustawa-wiatrakowa-obowiazuje-aa-3pnA-gW7q-uxk4.html (accessed on 27 June 2023).
- Elektrownie Wiatrowe—Do Końca Czerwca Ma Być Nowa Ustawa. Available online: https://www.prawo.pl/biznes/elektrownie-wiatrowe-do-konca-czerwca-ma-byc-nowa-ustawa,514681.html (accessed on 12 May 2022).
- Ustawa z Dnia 20 Maja 2016 r. o Inwestycjach w Zakresie Elektrowni Wiatrowych. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20160000961 (accessed on 12 May 2022).
- Ustawa z Dnia 9 Marca 2023 r. o Zmianie Ustawy o Inwestycjach w Zakresie Elektrowni Wiatrowych Oraz Niektórych Innych Ustaw. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20230000553 (accessed on 19 July 2023).
- Renewable Energy Targets—European Commission. Available online: https://energy.ec.europa.eu/topics/renewable-energy/renewable-energy-directive-targets-and-rules/renewable-energy-targets_en (accessed on 25 October 2024).
- Pablo-Romero, P.; Pozo-Barajas, R.; Sánchez, J.; García, R.; Holechek, J.L.; Geli, H.M.E.; Sawalhah, M.N.; Valdez, R. A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050? Sustainability 2022, 14, 4792. [Google Scholar] [CrossRef]
- Abromas, J.; Kamičaitytė-Virbašienė, J.; Ziemeļniece, A. Visual Impact Assessment of Wind Turbines and Their Farms on Landscape of Kretinga Region (Lithuania) and Grobina Townscape (Latvia). J. Environ. Eng. Landsc. Manag. 2015, 23, 39–49. [Google Scholar] [CrossRef]
- Ladenburg, J. Visual Impact Assessment of Offshore Wind Farms and Prior Experience. Appl. Energy 2009, 86, 380–387. [Google Scholar] [CrossRef]
- Estellés-Domingo, I.; López-López, P. Effects of Wind Farms on Raptors: A Systematic Review of the Current Knowledge and the Potential Solutions to Mitigate Negative Impacts. Anim. Conserv. 2024, 28, 334–352. [Google Scholar] [CrossRef]
- Williams, K.A.; Gulka, J.; Cook, A.S.C.P.; Diehl, R.H.; Farnsworth, A.; Goyert, H.; Hein, C.; Loring, P.; Mizrahi, D.; Petersen, I.K.; et al. A Framework for Studying the Effects of Offshore Wind Energy Development on Birds and Bats in the Eastern United States. Front. Mar. Sci. 2024, 11, 1274052. [Google Scholar] [CrossRef]
- Ellerbrok, J.S.; Farwig, N.; Peter, F.; Voigt, C.C. Forest Bat Activity Declines with Increasing Wind Speed in Proximity of Operating Wind Turbines. Glob. Ecol. Conserv. 2024, 49, e02782. [Google Scholar] [CrossRef]
- Wolniewicz, K.; Zagubień, A.; Wesołowski, M. Energy and Acoustic Environmental Effective Approach for a Wind Farm Location. Energies 2021, 14, 7290. [Google Scholar] [CrossRef]
- Pedersen, E.; van den Berg, F.; Bakker, R.; Bouma, J. Response to Noise from Modern Wind Farms in The Netherlands. J. Acoust. Soc. Am. 2009, 126, 634–643. [Google Scholar] [CrossRef]
- Hall, N.; Ashworth, P.; Devine-Wright, P. Societal Acceptance of Wind Farms: Analysis of Four Common Themes across Australian Case Studies. Energy Policy 2013, 58, 200–208. [Google Scholar] [CrossRef]
- Sonnberger, M.; Ruddat, M. Local and Socio-Political Acceptance of Wind Farms in Germany. Technol. Soc. 2017, 51, 56–65. [Google Scholar] [CrossRef]
- Mroczek, B.; Kurpas, D. Social Attitudes towards Wind Farms and Other Renewable Energy Sources in Poland. Med. Sr.—Environ. Med. 2014, 4, 19–28. [Google Scholar]
- Rocznik—Dane o Energetyce—Forum Energii. Available online: https://www.forum-energii.eu/rocznik-dane-o-energetyce (accessed on 20 November 2024).
- W Unii Weszło w Życie Nowe Prawo Dla OZE. Polska Była Przeciw—Gramwzielone.Pl. Available online: https://www.gramwzielone.pl/trendy/20171137/w-unii-weszlo-w-zycie-nowe-prawo-dla-oze-polska-byla-przeciw (accessed on 19 November 2024).
- Energetyka Wiatrowa w Polsce 2024—Odpowiedź Na Unijny Zwrot. Available online: https://www.teraz-srodowisko.pl/publikacje/energetyka-wiatrowa-w-polsce-2024/ (accessed on 20 November 2024).
- Moc Zainstalowana Farm Wiatrowych w Polsce w Czerwcu 2024 r. Available online: https://www.rynekelektryczny.pl/moc-zainstalowana-farm-wiatrowych-w-polsce/ (accessed on 20 November 2024).
- Amsharuk, A.; Łaska, G. Site Selection of Wind Farms in Poland: Combining Theory with Reality. Energies 2024, 17, 2635. [Google Scholar] [CrossRef]
- Saaty, T.L. Making and Validating Complex Decisions with the AHP/ANP. J. Syst. Sci. Syst. Eng. 2005, 14, 1–36. [Google Scholar] [CrossRef]
- Skibniewski, M.J.; Chao, L. Evaluation of Advanced Construction Technology with AHP Method. J. Constr. Eng. Manag. 1992, 118, 577–593. [Google Scholar] [CrossRef]
- Lin, Z.C.; Yang, C.B. Evaluation of Machine Selection by the AHP Method. J. Mater. Process Technol. 1996, 57, 253–258. [Google Scholar] [CrossRef]
- Amsharuk, A.; Łaska, G. A Review: Existing Methods for Solving Spatial Planning Problems for Wind Turbines in Poland. Energies 2022, 15, 8957. [Google Scholar] [CrossRef]
- Kaya, T.; Kahraman, C. Multicriteria Decision Making in Energy Planning Using a Modified Fuzzy TOPSIS Methodology. Expert. Syst. Appl. 2011, 38, 6577–6585. [Google Scholar] [CrossRef]
- Konstantinos, I.; Georgios, T.; Garyfalos, A. A Decision Support System Methodology for Selecting Wind Farm Installation Locations Using AHP and TOPSIS: Case Study in Eastern Macedonia and Thrace Region, Greece. Energy Policy 2019, 132, 232–246. [Google Scholar] [CrossRef]
- Kaya, T.; Kahraman, C. Multicriteria Renewable Energy Planning Using an Integrated Fuzzy VIKOR & AHP Methodology: The Case of Istanbul. Energy 2010, 35, 2517–2527. [Google Scholar] [CrossRef]
- Brans, J.P.; De Smet, Y. PROMETHEE Methods. Int. Ser. Oper. Res. Manag. Sci. 2016, 233, 187–219. [Google Scholar] [CrossRef]
- Sotiropoulou, K.F.; Vavatsikos, A.P. Onshore Wind Farms GIS-Assisted Suitability Analysis Using PROMETHEE II. Energy Policy 2021, 158, 112531. [Google Scholar] [CrossRef]
- Łaska, G. Wind Energy and Multicriteria Analysis in Making Decisions on the Location of Wind Farms: A Case Study in the North-Eastern of Poland. In Modeling, Simulation and Optimization of Wind Farms and Hybrid Systems; Maalawi, K., Ed.; IntechOpen: London, UK, 2020; pp. 1–18. [Google Scholar]
- Aydin, N.Y.; Kentel, E.; Sebnem Duzgun, H. GIS-Based Site Selection Methodology for Hybrid Renewable Energy Systems: A Case Study from Western Turkey. Energy Convers. Manag. 2013, 70, 90–106. [Google Scholar] [CrossRef]
- Amsharuk, A.; Łaska, G.; Malinowski, P. Statistical Analysis and Linear Model to Assess Wind Turbine Parameters Concerning Natural, Topographical and Meteorological Conditions in Poland; Polish Botanical Society, Agencja Wydawnicza EkoPress: Białystok, Poland, 2025; ISBN 978-83-969798-8-9. [Google Scholar]
- Latinopoulos, D.; Kechagia, K. A GIS-Based Multi-Criteria Evaluation for Wind Farm Site Selection. A Regional Scale Application in Greece. Renew. Energy 2015, 78, 550–560. [Google Scholar] [CrossRef]
- Baban, S.M.J.; Parry, T. Developing and Applying a GIS-Assisted Approach to Locating Wind Farms in the UK. Renew. Energy 2001, 24, 59–71. [Google Scholar] [CrossRef]
- Resak, M.; Rogosz, B.; Szczepiński, J.; Dziamara, M. Legal Conditions for Investments in Renewable Energy in the Overburden Disposal Areas in Poland. Sustainability 2022, 14, 1065. [Google Scholar] [CrossRef]
- Szurek, M.; Blachowski, J.; Nowacka, A. GIS-Based Method for Wind Farm Location Multi-Criteria Analysis. Min. Sci. 2014, 21, 65–81. [Google Scholar] [CrossRef]
- Sliz-Szkliniarz, B.; Vogt, J. GIS-Based Approach for the Evaluation of Wind Energy Potential: A Case Study for the Kujawsko–Pomorskie Voivodeship. Renew. Sustain. Energy Rev. 2011, 15, 1696–1707. [Google Scholar] [CrossRef]
- Chamanehpour, E. Site Selection of Wind Power Plant Using Multi-Criteria Decision-Making Methods in GIS: A Case Study. Comput. Ecol. Softw. 2017, 7, 49–64. [Google Scholar]
- Díaz-Cuevas, P.; Domínguez-Bravo, J.; Prieto-Campos, A. Integrating MCDM and GIS for Renewable Energy Spatial Models: Assessing the Individual and Combined Potential for Wind, Solar and Biomass Energy in Southern Spain. Clean. Technol. Environ. Policy 2019, 21, 1855–1869. [Google Scholar] [CrossRef]
- Rehman, S.; Mohammed, A.B.; Alhems, L. A Heuristic Approach to Siting and Design Optimization of an Onshore Wind Farm Layout. Energies 2020, 13, 5946. [Google Scholar] [CrossRef]
- Hajto, M.; Cichocki, Z.; Bidłasik, M.; Borzyszkowski, J.; Kuśmierz, A. Constraints on Development of Wind Energy in Poland Due to Environmental Objectives. Is There Space in Poland for Wind Farm Siting? Environ. Manage 2017, 59, 204–217. [Google Scholar] [CrossRef]
- Díaz-Cuevas, P.; Biberacher, M.; Domínguez-Bravo, J.; Schardinger, I. Developing a Wind Energy Potential Map on a Regional Scale Using GIS and Multi-Criteria Decision Methods: The Case of Cadiz (South of Spain). Clean Technol. Environ. Policy 2018, 20, 1167–1183. [Google Scholar] [CrossRef]
- Tsoutsos, T.; Tsitoura, I.; Kokologos, D.; Kalaitzakis, K. Sustainable Siting Process in Large Wind Farms Case Study in Crete. Renew. Energy 2015, 75, 474–480. [Google Scholar] [CrossRef]
- Amsharuk, A.; Łaska, G. The Approach to Finding Locations for Wind Farms Using GIS and MCDA: Case Study Based on Podlaskie Voivodeship, Poland. Energies 2023, 16, 7107. [Google Scholar] [CrossRef]
- Liu, B.; Ma, X.; Guo, J.; Li, H.; Jin, S.; Ma, Y.; Gong, W. Estimating Hub-Height Wind Speed Based on a Machine Learning Algorithm: Implications for Wind Energy Assessment. Atmos. Chem. Phys. 2023, 23, 3181–3193. [Google Scholar] [CrossRef]
- Zhang, Y. Forecasting for Wind Farm Energy Output in South Australia: A Comparative Analysis of Physical Methods and Deep Learning Methods. In Proceedings of the 2022 5th Asia Conference on Machine Learning and Computing, ACMLC, Bangkok, Thailand, 28–30 December 2022; pp. 83–88. [Google Scholar] [CrossRef]
- Mollick, T.; Hashmi, G.; Sabuj, S.R. Wind Speed Prediction for Site Selection and Reliable Operation of Wind Power Plants in Coastal Regions Using Machine Learning Algorithm Variants. Sustain. Energy Res. 2024, 11, 5. [Google Scholar] [CrossRef]
- Tapoglou, E.; Forster, R.M.; Dorrell, R.M.; Parsons, D. Machine Learning for Satellite-Based Sea-State Prediction in an Offshore Windfarm. Ocean Eng. 2021, 235, 109280. [Google Scholar] [CrossRef]
- Ti, Z.; Deng, X.W.; Yang, H. Wake Modeling of Wind Turbines Using Machine Learning. Appl. Energy 2020, 257, 114025. [Google Scholar] [CrossRef]
- Grilli, A.R.; Shumchenia, E.J. Toward Wind Farm Monitoring Optimization: Assessment of Ecological Zones from Marine Landscapes Using Machine Learning Algorithms. Hydrobiologia 2015, 756, 117–137. [Google Scholar] [CrossRef]
- Bilgili, A.; Arda, T.; Kilic, B. Explainability in Wind Farm Planning: A Machine Learning Framework for Automatic Site Selection of Wind Farms. Energy Convers. Manag. 2024, 309, 118441. [Google Scholar] [CrossRef]
- Sari, F.; Yalcin, M. Investigation of the Importance of Criteria in Potential Wind Farm Sites via Machine Learning Algorithms. J. Clean. Prod. 2024, 435, 140575. [Google Scholar] [CrossRef]
- Chaibi, M.; Ben Ghoulam, E.M.; Khallouk, N.; Tarik, L.; El Yousfi, Y.; El Hmaidi, A.; Berrada, M.; Mabrouki, J. A Novel Fuzzy-Multi-Criteria-GIS-Machine Learning Approach for Onshore Wind Power Plant Site Selection. EuroMediterr J. Environ. Integr. 2024, 10, 1025–1045. [Google Scholar] [CrossRef]
- Petrov, A.N.; Wessling, J.M. Utilization of Machine-Learning Algorithms for Wind Turbine Site Suitability Modeling in Iowa, USA. Wind. Energy 2015, 18, 713–727. [Google Scholar] [CrossRef]
- Topographic Objects Database (BDOT10k). Available online: https://www.geoportal.gov.pl/dane/baza-danych-obiektow-topograficznych-bdot10k/ (accessed on 28 June 2023).
- Geoportal.Gov.Pl. Available online: https://mapy.geoportal.gov.pl/imap/Imgp_2.html (accessed on 28 June 2023).
- Dostęp Do Danych Geoprzestrzennych—Generalna Dyrekcja Ochrony Środowiska. Available online: https://www.gov.pl/web/gdos/dostep-do-danych-geoprzestrzennych (accessed on 28 June 2023).
- Global Wind Atlas. Available online: https://globalwindatlas.info/en/ (accessed on 1 July 2023).
- Poland Wind Power Plants. Available online: https://openinframap.org/stats/area/Poland/plants?source=wind (accessed on 29 June 2023).
- Numeryczny Model Terenu o Interwale Siatki Co Najmniej 100 m. Available online: https://dane.gov.pl/pl/dataset/792,numeryczny-model-terenu-o-interwale-siatki-co-najmniej-100-m (accessed on 28 June 2023).
- Digital Elevation Model (DEM). Available online: https://www.geoportal.gov.pl/dane/numeryczny-model-terenu (accessed on 28 June 2023).
- Dziennik Ustaw—Rok 2023 Poz. 1336—INFOR.PL. Available online: https://www.infor.pl/akt-prawny/DZU.2023.194.0001336,ustawa-o-ochronie-przyrody.html (accessed on 1 March 2024).
- Pedregosa, F.; Michel, V.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Vanderplas, J.; Cournapeau, D. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning Representations by Back-Propagating Errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Rumelhart, D.E.; McClelland, J.L.; Group, P.R. Parallel Distributed Processing, Volume 1: Explorations in the Microstructure of Cognition: Foundations; The MIT Press: Cambridge, MA, USA, 1986; ISBN 9780262291408. [Google Scholar]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-Based Learning Applied to Document Recognition. Proc. IEEE 1998, 86, 2278–2323. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J.L. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Powers David, M.W. Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness and Correlation. Int. J. Mach. Learn. Technol. 2011, 2, 37–63. [Google Scholar]
- Van Rijsbergen, C.J. Information Retrieval. J. Am. Soc. Inf. Sci. 1979, 30, 374–375. [Google Scholar] [CrossRef]
- Rijsbergen, V. Information Retrieval—Chapter 7; Department of Computing Science, University of Glasgow: Glasgow, UK, 1979; ISBN 0408709294. [Google Scholar]
- Matthews, B.W. Comparison of the Predicted and Observed Secondary Structure of T4 Phage Lysozyme. Biochim. Et Biophys. Acta BBA—Protein Struct. 1975, 405, 442–451. [Google Scholar] [CrossRef]
- Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Hanley, J.A.; McNeil, B.J. The Meaning and Use of the Area under a Receiver Operating Characteristic (ROC) Curve. Radiology 1982, 143, 29–36. [Google Scholar] [CrossRef]
- Good, I.J. Rational Decisions. J. R. Stat. Soc. Ser. B Methodol. 1952, 14, 107–114. [Google Scholar] [CrossRef]
- Moradi, S.; Yousefi, H.; Noorollahi, Y.; Rosso, D. Multi-Criteria Decision Support System for Wind Farm Site Selection and Sensitivity Analysis: Case Study of Alborz Province, Iran. Energy Strategy Rev. 2020, 29, 100478. [Google Scholar] [CrossRef]
- Azizi, A.; Malekmohammadi, B.; Jafari, H.R.; Nasiri, H.; Amini Parsa, V. Land Suitability Assessment for Wind Power Plant Site Selection Using ANP-DEMATEL in a GIS Environment: Case Study of Ardabil Province, Iran. Environ. Monit. Assess. 2014, 186, 6695–6709. [Google Scholar] [CrossRef] [PubMed]
- Wind Energy Developments and Natura 2000: Guidance Document. Available online: https://op.europa.eu/en/publication-detail/-/publication/65364c77-b5b8-4ab6-919d-8f4e3c6eb5c2 (accessed on 12 May 2025).














| (a) Performance parameters of the MLP model on validation subset | ||||
| Precision | Recall | F1-score | Support | |
| Class 0 | 0.92 | 0.85 | 0.89 | 675 |
| Class 1 | 0.86 | 0.92 | 0.89 | 640 |
| Accuracy | - | - | 0.89 | 1315 |
| Macro avg | 0.89 | 0.89 | 0.89 | 1315 |
| Weighted avg | 0.89 | 0.89 | 0.89 | 1315 |
| (b) Performance parameters of the MLP model on testing subset | ||||
| Class 0 | 0.93 | 0.88 | 0.91 | 675 |
| Class 1 | 0.88 | 0.93 | 0.91 | 641 |
| Accuracy | - | - | 0.91 | 1316 |
| Macro avg | 0.91 | 0.91 | 0.91 | 1316 |
| Weighted avg | 0.91 | 0.91 | 0.91 | 1316 |
| MCC | 0.8158 | |||
| Cohen’s Kappa | 0.8147 | |||
| Balanced Accuracy | 0.9079 | |||
| Log Loss | 0.4351 | |||
| AUC-ROC Score | 0.9603 | |||
| (a) Performance parameters of the MLP model on validation subset | ||||
| Precision | Recall | F1-score | Support | |
| Class 0 | 0.81 | 0.78 | 0.79 | 259 |
| Class 1 | 0.90 | 0.92 | 0.91 | 552 |
| Accuracy | - | - | 0.87 | 811 |
| Macro avg | 0.86 | 0.85 | 0.85 | 811 |
| Weighted avg | 0.87 | 0.87 | 0.87 | 811 |
| (b) Performance parameters of the MLP model on testing subset | ||||
| Class 0 | 0.86 | 0.78 | 0.82 | 259 |
| Class 1 | 0.90 | 0.94 | 0.92 | 552 |
| Accuracy | - | - | 0.89 | 811 |
| Macro avg | 0.88 | 0.86 | 0.87 | 811 |
| Weighted avg | 0.89 | 0.89 | 0.89 | 811 |
| MCC | 0.7371 | |||
| Cohen’s Kappa | 0.7351 | |||
| Balanced Accuracy | 0.8581 | |||
| Log Loss | 0.5686 | |||
| AUC-ROC Score | 0.9380 | |||
| Criteria | Excluded Buffer Zone [m] |
|---|---|
| Natura 2000 Network | 2000 |
| National Parks | 1500 |
| Reserves | 500 |
| Urban areas | 700 |
| Power grid (high voltage) | 300 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amsharuk, A.; Łaska, G.; Yüksel, K.; Madlener, R. Machine Learning-Driven Site Selection for Wind Farms in Poland. Energies 2025, 18, 6038. https://doi.org/10.3390/en18226038
Amsharuk A, Łaska G, Yüksel K, Madlener R. Machine Learning-Driven Site Selection for Wind Farms in Poland. Energies. 2025; 18(22):6038. https://doi.org/10.3390/en18226038
Chicago/Turabian StyleAmsharuk, Artur, Grażyna Łaska, Kagan Yüksel, and Reinhard Madlener. 2025. "Machine Learning-Driven Site Selection for Wind Farms in Poland" Energies 18, no. 22: 6038. https://doi.org/10.3390/en18226038
APA StyleAmsharuk, A., Łaska, G., Yüksel, K., & Madlener, R. (2025). Machine Learning-Driven Site Selection for Wind Farms in Poland. Energies, 18(22), 6038. https://doi.org/10.3390/en18226038

