Artificial Intelligence in Floating Offshore Wind Turbines: A Critical Review of Applications in Design, Monitoring, Control, and Digital Twins
Abstract
1. Introduction
2. Background
3. Methods
3.1. Literature Search and PRISMA Workflow
- TITLE-ABS-KEY ( ( “floating offshore wind” OR “floating wind” OR “floating wind turbine*” OR FOWT OR ( ( spar OR “semi-sub*” OR semisub* OR “tension leg” OR TLP OR barge ) W/3 ( turbine OR platform OR floater ) ) ) AND ( “artificial intelligence” OR “machine learning” OR “deep learning” OR “neural network*” OR “reinforcement learning” OR “digital twin*” OR “surrogate model*” OR “reduced-order model*” OR “physics-informed” OR PINN* OR “Gaussian process*” OR kriging OR “support vector*” OR “random forest” OR “gradient boosting” OR “Bayesian optimization” ) AND ( design OR optimization OR “structural health” OR monitoring OR SHM OR diagnostics OR control OR controller OR “model predictive control” OR MPC OR “fault detection” OR “condition monitoring” OR “O&M” OR operations OR maintenance OR “state estimation” ) ) AND NOT TITLE-ABS-KEY ( “tidal” OR “wave energy” OR “point absorber” ) AND ( LIMIT-TO ( DOCTYPE , “ar” ) OR LIMIT-TO ( DOCTYPE , “cp” ) ) AND ( LIMIT-TO ( OA , “all” ) ).
3.2. Inclusion and Exclusion Criteria
- -
- Focused exclusively on fixed-bottom turbines or other marine renewables (e.g., tidal, wave energy, point absorbers);
- -
- Described general AI frameworks without direct application to FOWTs;
- -
- Lacked an accessible full text.
3.3. Data Extraction and Bibliometric Analysis
3.4. Bias Evaluation: The MOC Framework
4. Bibliometric Landscape
4.1. Temporal Trends
4.2. Geographical Distribution
4.3. Institutional Landscape
4.4. Funding Sponsors
4.5. Bibliometric Synthesis
5. Taxonomy of AI Methods for FOWTs
5.1. Supervised and Classical Machine Learning
5.2. Deep Learning and Neural Surrogates
5.3. Physics-Informed and Hybrid Models
5.4. Reinforcement Learning and Adaptive Control
5.5. Digital Twins and Online Learning
5.6. Uncertainty and Reliability-Oriented AI
5.7. Synthesis
6. Applications of AI in Floating Offshore Wind Turbines
6.1. AI in Design and Surrogate-Based Optimization
6.2. Structural Health Monitoring and Diagnostics
6.3. Control and Operational Strategies
6.4. Digital Twins for Lifecycle Management
7. Bias and Methodological Limitations
7.1. Synthesis of Bias Evaluation
7.2. Analytical Synthesis and Practical Implications
8. Future Research Directions
9. Conclusions
- − Physics-informed neural surrogates (PINNs, DeepONets): enable order-of-magnitude acceleration of coupled aero-hydro-servo-elastic simulations, provided sufficient synthetic data exist.
- − Uncertainty-aware and probabilistic encoders for structural-health monitoring: improve fault sensitivity while maintaining calibrated false-positive rates.
- − Safe reinforcement-learning controllers integrated with model-predictive control (MPC-RL): enhance energy capture and load mitigation under safety constraints.
- − Hybrid digital twins combining reduced-order physical models with online learning: support remaining-useful-life estimation and lifecycle decision-making.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| AI | Artificial Intelligence |
| ANN | Artificial Neural Network |
| CFD | Computational Fluid Dynamics |
| DT | Digital Twin |
| FOWT | Floating Offshore Wind Turbine |
| GA | Genetic Algorithm |
| GAN | Generative Adversarial Network |
| GPR | Gaussian Process Regression |
| LSTM | Long Short-Term Memory |
| MLOps | Machine Learning Operations |
| ML | Machine Learning |
| MOC | Methodological Quality and Bias Evaluation |
| MPC | Model Predictive Control |
| NN | Neural Network |
| NTNU | Norwegian University of Science and Technology |
| O&M | Operations and Maintenance |
| PINN | Physics-Informed Neural Network |
| QoI | Quantity of Interest |
| RL | Reinforcement Learning |
| RUL | Remaining Useful Life |
| SCADA | Supervisory Control and Data Acquisition |
| SHM | Structural Health Monitoring |
| SVM | Support Vector Machine |
| TRPO | Trust Region Policy Optimization |
| UQ | Uncertainty Quantification |
References
- Ren, C.; Xing, Y. Active Learning with a Multi-Point Enrichment Strategy for Multi-Location Fatigue Assessment of Offshore Wind Turbines. Eng. Struct. 2025, 336, 120344. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, X.; Wei, X. Data-Driven Structural Control of Monopile Wind Turbine Towers Based on Machine Learning. IFAC-PapersOnLine 2020, 53, 7466–7471. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, H.; Peng, C. A Novel User Behavior Modeling Scheme for Edge Devices with Dynamic Privacy Budget Allocation. Electronics 2025, 14, 954. [Google Scholar] [CrossRef]
- Branlard, E.; Jonkman, J.; Brown, C.; Zhang, J. A Digital Twin Solution for Floating Offshore Wind Turbines Validated Using a Full-Scale Prototype. Wind Energy Sci. 2024, 9, 1–24. [Google Scholar] [CrossRef]
- Didier, F.; Laghrouche, S.; Dépernet, D. Trust Region Policy Optimization-Based Pitch Control for Floating Offshore Wind Turbines in above-Rated Wind Conditions. Renew. Energy 2026, 256, 123893. [Google Scholar] [CrossRef]
- Pacheco-Blazquez, R.; García-Espinosa, J.; Di Capua, D.; Pastor-Sánchez, A. A Digital Twin for Assessing the Remaining Useful Life of Offshore Wind Turbine Structures. J. Mar. Sci. Eng. 2024, 12, 573. [Google Scholar] [CrossRef]
- Kandemir, E.; Liu, J.; Hasan, A. Digital Twin-Driven Dynamic Repositioning of Floating Offshore Wind Farms. Energy Rep. 2023, 9, 208–214. [Google Scholar] [CrossRef]
- Dibaj, A.; Nejad, A.R.; Gao, Z. A Data-Driven Approach for Fault Diagnosis of Drivetrain System in a Spar-Type Floating Wind Turbine Based on the Multi-Point Acceleration Measurements. J. Phys. Conf. Ser. 2022, 2265, 32096. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.-M.; Min, Y.-T.; Yu, Y.; Lin, C.; Hu, Z.-Z. A Digital Twin-Based Framework for Simulation and Monitoring Analysis of Floating Wind Turbine Structures. Ocean Eng. 2023, 283, 115009. [Google Scholar] [CrossRef]
- Festa, O.; Charles, J.; Gourvenec, S. A Flexible Neural Network-Based Surrogate Model for Optimisation of Floating Wind Moorings with LRDs. Ocean Eng. 2025, 332, 119767. [Google Scholar] [CrossRef]
- Ahmad, I.; M’zoughi, F.; Aboutalebi, P.; Garrido, I.; Garrido, A. A Machine-Learning Approach for the Development of a FOWT Model Integrated with Four OWCs. In Proceedings of the 2022 26th International Conference on Circuits, Systems, Communications and Computers (CSCC), Crete, Greece, 19–22 July 2022; pp. 72–76. [Google Scholar]
- Pustina, L.; Biral, F.; Serafini, J. A Novel Nonlinear Model Predictive Controller for Power Maximization on Floating Offshore Wind Turbines. J. Phys. Conf. Ser. 2022, 2265, 42002. [Google Scholar] [CrossRef]
- Sivalingam, K.; Sepulveda, M.; Spring, M.; Davies, P. A Review and Methodology Development for Remaining Useful Life Prediction of Offshore Fixed and Floating Wind Turbine Power Converter with Digital Twin Technology Perspective. In Proceedings of the 2018 2nd International Conference on Green Energy and Applications (ICGEA 2018)–IEEE, Ei Compendex, and Scopus, Singapore, 24–26 March 2018; pp. 197–204. [Google Scholar]
- Cousin, A.; Garnier, J.; Guiton, M.; Munoz-Zuniga, M. A Two-Step Procedure for Time-Dependent Reliability-Based Design Optimization Involving Piece-Wise Stationary Gaussian Processes. Struct. Multidiscip. Optim. 2022, 65, 120. [Google Scholar] [CrossRef]
- Xia, Y.; Xu, K.; Li, Y.; Xu, G.; Xiang, X. Adaptive Trajectory Tracking Control of a Cable-Driven Underwater Vehicle on a Tension Leg Platform. IEEE Access 2019, 7, 35512–35531. [Google Scholar] [CrossRef]
- Lemmer, F.; Yu, W.; Steinacker, H.; Skandali, D.; Raach, S. Advances on reduced-order modeling of floating offshore wind turbines. In International Conference on Offshore Mechanics and Arctic Engineering; American Society of Mechanical Engineers: New York, NY, USA, 2021; Volume 85192, p. V009T09A034. [Google Scholar]
- Medina-Manuel, A.; Molina, R.; Souto-Iglesias, A. AI-Driven Model Prediction of Motions and Mooring Loads of a Spar Floating Wind Turbine in Waves and Wind. J. Mar. Sci. Eng. 2024, 12, 1464. [Google Scholar] [CrossRef]
- Ren, C.; Xing, Y. AK-MDAmax: Maximum Fatigue Damage Assessment of Wind Turbine Towers Considering Multi-Location with an Active Learning Approach. Renew. Energy 2023, 215, 118977. [Google Scholar] [CrossRef]
- Faraggiana, E.; Sirigu, M.; Ghigo, A.; Bracco, G.; Mattiazzo, G. An Efficient Optimisation Tool for Floating Offshore Wind Support Structures. Energy Rep. 2022, 8, 9104–9118. [Google Scholar] [CrossRef]
- Majidian, H.; Enshaei, H.; Howe, D.; Wang, Y. An Integrated Framework for Real-Time Sea-State Estimation of Stationary Marine Units Using Wave Buoy Analogy. J. Mar. Sci. Eng. 2024, 12, 2312. [Google Scholar] [CrossRef]
- Lee, J.-C.; Shin, S.-C.; Kim, S.-Y. An Optimal Design of Wind Turbine and Ship Structure Based on Neuro-Response Surface Method. Int. J. Nav. Archit. Ocean Eng. 2015, 7, 750–769. [Google Scholar] [CrossRef]
- Chen, P.; Hu, Z.-Q. Analysis of Key Disciplinary Parameters in Floating Offshore Wind Turbines with An AI-Based SADA Method. China Ocean Eng. 2022, 36, 649–657. [Google Scholar] [CrossRef]
- Palma, G.; Bardazzi, A.; Lucarelli, A.; Pilloton, C.; Serani, A.; Lugni, C.; Diez, M. Analysis, Forecasting, and System Identification of a Floating Offshore Wind Turbine Using Dynamic Mode Decomposition. J. Mar. Sci. Eng. 2025, 13, 656. [Google Scholar] [CrossRef]
- Ren, C.; Xing, Y.; Patel, K.S. Application of an Active Learning Method for Cumulative Fatigue Damage Assessment of Floating Wind Turbine Mooring Lines. Results Eng. 2024, 22, 102122. [Google Scholar] [CrossRef]
- Chen, P.; Jia, C.; Ng, C.; Hu, Z. Application of SADA Method on Full-Scale Measurement Data for Dynamic Responses Prediction of Hywind Floating Wind Turbines. Ocean Eng. 2021, 239, 109814. [Google Scholar] [CrossRef]
- Rowell, D.; McMillan, D.; Carroll, J. Application of Systems Safety Principles for O&M of Floating Offshore Wind. J. Phys. Conf. Ser. 2024, 2875, 12023. [Google Scholar]
- Wang, K.; Gaidai, O.; Wang, F.; Xu, X.; Zhang, T.; Deng, H. Artificial Neural Network-Based Prediction of the Extreme Response of Floating Offshore Wind Turbines Under Operating Conditions. J. Mar. Sci. Eng. 2023, 11, 1807. [Google Scholar] [CrossRef]
- Didier, F.; Liu, Y.-C.; Laghrouche, S.; Dépernet, D. Blade Pitch Control of Floating Offshore Wind Turbine Systems Using Super-Twisting Algorithm and Recurrent RBF Neural Network. In Proceedings of the 2024 IEEE 19th Conference on Industrial Electronics and Applications (ICIEA), Kristiansand, Norway, 5–8 August 2024. [Google Scholar]
- Adepoju, T.F.; Olatunbosun, B.E.; Olatunji, O.M.; Ibeh, M.A. Brette Pearl Spar Mable (BPSM): A Potential Recoverable Catalyst as a Renewable Source of Biodiesel from Thevetia Peruviana Seed Oil for the Benefit of Sustainable Development in West Africa. Energy Sustain. Soc. 2018, 8, 23. [Google Scholar] [CrossRef]
- Cousin, A.; Garnier, J.; Guiton, M.; Munoz-Zuniga, M.M. Chance Constraint Optimization of a Complex System: Application to the Fatigue Design of a Floating Offshore Wind Turbine Mooring System. In Proceedings of the MascotNum Annual Conference, Aussois, France, 27–30 April 2021; Volume 800, pp. 1–12. [Google Scholar]
- Ilardi, D.; Kalikatzarakis, M.; Oneto, L.; Collu, M.; Coraddu, A. Computationally Aware Surrogate Models for the Hydrodynamic Response Characterization of Floating Spar-Type Offshore Wind Turbine. IEEE Access 2024, 12, 6494–6517. [Google Scholar] [CrossRef]
- Sharma, S.; Nava, V. Condition Monitoring of Mooring Systems for Floating Offshore Wind Turbines Using Convolutional Neural Network Framework Coupled with Autoregressive Coefficients. Ocean Eng. 2024, 302, 117650. [Google Scholar] [CrossRef]
- Müller, K.; Dazer, M.; Cheng, P.W. Damage Assessment of Floating Offshore Wind Turbines Using Response Surface Modeling. Energy Procedia 2017, 137, 119–133. [Google Scholar] [CrossRef]
- Singh, D.; Haugen, E.; Laugesen, K.; Chauhan, A.; Viré, A. Data Analysis of the TetraSpar Demonstrator Measurements. J. Phys. Conf. Ser. 2024, 2767, 62025. [Google Scholar] [CrossRef]
- Fathnejat, H.; Nava, V. Data Augmentation for Damaged Scenarios in Floating Offshore Wind Turbines: An Approach Based on Diffusion Architecture, Hierarchical Variational Approximation and Healthy Data Distribution. Eng. Comput. 2025, 41, 1979–1999. [Google Scholar] [CrossRef]
- Bashir, M.; Xu, Z.; Wang, J.; Guedes Soares, C. Data-Driven Damage Quantification of Floating Offshore Wind Turbine Platforms Based on Multi-Scale Encoder–Decoder with Self-Attention Mechanism. J. Mar. Sci. Eng. 2022, 10, 1830. [Google Scholar] [CrossRef]
- Muhammad Amri, H.G.B.; Marramiero, D.; Singh, D.; Van Wingerden, J.-W.; Viré, A. Data-Driven Time Series Forecasting of Offshore Wind Turbine Loads. J. Phys. Conf. Ser. 2024, 2767, 52060. [Google Scholar] [CrossRef]
- Sierra-García, J.E.; Santos Peñas, M. Deep Learning and Fuzzy Logic to Implement a Hybrid Wind Turbine Pitch Control. Neural Comput. Appl. 2022, 34, 10503–10517. [Google Scholar] [CrossRef]
- Didier, F.; Laghrouche, S.; Dépernet, D. Deep Reinforcement Learning-Based Pitch Control for Floating Offshore Wind Turbines. 2023, pp. 2133–2138. Available online: https://hal.science/hal-04390483/document (accessed on 3 October 2025).
- Roh, C. Deep-Learning-Based Pitch Controller for Floating Offshore Wind Turbine Systems with Compensation for Delay of Hydraulic Actuators. Energies 2022, 15, 3136. [Google Scholar] [CrossRef]
- Feng, J.; Pedersen, M.M.; Riva, R.; Bredmose, H.; Santos, P. Design Optimization of Floating Offshore Wind Farms Using a Steady State Movement and Flow Model. J. Phys. Conf. Ser. 2024, 2875, 12039. [Google Scholar] [CrossRef]
- Kim, C.; Dinh, M.-C.; Sung, H.-J.; Kim, K.-H.; Choi, J.-H.; Graber, L.; Yu, I.-K.; Park, M. Design, Implementation, and Evaluation of an Output Prediction Model of the 10 MW Floating Offshore Wind Turbine for a Digital Twin. Energies 2022, 15, 6329. [Google Scholar] [CrossRef]
- Dunbar, A.J.; Craven, B.A.; Paterson, E.G. Development and Validation of a Tightly Coupled CFD/6-DOF Solver for Simulating Floating Offshore Wind Turbine Platforms. Ocean Eng. 2015, 110, 98–105. [Google Scholar] [CrossRef]
- Pimenta, F.; Pacheco, J.; Branco, C.M.; Teixeira, C.M.; Magalhães, F. Development of a Digital Twin of an Onshore Wind Turbine Using Monitoring Data. J. Phys. Conf. Ser. 2020, 1618, 22065. [Google Scholar] [CrossRef]
- Gorostidi, N.; Pardo, D.; Nava, V. Diagnosis of the Health Status of Mooring Systems for Floating Offshore Wind Turbines Using Autoencoders. Ocean Eng. 2023, 287, 115862. [Google Scholar] [CrossRef]
- Moghadam, F.K.; Rebouças, G.F.S.; Nejad, A.R. Digital Twin Modeling for Predictive Maintenance of Gearboxes in Floating Offshore Wind Turbine Drivetrains. Forsch. Im Ingenieurwesen/Eng. Res. 2021, 85, 273–286. [Google Scholar] [CrossRef]
- Walker, J.; Coraddu, A.; Oneto, L.; Killbourn, S. Digital Twin of the Mooring Line Tension for Floating Offshore Wind Turbines. In Proceedings of the OCEANS 2021, Virtual, 20–23 September 2021; Volume 2021. [Google Scholar]
- Walker, J.; Coraddu, A.; Collu, M.; Oneto, L. Digital Twins of the Mooring Line Tension for Floating Offshore Wind Turbines to Improve Monitoring, Lifespan, and Safety. J. Ocean Eng. Mar. Energy 2022, 8, 1–16. [Google Scholar] [CrossRef]
- Wei, X.; Zhu, X.; Cao, R.; Wang, J.; Li, X.; Li, Q.; Choi, J.-H. Dynamic Analysis of a Moored Spar Platform in a Uniform Current: Fluid Load Prediction Using a Surrogate Model. J. Mar. Sci. Eng. 2024, 12, 792. [Google Scholar] [CrossRef]
- Schneider, A.; Schüttler, L.; Eichelbeck, M.; Goebel, C. E-SparX: A Graph-Based Artifact Exchange Platform to Accelerate Machine Learning Research in the Energy Systems Community. In Proceedings of the 16th ACM International Conference on Future and Sustainable Energy Systems, Rotterdam, The Netherlands, 17–20 June 2025; pp. 436–445. [Google Scholar]
- Vijayakumar, G.; Yellapantula, S.; Branlard, E.; Ananthan, S. Enhancement of Unsteady and 3D Aerodynamics Models Using Machine Learning. J. Phys. Conf. Ser. 2020, 1452, 12065. [Google Scholar] [CrossRef]
- Muñoz-Palomeque, E.; Sierra-García, J.E.; Santos Peñas, M. Enhancing Offshore Wind Turbines Performance with Hybrid Control Strategies Using Neural Networks and Conventional Controllers. J. Comput. Des. Eng. 2025, 12, 80–97. [Google Scholar] [CrossRef]
- Hallak, T.S.; Teixeira, Â.P.; Guedes Soares, C. Epistemic Uncertainties on the Estimation of Minimum Air Gap for Semi-Submersible Platforms. Mar. Struct. 2022, 85, 103244. [Google Scholar] [CrossRef]
- Yoon, T.; Park, Y.-I.; Kim, J.-H. Estimation of Directional Wave Spectra with Motion Data of Floating Structure Using Complex-Valued Neural Networks. Appl. Sci. 2025, 15, 1603. [Google Scholar] [CrossRef]
- Cho, S.; Choi, M.; Gao, Z.; Moan, T. Fault Detection and Diagnosis of a Blade Pitch System in a Floating Wind Turbine Based on Kalman Filters and Artificial Neural Networks. Renew. Energy 2021, 169, 1–13. [Google Scholar] [CrossRef]
- Fernandez-Navamuel, A.; Peña-Sanchez, Y.; Nava, V. Fault Detection and Identification for Control Systems in Floating Offshore Wind Farms: A Supervised Deep Learning Methodology. Ocean Eng. 2024, 310, 118678. [Google Scholar] [CrossRef]
- Wang, Y.; Wen, C.; Wu, X. Fault Detection and Isolation of Floating Wind Turbine Pitch System Based on Kalman Filter and Multi-Attention 1DCNN. Syst. Sci. Control Eng. 2024, 12, 2362169. [Google Scholar] [CrossRef]
- Dibaj, A.; Gao, Z.; Nejad, A.R. Fault Detection of Offshore Wind Turbine Drivetrains in Different Environmental Conditions through Optimal Selection of Vibration Measurements. Renew. Energy 2023, 203, 161–176. [Google Scholar] [CrossRef]
- Li, X.; Yue, Q.; Sang, X.; Zhang, X. Floating Offshore Wind Power: Global Development, Key Technologies and Future Trends. In Proceedings of the E3S Web of Conferences 2025, Samarinda, Indonesia, 5–6 November 2025; Volume 625. [Google Scholar]
- Coraddu, A.; Oneto, L.; Walker, J.; Patryniak, K.; Prothero, A.; Collu, M. Floating Offshore Wind Turbine Mooring Line Sections Health Status Nowcasting: From Supervised Shallow to Weakly Supervised Deep Learning. Mech. Syst. Signal Process. 2024, 216, 111446. [Google Scholar] [CrossRef]
- Coraddu, A.; Oneto, L.; Kalikatzarakis, M.; Ilardi, D.; Collu, M. Floating Spar-Type Offshore Wind Turbine Hydrodynamic Response Characterisation: A Computational Cost Aware Approach. In Proceedings of the Global Oceans 2020: Singapore–U.S. Gulf Coast, Biloxi, MS, USA, 5–30 October 2020. [Google Scholar]
- Barooni, M.; Velioglu Sogut, D. Forecasting Pitch Response of Floating Offshore Wind Turbines with a Deep Learning Model. Clean Technol. 2024, 6, 418–431. [Google Scholar] [CrossRef]
- Ahmad, I.; M’zoughi, F.; Aboutalebi, P.; Garrido, I.; Garrido, A.J. Fuzzy Logic Control of an Artificial Neural Network-Based Floating Offshore Wind Turbine Model Integrated with Four Oscillating Water Columns. Ocean Eng. 2023, 269, 113578. [Google Scholar] [CrossRef]
- Fernandez-Navamuel, A.; Gorostidi, N.; Pardo, D.; Nava, V.; Chatzi, E. Gaussian Mixture Autoencoder for Uncertainty-Aware Damage Identification in a Floating Offshore Wind Turbine. Wind Energy Sci. 2025, 10, 857–885. [Google Scholar] [CrossRef]
- Sierra-García, J.E.; Santos Peñas, M. Improving Wind Turbine Pitch Control by Effective Wind Neuro-Estimators. IEEE Access 2021, 9, 10413–10425. [Google Scholar] [CrossRef]
- Kang, B.; Park, S.; Kwon, D. Interpretable Prediction of Floating Offshore Wind Turbine Dynamic Responses: An Attention-Based Deep Learning Approach. Ocean Eng. 2025, 335, 121703. [Google Scholar] [CrossRef]
- Sun, N.; Zhou, B.; Zheng, H.; Wang, Y. Inversion Analysis of Constitutive Relations of Blade Spar Laminates with Wrinkle Defects. AIP Adv. 2025, 15, 65118. [Google Scholar] [CrossRef]
- Yang, Z.; Xu, Y.; Shi, L.; Zhu, C.; Bao, Y. Investigation of Methods for the Localization and Reconstruction of the Wave Impact on a Floating Wind Turbine Pontoon. J. Ocean Eng. Sci. 2025, 10, 1103–1118. [Google Scholar] [CrossRef]
- Lemmer, F.; Yu, W.; Cheng, P.W. Iterative Frequency-Domain Response of Floating Offshorewind Turbines with Parametric Drag. J. Mar. Sci. Eng. 2018, 6, 118. [Google Scholar] [CrossRef]
- Gräfe, M.; Ozinan, U.; Cheng, P.W. Lidar-Based Virtual Load Sensors for Mooring Lines Using Artificial Neural Networks. J. Phys. Conf. Ser. 2023, 2626, 12036. [Google Scholar] [CrossRef]
- Velino, J.; Kang, S.; Kane, M.B. Machine Learning Control for Floating Offshore Wind Turbine Individual Blade Pitch Control. J. Comput. Civ. Eng. 2022, 36, 4022034. [Google Scholar] [CrossRef]
- Korolis, J.S.; Bourdalos, D.M.; Sakellariou, J.S. Machine Learning-Based Damage Diagnosis in Floating Wind Turbines Using Vibration Signals: A Lab-Scale Study Under Different Wind Speeds and Directions. Sensors 2025, 25, 1170. [Google Scholar] [CrossRef]
- Barooni, M.; Ghaderpour Taleghani, S.; Bahrami, M.; Sedigh, P.; Velioglu Sogut, D. Machine Learning-Based Forecasting of Metocean Data for Offshore Engineering Applications. Atmosphere 2024, 15, 640. [Google Scholar] [CrossRef]
- Gräfe, M.; Pettas, V.; Dimitrov, N.; Cheng, P.W. Machine-Learning-Based Virtual Load Sensors for Mooring Lines Using Simulated Motion and Lidar Measurements. Wind Energy Sci. 2024, 9, 2175–2193. [Google Scholar] [CrossRef]
- Wu, M.; Gao, Z. Methodology for Developing a Response-Based Correction Factor (Alpha-Factor) for Allowable Sea State Assessment of Marine Operations Considering Weather Forecast Uncertainty. Mar. Struct. 2021, 79, 103050. [Google Scholar] [CrossRef]
- Kayedpour, N.; Samani, A.E.; de Kooning, J.D.M.; Vandevelde, L.; Crevecoeur, G. Model Predictive Control with a Cascaded Hammerstein Neural Network of a Wind Turbine Providing Frequency Containment Reserve. IEEE Trans. Energy Convers. 2022, 37, 198–209. [Google Scholar] [CrossRef]
- Trubat, P.; Herrera, A.; Molins, C. Mooring Optimization Using ML Techniques. In International Conference on Offshore Mechanics and Arctic Engineering; American Society of Mechanical Engineers: New York, NY, USA, 2022; Volume 86618, p. V001T01A013. [Google Scholar]
- Pillai, A.C.; Thies, P.R.; Johanning, L. Mooring System Design Optimization Using a Surrogate Assisted Multi-Objective Genetic Algorithm. Eng. Optim. 2019, 51, 1370–1392. [Google Scholar] [CrossRef]
- Ye, X.; Zheng, P.; Qiao, D.; Zhao, X.; Zhou, Y.; Wang, L. Multi-Objective Optimization Design of a Mooring System Based on the Surrogate Model. J. Mar. Sci. Eng. 2024, 12, 1853. [Google Scholar] [CrossRef]
- Mao, Y.; Wang, T.; Duan, M.; Men, H. Multi-Objective Optimization of Semi-Submersible Platforms Based on a Support Vector Machine with Grid Search Optimized Mixed Kernels Surrogate Model. Ocean Eng. 2022, 260, 112077. [Google Scholar] [CrossRef]
- Lemmer, F.; Yu, W.; Luhmann, B.; Schlipf, D.; Cheng, P.W. Multibody Modeling for Concept-Level Floating Offshore Wind Turbine Design. Multibody Syst. Dyn. 2020, 49, 203–236. [Google Scholar] [CrossRef]
- Díaz, H.; Guedes Soares, C. Multicriteria Decision Approach to the Design of Floating Wind Farm Export Cables. Energies 2022, 15, 6593. [Google Scholar] [CrossRef]
- Bayat, S.; Lee, Y.H.; Allison, J.T. Nested Control Co-Design of a Spar Buoy Horizontal-Axis Floating Offshore Wind Turbine. Ocean Eng. 2025, 328, 121037. [Google Scholar] [CrossRef]
- Didier, F.; Basbas, H.; Larioumlil, D.; Laghrouche, S.; Dépernet, D. Neural Network-Based Super-Twisting Control for Floating Wind Turbines: Design and Real-Time Validation. Ocean Eng. 2025, 338, 121973. [Google Scholar] [CrossRef]
- Mirzaei, M.J.; Hamida, M.A.; Plestan, F. Neural Network-Based Supertwisting Control for Floating Wind Turbine in Region III. IFAC-PapersOnLine 2023, 56, 336–341. [Google Scholar] [CrossRef]
- Raach, S.; Schlipf, D.; Lemmer, F.; Matha, D.; Cheng, P.W. Nonlinear Model Predictive Control of Floating Wind Turbines with Individual Pitch Control. In Proceedings of the 2014 American Control Conference, Portland, OR, USA, 4–6 June 2014; pp. 4434–4439. [Google Scholar]
- Majidian, H.; Enshaei, H.; Howe, D. Nonlinear Transient Switching Filter for Automatic Buffer Window Adjustment in Short-Term Ship Response Prediction. Procedia Comput. Sci. 2024, 232, 1045–1054. [Google Scholar] [CrossRef]
- Barooni, M.; Velioglu Sogut, D.; Sedigh, P.; Bahrami, M. Novel Hybrid Deep Learning Model for Forecasting FOWT Power Output. Energies 2025, 18, 3532. [Google Scholar] [CrossRef]
- Chan, G.K.Y.; Sclavounos, P.D.; Jonkman, J.; Hayman, G. Computation of Nonlinear Hydrodynamic Loads on Floating Wind Turbines Using Fluid-Impulse Theory. In Proceedings of the ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering; Volume 9: Ocean Renewable Energy, St. John’s, NL, Canada, 31 May–5 June 2015; ASME: New York, NY, USA, 2015. V009T09A038. [Google Scholar] [CrossRef]
- Sclavounos, P.D.; Zhang, Y.; Ma, Y.; Larson, D.F. Offshore Wind Turbine Nonlinear Wave Loads and Their Statistics. J. Offshore Mech. Arct. Eng. 2019, 141, 31904. [Google Scholar] [CrossRef]
- Alkarem, Y.R.; Huguenard, K.; Kimball, R.W.; Hejrati, B.; Ammerman, I.; Nejad, A.R.; Fontaine, J.; Heshami, R.; Grilli, S. On Building Predictive Digital Twin Incorporating Wave Predicting Capabilities: Case Study on UMaine Experimental Campaign-FOCAL. J. Phys. Conf. Ser. 2024, 2745, 12001. [Google Scholar] [CrossRef]
- Moghadam, F.K.; Nejad, A.R. Online Condition Monitoring of Floating Wind Turbines Drivetrain by Means of Digital Twin. Mech. Syst. Signal Process. 2022, 162, 108087. [Google Scholar] [CrossRef]
- Majidian, H.; Enshaei, H.; Howe, D. Online Short-Term Ship Response Prediction with Dynamic Buffer Window Using Transient Free Switching Filter. Ocean Eng. 2024, 294, 116701. [Google Scholar] [CrossRef]
- Cousin, A.; Delépine, N.; Guiton, M.; Munoz-Zuniga, M.; Perdrizet, T. Optimal Design of Experiments for Computing the Fatigue Life of an Offshore Wind Turbine Based on Stepwise Uncertainty Reduction. Struct. Saf. 2024, 110, 102483. [Google Scholar] [CrossRef]
- Zhao, X.; Ma, Q.; Li, J.; Wu, Z.; Lu, H.; Xiong, Y. Optimization Design of Lazy-Wave Dynamic Cable Configuration Based on Machine Learning. J. Mar. Sci. Eng. 2025, 13, 873. [Google Scholar] [CrossRef]
- Wang, L.; Jin, F.; Chen, J.; Gao, Y.; Du, X.; Zhang, Z.; Xu, Z.; Yang, J. Performance Improvement for Large Floating Wind Turbine by Using a Non-Linear Pitch System Based on Neuro-Adaptive Fault-Tolerant Control. IET Renew. Power Gener. 2022, 16, 1636–1648. [Google Scholar] [CrossRef]
- Alremeihi, M.; Norman, R.; Pazouki, K.; Dev, A.; Bashir, M. Performance of an Advanced Intelligent Control Strategy in a Dynamic Positioning (Dp) System Applied to a Semisubmersible Drilling Platform. J. Mar. Sci. Eng. 2021, 9, 399. [Google Scholar] [CrossRef]
- Payenda, M.A.; Wang, S.; Jiang, Z.; Prinz, A. Prediction of Mooring Dynamics for a Semi-Submersible Floating Wind Turbine with Recurrent Neural Network Models. Ocean Eng. 2024, 313, 119490. [Google Scholar] [CrossRef]
- Lee, S.; Kang, S.; Lee, G.-S. Predictions for Bending Strain at the Tower Bottom of Offshore Wind Turbine Based on the LSTM Model. Energies 2023, 16, 4922. [Google Scholar] [CrossRef]
- Haghshenas, A.; Hasan, A.; Osen, O.; Mikalsen, E.T. Predictive Digital Twin for Offshore Wind Farms. Energy Inform. 2023, 6, 1. [Google Scholar] [CrossRef]
- Gorostidi, N.; Nava, V.; Aristondo, A.; Pardo, D. Predictive Maintenance of Floating Offshore Wind Turbine Mooring Lines Using Deep Neural Networks. J. Phys. Conf. Ser. 2022, 2257, 12008. [Google Scholar] [CrossRef]
- Mian, H.H.; Siddiqui, M.S.; Keprate, A.; Mathew, S. Predictive Modeling of Semi-Submersible Floater Motion Using Bi-LSTM Model. J. Phys. Conf. Ser. 2024, 2875, 12029. [Google Scholar] [CrossRef]
- van Heukelum, H.J.; Steenbrink, A.C.; Colomés, O.; Binnekamp, R.; Wolfert, A.R.M. Preference-Based Service Life Design of Floating Wind Structures. In Life-Cycle of Structures and Infrastructure Systems; CRC Press: Boca Raton, FL, USA, 2023; pp. 957–964. [Google Scholar]
- Didier, F.; Liu, Y.-C.; Laghrouche, S. Radial Basis Function Neural Network-Based Super-Twisting Blade Pitch Controller for the Floating Offshore Wind Turbine. In Proceedings of the 2024 10th International Conference on Control, Decision and Information Technologies (CoDIT), Vallette, Malta, 1–4 July 2024; pp. 1257–1262. [Google Scholar]
- Okpokparoro, S.; Sriramula, S. Reliability Analysis of Floating Wind Turbine Dynamic Cables Under Realistic Environmental Loads. Ocean Eng. 2023, 278, 114594. [Google Scholar] [CrossRef]
- Nim, E.; Roadnight, J.; Moharram, H.; Collier, W.; Jensen, C.S.L. Section Force Calculation in Flexible Substructures Modelled by Wind Turbine Design Tool Bladed. J. Phys. Conf. Ser. 2024, 2767, 52043. [Google Scholar] [CrossRef]
- Choe, D.-E.; Kim, H.-C.; Kim, M.-H. Sequence-Based Modeling of Deep Learning with LSTM and GRU Networks for Structural Damage Detection of Floating Offshore Wind Turbine Blades. Renew. Energy 2021, 174, 218–235. [Google Scholar] [CrossRef]
- Chen, P.; Song, L.; Chen, J.-H.; Hu, Z. Simulation Annealing Diagnosis Algorithm Method for Optimized Forecast of the Dynamic Response of Floating Offshore Wind Turbines. J. Hydrodyn. 2021, 33, 216–225. [Google Scholar] [CrossRef]
- Chen, P.; Chen, J.; Hu, Z. Software-in-the-Loop Combined Reinforcement Learning Method for Dynamic Response Analysis of FOWTs. Front. Mar. Sci. 2021, 7, 628225. [Google Scholar] [CrossRef]
- Hasan, T.; Sarker, D.; Ngo, T.; Das, T. Stabilization of the Wind Turbine Floating Platform Using Mooring Actuation. IFAC-PapersOnLine 2023, 56, 535–540. [Google Scholar] [CrossRef]
- Dighe, V.V.; Peeringa, J.; Hermans, K.; Swamy, S.K.; Bulder, B.; Savenije, F. Surrogate Based Sensitivity Analysis and Uncertainty Quantification of Floating Wind Turbine Mooring Systems. J. Phys. Conf. Ser. 2023, 2626, 12035. [Google Scholar] [CrossRef]
- Baudino Bessone, M.; Singh, D.; Kalimeris, T.; Bachynski-Polić, E.; Viré, A. Surrogate-Assisted Optimization of Floating Wind Turbine Substructure. J. Phys. Conf. Ser. 2024, 2767, 62032. [Google Scholar] [CrossRef]
- Chen, H.; Bu, Y.; Zong, K.; Huang, L.; Hao, W. The Effect of Data Skewness on the LSTM-Based Mooring Load Prediction Model. J. Mar. Sci. Eng. 2022, 10, 1931. [Google Scholar] [CrossRef]
- Ambarita, E.E.; Karlsen, A.; Osen, O.; Hasan, A. Towards Fully Autonomous Floating Offshore Wind Farm Operation & Maintenance. Energy Rep. 2023, 9, 103–108. [Google Scholar] [CrossRef]
- Wang, L.; Zuo, S.; Song, Y.D.; Zhou, Z. Variable Torque Control of Offshore Wind Turbine on Spar Floating Platform Using Advanced RBF Neural Network. Abstr. Appl. Anal. 2014, 2014, 903493. [Google Scholar] [CrossRef]
- Ma, Y.; Sclavounos, P.D.; Cross-Whiter, J.; Arora, D. Wave Forecast and Its Application to the Optimal Control of Offshore Floating Wind Turbine for Load Mitigation. Renew. Energy 2018, 128, 163–176. [Google Scholar] [CrossRef]
- Scopus. Available online: https://www.scopus.com/results/results.uri?s=TITLE-ABS-KEY%28%28+%22floating+offshore+wind%22+OR+%22floating+wind%22+OR+%22floating+wind+turbine*%22+OR+FOWT+OR+%28+%28spar+OR+%22semi-sub*%22+OR+semisub*+OR+%22tension+leg%22+OR+TLP+OR+barge%29+W%2F3+%28turbine+OR+platform+OR+floater%29+%29+%29+AND+%28+%22artificial+intelligence%22+OR+%22machine+learning%22+OR+%22deep+learning%22+OR+%22neural+network*%22+OR+%22reinforcement+learning%22+OR+%22digital+twin*%22+OR+%22surrogate+model*%22+OR+%22reduced-order+model*%22+OR+%22physics-informed%22+OR+PINN*+OR+%22Gaussian+process*%22+OR+kriging+OR+%22support+vector*%22+OR+%22random+forest%22+OR+%22gradient+boosting%22+OR+%22Bayesian+optimization%22+%29+AND+%28+design+OR+optimization+OR+%22structural+health%22+OR+monitoring+OR+SHM+OR+diagnostics+OR+control+OR+controller+OR+%22model+predictive+control%22+OR+MPC+OR+%22fault+detection%22+OR+%22condition+monitoring%22+OR+%22O%26M%22+OR+operations+OR+maintenance+OR+%22state+estimation%22+%29%29+AND+NOT+TITLE-ABS-KEY%28%22tidal%22+OR+%22wave+energy%22+OR+%22point+absorber%22%29+AND+PUBYEAR+%3E+2017+AND+PUBYEAR+%3C+2026+&cluster=lang%2C%22English%22%2Ct&limit=10&origin=searchhistory&sort=plf-f&src=s&sot=a&sdt=cl&sessionSearchId=bff1ab6e9d95469b9245836743b8720b (accessed on 3 October 2025).
- DNV AS. DNV-RP-A203: Technology Qualification; Edition September 2019, Amended September 2021; DNV: Høvik, Norway, 2021; Available online: https://www.dnv.com/energy/standards-guidelines/dnv-rp-a203-technology-qualification.html (accessed on 3 October 2025).
- International Electrotechnical Commission (IEC). IEC 61400-1: Wind Energy Generation Systems—Part 1: Design Requirements, 4th ed.; IEC: Geneva, Switzerland, 2019; Available online: https://webstore.iec.ch/en/publication/26423 (accessed on 3 October 2025).







| Domain | Critical Point | Typical Limitation | Implication |
|---|---|---|---|
| Design/Surrogate modeling | Nonlinear coupled load prediction | Limited extrapolation ability outside training domain | Requires physics-informed constraints and uncertainty quantification |
| Structural-health monitoring | Sparse labels, sensor drift | Overfitting to noise | Semi-supervised/drift-aware ML models |
| Control and operations | Stability under extreme sea states | Safety constraint violation | Safe RL and robust MPC integration |
| Digital-twin lifecycle | Data–model mismatch | Calibration and identifiability issues | Hybrid physics + data twins with online recalibration |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kostecka, E.; Miller, T.; Durlik, I.; Nerć, A. Artificial Intelligence in Floating Offshore Wind Turbines: A Critical Review of Applications in Design, Monitoring, Control, and Digital Twins. Energies 2025, 18, 5937. https://doi.org/10.3390/en18225937
Kostecka E, Miller T, Durlik I, Nerć A. Artificial Intelligence in Floating Offshore Wind Turbines: A Critical Review of Applications in Design, Monitoring, Control, and Digital Twins. Energies. 2025; 18(22):5937. https://doi.org/10.3390/en18225937
Chicago/Turabian StyleKostecka, Ewelina, Tymoteusz Miller, Irmina Durlik, and Arkadiusz Nerć. 2025. "Artificial Intelligence in Floating Offshore Wind Turbines: A Critical Review of Applications in Design, Monitoring, Control, and Digital Twins" Energies 18, no. 22: 5937. https://doi.org/10.3390/en18225937
APA StyleKostecka, E., Miller, T., Durlik, I., & Nerć, A. (2025). Artificial Intelligence in Floating Offshore Wind Turbines: A Critical Review of Applications in Design, Monitoring, Control, and Digital Twins. Energies, 18(22), 5937. https://doi.org/10.3390/en18225937

